
Computer vision: models, 
learning and inference 

Chapter 7  
Modeling Complex Densities 



Structure 
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• Densities for classification 
• Models with hidden variables 

– Mixture of Gaussians 
– t-distributions 
– Factor analysis 

• EM algorithm in detail 
• Applications 
 
 



Models for machine vision 
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Face Detection 
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Type 3:  Pr(x|w)  - Generative 

How to model Pr(x|w)? 
– Choose an appropriate form for Pr(x) 
– Make parameters a function of w 
– Function takes parameters θ that define its shape 

 
Learning algorithm:  learn parameters θ from training data x,w 
Inference algorithm:  Define prior Pr(w) and then compute 

Pr(w|x) using Bayes’ rule 
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Classification Model 

Or writing in terms of class conditional density functions 

Parameters µ0, Σ0 learnt just from data S0 where w=0 

Similarly, parameters µ1, Σ1 learnt just from data S1 where w=1 
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Inference algorithm:  Define prior Pr(w) and 
then compute Pr(w|x) using Bayes’ rule 



Experiment 

1000 non-faces 
1000 faces 
 
60x60x3 Images =10800 x1 vectors 
 
Equal priors Pr(y=1)=Pr(y=0) = 0.5 
 
75% performance on test set.  Not 
very good! 
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Results (diagonal covariance) 
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The plan... 
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Structure 
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• Densities for classification 
• Models with hidden variables 

– Mixture of Gaussians 
– t-distributions 
– Factor analysis 

• EM algorithm in detail 
• Applications 
 
 



Hidden (or latent) Variables 

Key idea: represent density Pr(x) as marginalization of joint 
density with another variable h that we do not see 
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Will also depend on some parameters: 



Hidden (or latent) Variables 
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Expectation Maximization 
An algorithm specialized to fitting pdfs which are the 
marginalization of a joint distribution 

Defines a lower bound on log likelihood and increases bound 
iteratively 
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Lower bound 

Lower bound is a function of parameters θ and a set of 
probability distributions qi(hi) 
 
Expectation Maximization (EM) algorithm alternates E-
steps and M-Steps 
 
E-Step – Maximize bound w.r.t. distributions q(hi) 
M-Step – Maximize bound w.r.t. parameters θ 
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Lower bound 

16 



E-Step & M-Step 
E-Step – Maximize bound w.r.t. distributions qi(hi) 
 
 
 
 
 
M-Step – Maximize bound w.r.t. parameters θ 
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E-Step & M-Step 
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Structure 
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• Densities for classification 
• Models with hidden variables 

– Mixture of Gaussians 
– t-distributions 
– Factor analysis 

• EM algorithm in detail 
• Applications 
 
 



Mixture of Gaussians (MoG) 
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ML Learning 
Q. Can we learn this model with maximum likelihood? 

A. Yes, but using brute force approach is tricky 
• If you take derivative and set to zero, can’t solve  
  -- the log of the sum causes problems 
• Have to enforce constraints on parameters 

• covariances must be positive definite 
• weights must sum to one 
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MoG as a marginalization 
Define a variable                             and then write  

Then we can recover the density by marginalizing Pr(x,h) 
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MoG as a marginalization 
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MoG as a marginalization 

Define a variable                             and then write  

Note : 
 

• This gives us a method to generate data from MoG 
• First sample Pr(h), then sample Pr(x|h) 
 

• The hidden variable h has a clear interpretation – 
 it tells you which Gaussian created data point x 
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GOAL:  to learn parameters                                                  from  
  training data  

Expectation Maximization for MoG 

E-Step – Maximize bound w.r.t. distributions q(hi) 
 
 
 
 
 

M-Step – Maximize bound w.r.t. parameters θ 
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E-Step 

We’ll call this the 
responsibility of the  
kth Gaussian for the ith data 
point 
 
Repeat this procedure for 
every datapoint! 
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M-Step 

Take derivative, equate to zero and solve (Lagrange multipliers for λ) 
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M-Step 

Update means , covariances and weights according to 
responsibilities of datapoints 
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Iterate until no further improvement 

E-Step M-Step 
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Different flavours... 

