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Models for machine vision

Model Pr(w|x) Model Pr(x|w)

Regression Linear Linear
xr € |—00,00], w € [—00, 0] regression '
Classification Logistic
xr € [—o0,00],w € {0,1} regression density functiop

Table 5.1: Example models in this chapter. These can be categorized into those that are
based on modelling probability density functions, those that are based on linear
regression and those that are based on logistic regression.
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Face Detection
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Type 3: Pr(x|w) - Generative

How to model Pr(x|w)?
— Choose an appropriate form for Pr(x)
— Make parameters a function of w
— Function takes parameters 0 that define its shape

Learning algorithm: learn parameters 0 from training data x,w

Inference algorithm: Define prior Pr(w) and then compute
Pr(w |x) using Bayes’ rule
Pr(x|lw=1)Pr(w =1)
Z};:o Pr(x|\w = k)Pr(w =Fk)

Pr(w =1|x) =



Classification Model

Pr(x|w) = Normy|[p,,, 2]

Or writing in terms of class conditional density functions

Pr(x
Pr(x

w = 0)
w=1)

Normy g, o]

Normy [f,, 3]

Parameters p,, X, learnt just from data S, where w=0

o, 20 argmax

I”’O 720

argliiax
H'o Y 20

Similarly, parameters u,, Z, learnt just from data S; where w=1

H PT(X?' “’LO? 20)

L1€S)

H NOI‘Il’lXi UJJO? EO}

L1E€So



Pr(z|w) = Normg[fty, 03]
0.5

1

Pr(w|z)

Inference algorithm: Define prior Pr(w) and
then compute Pr(w|x) using Bayes’ rule

oo

_ Pr(x|w)Pr(w)
Priwpx) = | Pr(x|w)Pr(w)dw

1

0
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Experiment

1000 non-faces
1000 faces

60x60x3 Images =10800 x1 vectors
Equal priors Pr(y=1)=Pr(y=0) = 0.5

75% performance on test set. Not
very good!
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Results (diagonal covariance)

C)

diag
2}0

A

-

diag
21

Figure 7.2 Class conditional density
functions for normal model with diag-
onal covariance. Maximum likelihood
fits based on 1000 training examples
per class. a) Mean for background
data p (reshaped from 10800 x 1 vec-
tor to 60 x 60 RGB image). b) Re-
shaped square root of diagonal co-
variance for background data . c)
Mean for face data p, d) Covariance
for face data 2;. The background
model has little structure: the mean
is uniform and the variance is high ev-
erywhere. The mean of the face model
clearly captures class-specific informa-
tion. The covariance of the face is
larger at the edges of the image which
usually contain hair or background.
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Normal distribution

The plan...

Problem 1
Unimodal

a)

Problem 2

Sensitive
to outliers

Problem 3

Too many parameters
in high dimensions
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Hidden (or latent) Variables

Key idea: represent density Pr(x) as marginalization of joint
density with another variable h that we do not see

Pr(x) = / Pr(x,h) dh
Will also depend on some parameters:

Pr(x|0) — / Pr(x.hl0) dh



Y ‘O[qeLIRA USPPIY

Hidden (or latent) Variables

Pr(x|0) = | Pr(x,h|0) dh

Pr(z,h)

observed variable, x

Pr(z)

/\_|

Figure 7.4 Using hidden variables to
help model complex densities. One
way to model the density Pr(x) is to
consider the joint probability distri-
bution Pr(z,h) between the observed
data r and a hidden variable h. The
density Pr(x) can be considered as the
marginalization of (integral over) this
distribution with respect to the hid-
den variable h. As we manipulate the
parameters 8 of this joint distribution,
the marginal changes and the agree-
ments with the observed data {x;}!_,
increases or decreases. Sometimes it
is easier to fit the distribution in this
indirect way than to directly manipu-

late Pr(z).



