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Overview

As part of the Bernstein Focus in NeuroTechnology ini-
tiative in Frankfurt, a trans-disciplinary project involving
neuroscience, psychology, computer science and engi-
neering, we have developed engineering platforms, sim-
ulation tools, and application case studies in cognitive
vision following systems engineering principles.
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Our engineering platform effort lies on the modeling, im-
plementation and validation views of the system. Mainly
on core data structure support for algorithms, distributed
run-time execution of modules, enhanced debugging
of system pipeline execution states, contextual model-
ing and computer graphics simulation of data, machine
learning, optimization, and performance characteriza-
tion of systems [1, 2, 3]. Given the rapidly emerging
open-source efforts in Machine Learning and AI, the
platform effort is planned to be shifted to a startup in
engineering platforms.
Inspirations from Cognitive Architecture
IOur effort is to realize the proposed cognitive architec-

ture [1], with its major components: hypothesis gener-
ators, deliberation and knowledge update.

IVisual intelligence is seen as context and task sensi-
tive indexing followed by detailed estimation or delib-
eration (Indexing involves decomposition of input data
into quasi invariant features as suggested in [4]). The
indexing sub-modalities (e.g. color, texture, motion, il-
lumination, etc.) are complementary in nature.

IDetailed state estimation can be implemented by a va-
riety of schemes - distributed fusion, belief propaga-
tion, markov-chain monte carlo methods, or delibera-
tion and reasoning [1, 5, 6, 7].

Model based system design thus involves translation of
appropriate scene priors and task requirements to per-
form quick hypothesis generation and fusion.

Goal

The startup venture will focus on next generation engi-
neering tools that will simplify design, operation, and
validation of large scale vision and cognition applica-
tions. The emphasis is on aggregating open-source plat-
forms and on differentiating technologies in systems sci-
ence and engineering outlined above.

Case studies

In this presentation, anomaly detection from video for
an automotive application is used as a case study to
demonstrate our engineering workflow and platform ca-
pabilities [8]. We highlight how to translate user require-
ments to graphical models for contexts that are in turn
translated to approximate inference engines. We also
illustrate how our platform is used for evaluating the per-
formance of the inference engine on real as well as syn-
thetic data.

Workflows

Systems Engineering Workflow illustrates the link be-
tween User, Modeler, Implementer and Validation view-
points.
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Case study: brake light detection in
automotive video sequences

� User view
I Task: brake light transition detection system on monocular video

sequences. Detect brake light state changes including confidence
level of detections.

I Context: Traffic settings: ’urban areas’, ’country roads’ and ’high-
ways’ with multiple lanes, traffic densities and junction settings.
Illumination & Weather Conditions: “day”, ”night”, ”dawn”, ”dusk”,
“overcast”, “spray”, “fog”, “raining”, “frost”, “snow”, etc.

I Performance: Near-human level performance with self-
diagnostics. Real-time implementation on embedded platforms.
Academic prototype’s focus is on demonstration on methodology.

� Modeler view

The modeler postulates the low entropy factors in the
OOBN, what factors require invariance (i.e. what sub-
modalities are relevant for task) and chooses invariant
modules.
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Figure: Graphical model for the task of brake-light detection. The
World plate contains latent variables on which the observed
variables in Obs are conditioned at time t.

Systems analysis is used to characterize invariant mod-
ule’s performance in context (either on real or simulated
data) and derives an extended OOBN that includes the
quasi-invariants. Deliberative reasoning may also be in-
corporated at this stage.

� Implementer view

As described in [1], we implemented a cognitive system
that consists of multimodal quasi-invariant filters that
map to the variables identified in the modeling phase. A
memory storage contains prior hypotheses on the world
and is indexed by context and current state estimates,
selecting and tuning parameters of the estimators.

� Evaluation view

Based on the implementation, large-scale experiments
have been conducted and analyzed.

Work # imgs D/N Recog FN FP

[Liu2015] 1983 D 85.6% 12.52% 16.65%
DSEQ 439 D 97.3 % 2.7% 0.3%
DFP 40 D 92.5 % 7.5% 17.5%

[Chen2012] 26 N 84.6% 15.4% N/A
[Tham2009] 45 N 86.67% 13.3% 6.665%

DSEQ 549 N 88.2% 3.3% 8.6%
DFP 16 N 93.75% 6.25% 6.25%

Table: Evaluation of state-estimation without temporal information.
D/N denotes day or night conditions, Recog the detection rate,
DSEQ and DFP denote our system evaluated on two datasets.

� Simulation

Simulation is utilized during the modeling stage to pop-
ulate prior memory representations.
C,T,P → 3D description → Simulation → Memory
These memory representations are used by the infer-
ence engines of the realtime system.

Figure: Priors on geometrical brake/tail-light statistics

Figure: Simulation for expected flow given scene geometry and
velocity

Integration and Fusion of perspectives

The systems engineering process that links explicitly
context, task, performance specs to designs allows for
explainability, context sensitivity.

Moreover, it allows ease of integration of Model-based
perspectives with modern machine learning (deep-
learning) perspectives to provide various degrees of
transparency. Ongoing research in the context of indus-
try and European Union’s horizon 2020 projects address
these aspects.

Results
Principled analysis and modeling of involved variables
allows for the selection of suited estimators for a given
task in context. Priming of estimators from given mem-
ory representations allows to set parameters that adapt
to a given context.

Figure: Two frames from a braking event (top: time t, bottom: t+1).
First column: input images, second column: map of cR, third
column: magnified transition estimations (T:Off-transition from on
to off, T:N-no transition detected.)

We have shown the design and implementation of work-
flows following the explained methodologies and pre-
sented a case study.
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