Diagonal 
covariance 

Same 
covariance 

Full  
covariance 

31 Computer vision: models, learning and inference.  ©2011 Simon J.D. Prince 



Local Minima 

L = 98.76 L = 96.97 L = 94.35 

Start from three random positions 
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Means of face/non-face model 

Classification  84% (9% improvement!) 
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The plan... 
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Structure 
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• Densities for classification 
• Models with hidden variables 

– Mixture of Gaussians 
– t-distributions 
– Factor analysis 

• EM algorithm in detail 
• Applications 
 
 



Student t-distributions 
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Student t-distributions motivation 

Normal distribution Normal distribution 
w/ one extra datapoint! 

t-distribution 

Normal distribution Normal distribution 
w/ one extra datapoint! 

t-distribution 

The normal distribution is not very robust – a single outlier can 
completely throw it off because the tails fall off so fast... 
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Student t-distributions 

Univariate student t-distribution 

Multivariate student t-distribution 
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t-distribution as a marginalization 
Define hidden variable h 

Can be expressed as a marginalization 
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Gamma distribution 
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t-distribution as a marginalization 
Define hidden variable h 

Things to note:   
 

• Again this provides a method to sample from the t-distribution  
• Variable h has a clear interpretation: 

• Each datum drawn from a Gaussian, mean µ 
• Covariance depends inversely on h 

• Can think of this as an infinite mixture (sum becomes integral)  
of Gaussians w/ same mean, but different variances 
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t-distribution 
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GOAL:  to learn parameters                                    from  training  
   data  

EM for t-distributions 

E-Step – Maximize bound w.r.t. distributions q(hi) 
 
 
 
 
 

M-Step – Maximize bound w.r.t. parameters θ 
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E-Step 

Extract expectations 
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M-Step 

Where... 
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Updates 

No closed form solution for ν.  Must optimize bound – since it 
is only one number we can optimize by just evaluating with a 
fine grid of values and picking the best 
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EM algorithm for t-distributions 
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The plan... 
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Structure 
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• Densities for classification 
• Models with hidden variables 

– Mixture of Gaussians 
– t-distributions 
– Factor analysis 

• EM algorithm in detail 
• Applications 
 
 



Factor Analysis 

Compromise between  
– Full covariance matrix (desirable but many parameters) 
– Diagonal covariance  matrix (no modelling of covariance) 

 

Models full covariance in a subspace Φ 
Mops everything else up with diagonal component Σ 
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Data Density 

Consider modelling distribution of 100x100x3 RGB Images 
 
Gaussian w/ spherical covariance:    1              covariance matrix parameters 
 
Gaussian w/ diagonal covariance:  Dx            covariance matrix parameters 
 
Full Gaussian:    ~Dx

2   covariance matrix parameters 
 
PPCA:       ~Dx Dh   covariance matrix parameters 
 
Factor Analysis:    ~Dx (Dh+1)  covariance matrix parameters 

(full covariance in subspace + diagonal) 
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Subspaces 
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Factor Analysis 

Compromise between  
– Full covariance matrix (desirable but many parameters) 
– Diagonal covariance  matrix (no modelling of covariance) 

 

Models full covariance in a subspace Φ 
Mops everything else up with diagonal component Σ 
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Factor Analysis as a Marginalization 

Then it can be shown (not  obvious)  that 

Let’s define 
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Sampling from factor analyzer 



Factor analysis vs. MoG 
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E-Step 
• Compute posterior over hidden variables 
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• Compute expectations needed for M-Step 



E-Step 
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M-Step 
• Optimize parameters w.r.t. EM bound 
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where.... 