Expectation Maximization

An algorithm specialized to fitting pdfs which are the
marginalization of a joint distribution

6 = argmax Zlog {/ Pr(x;,h;|0) dhi]

0

Defines a lower bound on log likelihood and increases bound
iteratively

Bl{ai(hi)}.6] = Z / e 1og[P”h'9)]dh1.._I
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Lower bound

B [{a:(h Z / () log [Préi’hfg'g)] dhi.

Lower bound is a function of parameters 0 and a set of
probability distributions q,(h))

Expectation Maximization (EM) algorithm alternates E-
steps and M-Steps

E-Step — Maximize bound w.r.t. distributions q(h))
M-Step — Maximize bound w.r.t. parameters 0



Lower bound

I
Bl{qi(h;)},0] = Z/Qi(hi)log lpréi’h}:§|9)] dhy g

b)

Q
S

log likelihood, L[6]
o\
=

log likelihood, L[6]
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E-Step & M-Step

E-Step — Maximize bound w.r.t. distributions q.(h)

Pr(x;|h;, 0" Pr(h;|0'")

ji(h;) = Pr(hy[x;, 0") =
gi(h;) r(hg[x;, 6%) Pr(x;)

M-Step — Maximize bound w.r.t. parameters 0

- 7 -
é[t+1} — argimnax Z /(j@(h@) lOg []DT(X@'j h@|9)] dh;
6  lLi=1 ]
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log likelihood, LI[6]

E-Step & M-Step

o0l gl g2l g 9[2‘]9 PE
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Mixture of Gaussians (MoG)

K
Pr(x|0) = Z A Normy [y, 2]
k=1



ML Learning

Q. Can we learn this model with maximum likelihood?

I
0 = argmax log |Pr(x;|0
3 > log[Pr(x;]6)]

| =1 i

- )
= argmax Zlog
| i=1

K
Z ArNormy, [uka Zk‘]

0 k=1 ]

A. Yes, but using brute force approach is tricky
 |If you take derivative and set to zero, can’t solve
-- the log of the sum causes problems
 Have to enforce constraints on parameters
e covariances must be positive definite
e weights must sum to one



MoG as a marginalization

Define a variable h € {1... K} and then write

Pr(x|h,0) = Normy[p,,, 3]
Pr(h|@) = Catp[A]
Then we can recover the density by marginalizing Pr(x,h)
K
Pr(x|0) = Pr(x,h = k|6)
k}z{l
= Z Pr(x|h =k, 0)Pr(h = k|0)
k}z{l
— Z A Normy [ ey, 2.

au
I
| —



MoG as a marginalization
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K

Pr(x|6) = » Pr(x.h=kl6)
k=1
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MoG as a marginalization

Define a variable h € {1... K} and then write

Pr(x|h,08) = Normy|u;, 7]
Pr(h|@) = Catp[A]

Note :

* This gives us a method to generate data from MoG
* First sample Pr(h), then sample Pr(x|h)

* The hidden variable h has a clear interpretation —
it tells you which Gaussian created data point x



Expectation Maximization for MoG

GOAL: tolearn parameters 0 = {\1 k., 5,21 Kk} from
training data x1. s

E-Step — Maximize bound w.r.t. distributions q(h))

Pr(x;|h;, 0" Pr(h;|0'")
PT(XZ')

G;(h;) = Pr(hy|x;,0") =
M-Step — Maximize bound w.r.t. parameters 0

gt algmax ZZQ? k)log [Pr(x;,h; = k|@0)]
i=1 k=1
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E-Step

P’I“(h-.-g — /f‘Xi? 0

—

Pr(hlz = 1)

Pr(z,h)

] )

Pr(x;lh; = /C?H[ﬂ)]:"’fr(h.?t — kﬁg[ﬂ)

S Pr(xilhi = 5.6 Pr(h; = j.01)

ApNormy, (1., 3y]

)
>R X Norm ;. 3

Ik

We’ll call this the
responsibility of the

k™ Gaussian for the it data
point

Repeat this procedure for
every datapoint!
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M-Step

