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Our initiative, seeded by funding from the BMBF for the Bernstein-Focus in

NeuroTechnology (2009-2016), focuses on trans-disciplinary systems

research linking insights from systems engineering, neuroscience, and

cognitive science/psychology. Our emphasis is on methodologies, platforms,

and tools leading to safe, certifiable AI systems. We view the human brain as

an evolved system, with a flexible learning architecture designed by nature to

solve a range of specific tasks in a class of environments that enhances the

survival of humans. Model-driven systems engineering is a discipline that

formalizes application domain specification, i.e. task performance

requirements and contextual models, and translates them into system

designs. Systems engineering in the context of computer vision has its

origins from the early 90’s and has been refined over the years through

practice [1, 2, 4]. At a high-level, the architectures inspired from systems

engineering principles have parallels to models of brain function. The system

is massively parallel and perform feed-forward decomposition of input visual

signal into constituent modalities (e.g. color, motion, texture, shadow,

reflection, contours, etc.) thus allowing for efficient indexing into a rich

memory structure. Generated hypotheses can then be refined via a dynamic,

recurrent process to converge to an interpretation. While both engineering

and brain science views ([13]) of the architectures agree at this higher level,

ongoing work is on engineering platforms to facilitate rapid design and

validation of real-world applications. Our framework allows for parallel

execution and exploration of the tradeoffs and systematic fusion of model-

based and modern deep machine learning approaches to address context-

sensitivity, explainability, and various degrees of safety.

Systems Engineering for Vision*

(Academic Foundations – 90’s) 

“Visual Cognition is ‘quasi-invariant Indexing’ followed by detailed estimation (or deliberation, iteration) – open 

research is on systems level questions such as: architectures, continuous learning and self-diagnostics”. 

Essence of Design Framework: {Application contexts} x {questions/tasks} x {perf specs/requirements} ----> 

{sensor configurations} x {cognitive software: {specific hypotheses generators} + {reasoning / optimization 

engine} }
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Industrial Applications* 

(2000’s) 
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Waves  of AI (DARPA, 2017)

AI eco-systems are transdisciplinary. Key gaps are

in: a) platforms that can enable creation of safe and

explainable AI systems, b) training, mentoring of systems

thinkers and c) establishment of integrated eco-systems for

rapid AI innovations.
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AI Ecosystems

Paradigms for AI: Rule based systems (in the 90’s) exploit reasoning 

along with limited perception.  Statistical learning systems (in the 2000’s) 

exhibit perception as well as learning with limited abstraction/reasoning.  

They have high statistical performance, but are brittle in instances and 

are opaque  The next wave is on systems that exhibit context-

sensitivity and have explainability.

Application: Cognitive Anomaly extraction

Model-based and Data-driven designs have been combined 

for demonstrating how expectation models in context can be 

used for monitoring behaviors and identify anomalies: e.g.  For 

security, brake-light on/off detection in automotive, fine 

crack/defect classification in bridge infrastructure, and behavior 

monitoring in scientific applications. 
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