M-Step 
• Optimize parameters w.r.t. EM bound 
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where... 
 
 
giving expressions: 



Face model 
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Sampling from 10 parameter model 
To generate: 
 

• Choose factor loadings, hi from standard normal distribution 
• Multiply by factors, Φ  
• Add mean, µ 
• (should add random noise component εi w/ diagonal cov Σ) 
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Combining Models 
Can combine three models in various combinations 
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• Mixture of t-distributions = mixture of Gaussians + t-distributions 
• Robust subspace models = t-distributions + factor analysis 
• Mixture of factor analyzers = mixture of Gaussians + factor analysis 

Or combine all models to create mixture of robust subspace 
models  



Structure 
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• Densities for classification 
• Models with hidden variables 

– Mixture of Gaussians 
– t-distributions 
– Factor analysis 

• EM algorithm in detail 
• Applications 
 
 



Expectation Maximization 
Problem:  Optimize cost functions of the form 
 

Solution:  Expectation Maximization (EM) algorithm  
    (Dempster, Laird and Rubin 1977) 

Key idea:  Define lower bound on log-likelihood and  
    increase at each iteration 

Continuous case 

Discrete case 
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Expectation Maximization 

Defines a lower bound on log likelihood and increases bound 
iteratively 
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Lower bound 

Lower bound is a function of parameters θ and a set of 
probability distributions {qi(hi)} 
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E-Step & M-Step 
E-Step – Maximize bound w.r.t. distributions {qi(hi)} 
 
 
 
 
 
M-Step – Maximize bound w.r.t. parameters θ 
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E-Step: Update {qi[hi]} so that bound equals log likelihood for this θ 
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M-Step: Update θ to maximum 
70 Computer vision: models, learning and inference.  ©2011 Simon J.D. Prince 



71 Computer vision: models, learning and inference.  ©2011 Simon J.D. Prince 

Missing Parts of Argument 



Missing Parts of Argument 

1. Show that this is a lower bound 
2. Show that the E-Step update is correct 
3. Show that the M-Step update is correct 
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Jensen’s Inequality 

or… 
 
 

similarly 
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Lower Bound for EM Algorithm 

Where we have used Jensen’s inequality 
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Constant w.r.t. q(h) Only this term matters 

             E-Step – Optimize bound w.r.t {qi(hi)} 
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E-Step 

 Kullback Leibler divergence – distance between probability 
distributions .  We are maximizing the negative distance (i.e. 
Minimizing distance) 
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Use this relation 

log[y]≤y-1 
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Kullback Leibler Divergence 

So the cost function must be positive  

In other words, the best we can do is choose qi(hi) so that this is 
zero 
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E-Step 
So the cost function must be positive  

The best we can do is choose qi(hi) so that this is zero. 

How can we do this? Easy – choose posterior Pr(h|x) 
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    M-Step – Optimize bound w.r.t. θ   

In the M-Step we optimize expected joint log likelihood with 
respect to parameters θ (Expectation w.r.t distribution from E-Step) 
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E-Step & M-Step 
E-Step – Maximize bound w.r.t. distributions qi(hi) 
 
 
 
 
 
M-Step – Maximize bound w.r.t. parameters θ 

81 Computer vision: models, learning and inference.  ©2011 Simon J.D. Prince 



Structure 
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• Densities for classification 
• Models with hidden variables 

– Mixture of Gaussians 
– t-distributions 
– Factor analysis 

• EM algorithm in detail 
• Applications 
 
 



Face Detection 

83 Computer vision: models, learning and inference.  ©2011 Simon J.D. Prince 

(not a very realistic model – face detection really done using discriminative methods) 



Object recognition 
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t-distributions 
normal 

distributions 

Model as J independent patches 



Segmentation 
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MoG Mo t-Distrib’s 



Face Recognition 
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Pose Regression 

Training data 
 
Frontal faces x 
Non-frontal faces w 

Learning 
 
Fit factor analysis model to 
joint distribution of x,w 

Inference 
 
Given new x, infer w 
(cond. dist of normal) 
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Conditional Distributions 

If 

then 
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Modeling transformations  
with hidden variables 
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