I K
9[t+l} — argmax Z Zq@(hi = k) log [Pr(x;, h; = k@)]]
6 L i=1 k=1
"I K
— argmax ZZT““ log [A\xNormy, (g, 2]
0 L i=1 k=1

Take derivative, equate to zero and solve (Lagrange multipliers for A)

I

)\[t+1] _ 23':1 Tik
k = K 1
Zj_l Zi:l Tij
I
plit D i TikX
k o Il
D> im1 Tik
I t+1 t+1
st i el — e e — T
k o ]
Zizl ik
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M-Step

=
o
N’
~
S Y A N A N
~—
8
=
e
o R
e
»\ ,./. {1;
h¢

Update means, covariances and weights according to
responsibilities of datapoints
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Pr(xz,h)

Iterate until no further improvement

[

Pr(hlz = x1)

h=1 h=2

Pr(z,h)

E-Step M-Step

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
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© M-Step  E-Step E-Step
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Different flavours...

Full Diagonal Same
covariance covariance covariance



Local Minima

Start from three random positions




Means of face/non-face model

Classification =2 84% (9% improvement!)
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Normal distribution

The plan...

Problem 1
Unimodal

a)

Problem 2

Sensitive
to outliers

Problem 3

Too many parameters
in high dimensions
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Student t-distributions

0.5

10
a) b)
2
10
N ~~
= S
= g
R A,
4
10
t-distribution, v =1
t-distribution, v = 3
t-distribution, v = oo
0 " normal distribution
5 X 5 €T 5

Pr(z) = Studg [p,o0%, V]
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Student t-distributions motivation

The normal distribution is not very robust — a single outlier can
completely throw it off because the tails fall off so fast...

Normal distribution Normal distribution t-distribution
w/ one extra datapoint!



Student t-distributions

Univariate student t-distribution

Pr(z) = Study |[p, 0%, V]
v+1 —
NS (1+(9ﬁu)2) :
Vvmo?ll [%} Vo
Multivariate student t-distribution
Pr(x) = Study |[p, 2, V]
_UJ‘ED
_ r =57 (1 L xR u))
(vm)P/2|ZM2T (4] ”



t-distribution as a marginalization

Define hidden variable h

Pr(x|h) = Norm,|u,3X/h]
Pr(h) = Gamy|v/2,v/2]

Can be expressed as a marginalization
Pr(x) = /P?“(X, h)dh = /P?“(X|h)P7“(h)dh

= /Normm[u,Z/h]Gamh[u/Q,u/Q]dh
= Study|u, X, v].



Gamma distribution

87

Gamy|a, 8] = Tl

exp[—Bh|h*1
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t-distribution as a marginalization

Define hidden variable h

Pr(x|h) = Norm,|u,3/h]
Pr(h) Gamy,[v/2,v/2)]

Things to note:

* Again this provides a method to sample from the t-distribution

 Variable h has a clear interpretation:
* Each datum drawn from a Gaussian, mean pn
 Covariance depends inversely on h

* Can think of this as an infinite mixture (sum becomes integral)
of Gaussians w/ same mean, but different variances



t-distribution

a) Pr(z) d)

distrbution Pr(z|h)
normal distributions
p) Pr(z, h) )

(Y)ad

uonnqlysIp ewwes

r Pr(z|h = 3.0)
N
/ w
-4 T 4
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EM for t-distributions

GOAL: to learn parameters 0 = {, 02, v} from training
data Xi .7

E-Step — Maximize bound w.r.t. distributions q(h))

P \h;. ] Pr(h;
er(h—-rj):P?"(h.?j‘}(ije[t]) _ r(x;|hi, 0")Pr(h;)

Pr(x;|0")
M-Step — Maximize bound w.r.t. parameters 0

I,
At NI I | |
0 = argmax ;1 | / Gi(h;)log [Pr(x, h;, 0)] dh;
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E-Step

Pr(x;|h:. 0" Pr(h;)

q:(hi) = Pr(hi|x;,0") =

P‘I“(Xi‘gm)
- Normy, [, X/h;|Gamy,, [v/2,v/2]
- P?“(Xzi)
R A S TE
— Gam,, [u+D:(Xa p) I (% — p) +g]
2 2
Extract expectations
(v + D)
E[h;] = —
vt (i~ T (x, — )
D i— )T (x; —
Efloglh]| — @[u; ]_loglu+(x u)2 (% u)]
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M-Step

-7 .
é[t+1] = argmax Z / QQ(ha) log {PT(X*LH h"i ‘9)} dh’l]
6 .

o

—  argmax Z/qz ) (log [Pr(x;|h;,0)] + log [Pr(h@-)})dhi]

—  argmax Z/pr (hilx;, 0 (log Pr(x;|h;,0)] +log [Pr(h?-)})dhi]

0

— arg(rgnax ZE log [Pr(xi|hi, 0)]] + E [log [Pr(h; )H]
| i —1

Where...
DE[log h;]— D log 2r—log || — (x; — )" 27 (x; — p)E[hy]

E [log [Pr(xilh:, 8)]] = 2

Elog[Pr(h;)]] = glog E] —log I’ g} + (g — 1) E[log hJ—gE[h@]
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Updates

I
u[t+1] _ >_i—1 Elhi]x;
— i
2 i—1 Blh]
I
S+ _ S Elh](xi — M[Hﬂ)(xf@ _ M[t—l—l])T

S Eh]

No closed form solution for v. Must optimize bound —since it

is only one number we can optimize by just evaluating with a
fine grid of values and picking the best



Pr(z)

EM algorithm for t-distributions

b) c)

Pr(x)

Figure 7.18 Expectation maximization for fitting t-distributions. a) Esti-
mate of distribution before update. b) In the E-Step we calculate the pos-
terior distribution Pr(h;|z;) over the hidden variable h; for each data point
x;. The color of each curve corresponds to that of the original data point
in (a). ¢) In the M-Step we use these distributions over h to update the
estimate of the parameters 6 = {y1,0°, v}.

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
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Normal distribution

The plan...

Problem 1
Unimodal

a)

Problem 2

Sensitive
to outliers

Problem 3

Too many parameters
in high dimensions
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Factor Analysis

Compromise between

—  Full covariance matrix (desirable but many parameters)
— Diagonal covariance matrix (no modelling of covariance)

Models full covariance in a subspace @
Mops everything else up with diagonal component X

Pr(x) = Normy|u, 8®" + 3]



Data Density

Consider modelling distribution of 100x100x3 RGB Images

Gaussian w/ spherical covariance: 1 covariance matrix parameters
Gaussian w/ diagonal covariance: D, covariance matrix parameters
Full Gaussian: ~D,? covariance matrix parameters
PPCA: ~D, Dy, covariance matrix parameters
Factor Analysis: ~D, (D, +1) covariance matrix parameters

Computer vision: models, learning and infeWZ?%&ﬁn&g\;é)rllngccee in Subspace + d|agona|)



Subspaces

b)
2D space

&
Q4
S
N
)
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Factor Analysis

Compromise between

—  Full covariance matrix (desirable but many parameters)
— Diagonal covariance matrix (no modelling of covariance)

Models full covariance in a subspace @
Mops everything else up with diagonal component ~

Pr(x) = Normy|u, 8®" + 3]



Factor Analysis as a Marginalization

Let’s define
Pr(x/h) = Normy|p + ®@h, X
Pr(h) = Normy[0,]I]

Then it can be shown (not obvious) that
Pr(x) :/P’r(x, h)dh = /PT(X|h)P7"(h)dh

— /Normx[p, + ®h, 3|Normy, |0, I|dh

— Normy[p, P + X



Sampling from factor analyzer

b
) ) o

C)

d)
=
1
O = L
Pr(x/h) = Normy[u + ®h, ]
Pr(h) = Normy|0,]]
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Factor analysis vs. MoG

Pr(x) = z;i:l %Nor‘mx [ + dhi, X Pr(x) = /Pr(h)Normx[p + ¢h, X]dh °) Pr(x) = /PT(h)Normx [+ ®h, X]dh
= Normy[u, ¢p” + I = Normy[p, 887 + 3|
0
=[p1 @]
b) d) f)
Pr(h) = Normp[0, 1] = Normy, |0, I

hihe hs hy
+H o+ +
: y

h




E-Step

Compute posterior over hidden variables

G(h;) = Pr(h;|x;. 0"
Pr(x;|h;, 8" Pr(h,)
Pr(x;|6!")
Normy, [t + ®h;, ¥]Normy, [0, I]
Pr(x;|0"
= Normy,, (@' =7 '@ +1)7'@"' =7 (x; — ). (' 7' 4+ 1))

Compute expectations needed for M-Step

Eh,] = ("2 '¢+1)'e'2 (x;, — p)
Elhihj] = E[(h; — E[hi])(h; — E[h])"] + E[h]E[h]"
= (' '® + 1) ! + E[hEh,]".

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
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b)

E-Step

Pr(x) = fPr(h)Normx[p + ¢h, X|dh

= Normy|[p, " + X

Pr(h|x)=Norm,[(¢" = '¢ + 1)L = H(x—p),
(@"=71¢) ]

d)

Pr(x) = /Pr(h)Normx[u + ®h, ¥|dh

= Normy[p, &P + Y]

¢ = [¢1 ¢2]

Pr(h|x)=Norm [(®T2 7@ + )17 27 (x—p),

@7z '®)




M-Step

 Optimize parameters w.r.t. EM bound

I
ol _ argmax Z/thi(hi)log [Pr(x,h;, 0)] dhi]
0

= argmax Z/q? ) [log [Pr(x|h;, 8)] + log [Pr(h;)]] dh,;]
0

— argmax Z/(j?;(hi)log [Pr(x|h;, 0)] dhi]
[i=1"

0

rI
= argmax Z E [log Pr(x|h;, 9)}] :
o Lli=1

where....
Dlog(27) 4+ log|Z| + (x; — p—®h;))' T (x; — p— ®h;)

log Pr(x;|h;) = — >
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M-Step

 Optimize parameters w.r.t. EM bound

I
L [t41
9[ | — argmax ZE[logPr(X\hi,B)]
0 =1

where...
~ Dlog(27) +log |X] + (x; —p—®h;)' S (x; — p—®h,)

log Pr(x;|h;) =

2
giving expressions:
o - Ehux
& = (ZI;(Xf — ﬂ)E[hJT) (ZI;E{hih?O )
> = %i}diag {(xi — )" (x; — 1) — ‘ff-’E[hde}
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Face model
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Sampling from 10 parameter model

To generate:

Choose factor loadings, h, from standard normal distribution
Multiply by factors, ®

* Add mean, n
(should add random noise component ¢, w/ diagonal cov X)
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Combining Models

Can combine three models in various combinations

* Mixture of t-distributions = mixture of Gaussians + t-distributions
* Robust subspace models = t-distributions + factor analysis
e Mixture of factor analyizers = mixture of Gaussians + factor analysis

Or combine all models to create mixture of robust subspace
models

K
Pr(x) = 3 AStudy [uk,cbkcb;f+zk,uk}
k=1
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Expectation Maximization

Problem: Optimize cost functions of the form

1
é = arg mBaX Zl log ; PT(Xi, hz)} < Discrete case
9=

1
é = i mOaXZ log {‘/ P’F(X@, hi)dhil <«——— Continuous case
=1

Solution: Expectation Maximization (EM) algorithm
(Dempster, Laird and Rubin 1977)

Key idea: Define lower bound on log-likelihood and
increase at each iteration
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Expectation Maximization

Defines a lower bound on log likelihood and increases bound
iteratively

Bl{ai(h)}, 6] = Z/qQ g [ L0

| PT‘(X,,;, h7|9) ]
i(h; dh;
/Q( ) qi(h;)

1=1 -

|\

~ \II.M
’_l

o

o9




Lower bound

Bl{qi(h;)},0] = i/%(hi)bg {PT(Xijhi‘g)] dh;

q'i(hi)

Lower bound is a function of parameters 0 and a set of
probability distributions {q;(h.)}
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E-Step & M-Step

E-Step — Maximize bound w.r.t. distributions {q.(h.)}

"[h;] = argmax | B[{gi(h)}, 01"~
q; ;]

VI-Step — Maximize bound w.r.t. parameters 0

6" = argmax | B[{q," ()}, 6]
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e ()} =
argmaxfg,; (h;)} B [{q’i(h‘i)}a 6[0]}

log likelihood, L[]

E-Step: Update {q:[h.]} so that bound equals log likelihood for this 0

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 69



0 = argmaxyB [{q:(h;)}1, 0]

log likelihood, L[]

M-Step: Update 0 to maximum

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
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Missing Parts of Argument

log likelihood, L[6]

o0l gl g2 g 9[2‘]9 o13]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince
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Missing Parts of Argument

NoOwW t

Now t

oW t

nat t
nat t

nat t

nis is a lower bound
ne E-Step update is correct

ne M-Step update is correct



Jensen’s Inequality

a) ° —
log|E[y]] 1
log|Ely]] > Ellog[y]]
=
o0
2
Ely]
) yO-O 0 yO-O =10
Eflogly]] < log [E[y]] or. . a()logly] < log {Zq(my‘

Yy

similarly /q(y) logly|dy < /log[q(y)]dy
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Lower Bound for EM Algorithm

Bl{q.(h,)}.6] - Z [ athtog | TR,

| / (k) Pr((;cghtl)?m dhi]

= Y log / Pr(x;,h;|0) dh@-]¢
1=1 -

|\
~ |I'M
—
o
ag

Where we have used Jensen’s inequality

/ a(y) loglyldy < / log[q(y)]dy
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E-Step — Optimize bound w.r.t {g;(h.)}

P?“(X@':hi‘G)
B[{qi(h Z / ¢i(h;)log ) ] dh;
o ' ' ] P?“(h.-i‘X@'jG)P?“(Xi‘B) ‘
= Z; / g:(hi) log | o ] dh;

= o \ ~ . qi(h;)
— ;'/Qi(hi)log [Pr(x;]0)] dhi—;./%(hi) log [P?"(hix,;,@)] dh;

I 1

' ¢i(h;) :

= log |P i — i hz, log ht 4(

> lox P 0)] =3 [ahlos | i s an (140
Constant w.r.t. q(h) Only this term matters
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E-Step
i (h;)
Gi(h;) al;g(r}??x _ qi(h;) log Prihx,.0)

[ P’I"(hﬂXi, 9)
= argmax /q@-(hi)log{ } dhz}
g (hy) L gi(h;)

P h?, 179

qi(h;) q’&(h%)

Kullback Leibler divergence — distance between probability
distributions . We are maximizing the negative distance (i.e.
Minimizing distance)
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Use this relation




Kullback Leibler Divergence

fatwtos | IS v < fam (SRS 1)

= /Pr(h@Xf,@) — ¢i(h;) dh;
— 1—1= O

So the cost function must be positive

; Pr(h;|x;, 0
gi(hi) = argmin {—/qi(hi)log{ r(hilx )} dh?.}
qz',(h'i,) Q?(h?)

In other words, the best we can do is choose q.(h;) so that this is
zero




E-Step
So the cost function must be positive
A . P’I"(hﬂXi, 9)
gi(hi) = argmin |~ [ ¢;(h;)log dh;
¢i (h) qi(h;)

The best we can do is choose q;(h;) so that this is zero.

How can we do this? Easy — choose posterior Pr(h|x)

[ 1o X [ et [0 0)]

_ / Pr(hy|x;,0)log [1] dh, = 0.

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 79



M-Step — Optimize bound w.r.t. 0

arginax
o

argimax
o

arginax
0

argmax
Z

1

Z/q?

1

Z/q?

1

Z/qy

Bl{q)" (b}, 6]

P ;. h; |0
r(;z],, | >] "
q; " (h;)

1

) log

)1og [Pr(x;, h;10)] — g (h;) log | ¢/ ()| dh@-]

) log [Pr(x;, h;|0)] d,hzl

In the M-Step we optimize expected joint log likelihood with
respect to parameters 0 (Expectation w.r.t distribution from E-Step)
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E-Step & M-Step
E-Step — Maximize bound w.r.t. distributions q.(h)

 Pr(x;|h;, 0" Pr(h;)
- P?"(X@)

Qi(h@) — P?“(h@‘|X1',9[t])
M-Step — Maximize bound w.r.t. parameters 0

- 7 -
é[t+1} — argimnax Z /(j@(h@) lOg []DT(X@'j h@|9)] dh;
6  lLi=1 ]
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Structure

Densities for classification
Models with hidden variables

— Mixture of Gaussians
— t-distributions
— Factor analysis

EM algorithm in detail
Applications



Face Detection

Color | Grayscale | Equalized

Single Gaussian 76% 79% 80%
Mixture of 10 Gaussians | 81% 85% 9%

(not a very realistic model — face detection really done using discriminative methods)
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Object recognition

Aeschliman et al. (2010)

66 90 61 99 47 62 43 71
25 91 43 80 63 24 08 33

Model as J independent patches
t-distributions
normal

Pr(x;lw=m) = | | Studx,, [, 5 Vim)
distributions ‘ H g Zjms Vim



Segmentation

MoG Mo t-Distrib’s

Y

o™ o
Pr(w,) = Caty [l Sfikas et al. (2007) @IEEE 2007
Pr(x;lw;, = k) = Normy, |[p, 2]
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Face Recognition

Figure 6.28 Face recognition. Our
goal 1s to take the RGB wvalues of
a facial image x and assign a label
y € {1...K}. Since the data is high
dimensional , we model the class con-
ditional density function Pr(x|y = k)
for each individual in the database
as a factor analyzer. To classify a
new face, we apply Bayes’ rule with
suitable priors Pr(y) to compute the
posterior distribution Pr(y|x). Fi-
nally, we choose the label 3y =
arg maxy, Pr(y = k|x) that maximizes
the posterior. This 1s not suitable
if there are not plentiful training ex-
amples of each individual or where
there are significant pose or lighting
changes.
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Pose Regression

Pr(x,w)

Training data Learning Inference
Frontal faces x Fit factor analysis modelto  Given new x, infer w
Non-frontal faces w joint distribution of x,w (cond. dist of normal)
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a)

-5

Conditional Distributions

Pr(zy,x2)

If

then

Pr(za|zy = —1.2)

N\

Pr (z2]T1 = [].Dj

N

b)

-5

Pr(z,xo

Pr(zs|z1 = —4.0)

AN

Pr(za|z, = 0.0)

AN

Pr(zs|zy = 1.6) 2] 0 5 Pr(zs|zy = 2.0)
X1 Hy 211 Eirg
Pr(x) = Pr = Normy ,
X2 Mo| |22 Moo
Pr(xi[x2) = Normy, (Ph + 21,35 (X2 — po), D11 — 2{222_21212)
P?'(X2|X1) = 1\TO]TII1XQ (”2 + 21221_11 (Xl — u’l)? EQQ — 21221_112({2)

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

88




Modeling transformations
with hidden variables

a) b) c) = e)
Hkd B EHERESEA .. 7
A P

N

> 7

Std

4\

ES
¥ K

Original Original  h=l
Images Images Images

Transformed

Figure 7.30 Modeling transformations with hidden variables. a) Original set
of digit images are only weakly aligned. b) Mean and standard deviation
images are consequently blurred out. The probability density model does
not fit well. ¢) Each possible value of a discrete hidden variable represents
a different transformation (here inverse transformations are shown). Red
square highlights most likely choice of hidden variable after 10 iterations.
d) Transformed digits (based on most likely hidden variable). d) New mean
and standard deviation images are more focussed: the probability density
function fits better.



