# Computer vision: models, learning and inference

Chapter 13 Image preprocessing and feature extraction

### Preprocessing

- The goal of pre-processing is
  - to try to reduce unwanted variation in image due to lighting, scale, deformation etc.
  - to reduce data to a manageable size
- Give the subsequent model a chance
- Preprocessing definition: deterministic transformation of pixels p to create data vector x
- Usually heuristics based on experience

### Structure

- Per-pixel transformations
- Edges, corners, and interest points
- Descriptors
- Dimensionality reduction

### Normalization

- Fix first and second moments to standard values
- Remove contrast and constant additive luminance variations

#### Before



### Histogram Equalization

## Make all of the moments the same by forcing the histogram of intensities to be the same



#### Before/ normalized/ Histogram Equalized

### **Histogram Equalization**



### Convolution

Takes pixel image **P** and applies a filter **F** 

$$x_{ij} = \sum_{m=-M}^{M} \sum_{n=-N}^{N} p_{i-m,j-n} f_{m,n}$$

Computes weighted sum of pixel values, where weights given by filter.

Easiest to see with a concrete example

### Blurring (convolve with Gaussian)



Figure B.3 Image blurring. a) Original image. b) Result of convolving with a Gaussian filter (filter shown in bottom right of image). The image is slightly blurred. c-e) Convolving with a filter of increasing standard deviation causes the resulting image to be increasingly blurred.

### **Gradient Filters**



Rule of thumb: big response when image matches filter

### **Gabor Filters**



$$f_{mn} = \frac{1}{2\pi\sigma^2} \exp\left[-\frac{m^2 + n^2}{2\sigma^2}\right] \sin\left[\frac{2\pi(\cos[\omega]m + \sin[\omega]n)}{\lambda} + \phi\right]$$

### Haar Filters



### Local binary patterns



LBP = 10010111 = 151



### Textons

- An attempt to characterize texture
- Replace each pixel with integer representing the texture 'type'



### **Computing Textons**

Take a bank of filters and apply to lots of images

Cluster in filter space



For new pixel, filter surrounding region with same bank, and assign to nearest cluster

### Structure

- Per-pixel transformations
- Edges, corners, and interest points
- Descriptors
- Dimensionality reduction

### Edges







(from Elder and Goldberg 2000)

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince







#### Compute horizontal and vertical gradient images h and v



 $h_{ij}^{2} + v_{ij}^{2}$  $a_{ij}$ 



Quantize to 4 directions



#### Non-maximal suppression

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

L)



#### Hysteresis Thresholding

### Harris Corner Detector



Make decision based on image structure tensor



### **SIFT Detector**



Filter with difference of Gaussian filters at increasing scales Build image stack (scale space) Find extrema in this 3D volume

### **SIFT Detector**



#### **Identified Corners**

### Remove those on edges

Remove those where contrast is low

### **Assign Orientation**



Orientation assigned by looking at intensity gradients in region around point

Form a histogram of these gradients by binning.

Set orientation to peak of histogram.

### Structure

- Per-pixel transformations
- Edges, corners, and interest points
- Descriptors
- Dimensionality reduction

### Sift Descriptor

Goal: produce a vector that describes the region around the interest point.



All calculations are relative to the orientation and scale of the keypoint

Makes descriptor invariant to rotation and scale

### Sift Descriptor



1. Compute image gradients



- 2. Pool into local histograms
- 3. Concatenate histograms
- 4. Normalize histograms

### **HoG Descriptor**



**Figure 13.17** HOG descriptor. a) Original image. b) Gradient orientation, quantized into 9 bins from  $0 - 180^{\circ}$ . c) Gradient magnitude. d) Cell descriptors are 9D orientation histograms that are computed within  $6 \times 6$  pixel regions. e) Block descriptors are computed by concatenating  $3 \times 3$  blocks of cell descriptors. The block descriptors are normalized. The final HOG descriptor consists of the concatenated block descriptors.

### Bag of words descriptor

- Compute visual features in image
- Compute descriptor around each
- Find closest match in library and assign index
- Compute histogram of these indices over the region
- Dictionary computed using K-means



### Structure

- Per-pixel transformations
- Edges, corners, and interest points
- Descriptors
- Dimensionality reduction

### **Dimensionality Reduction**

Dimensionality reduction attempt to find a low dimensional (or hidden) representation  $\mathbf{h}$  which can approximately explain the data  $\mathbf{x}$  so that

 $\mathbf{x} \approx f(\mathbf{h}, \boldsymbol{\theta})$ 

where  $f[\bullet, \bullet]$  is a function that takes the hidden variable and a set of parameters  $\theta$ .

Typically, we choose the function family  $f[\bullet, \bullet]$  and then learn  $\mathbf{h}$  and  $\boldsymbol{\theta}$  from training data

### **Least Squares Criterion**

$$\hat{\boldsymbol{\theta}}, \hat{\mathbf{h}}_{1...I} = \operatorname{argmin}_{\boldsymbol{\theta}, \mathbf{h}_{1...I}} \left[ \sum_{i=1}^{I} \left( \mathbf{x}_{i} - f[\mathbf{h}_{i}, \boldsymbol{\theta}] \right)^{T} \left( \mathbf{x}_{i} - f[\mathbf{h}_{i}, \boldsymbol{\theta}] \right) \right]$$

Choose the parameters  $\theta$  and the hidden variables  $\mathbf{h}$  so that they minimize the least squares approximation error (a measure of how well they can reconstruct the data  $\mathbf{x}$ ).

### Simple Example

 $\mathbf{x}_i \approx \boldsymbol{\phi} h_i + \boldsymbol{\mu}$ 

Approximate each data example  $\mathbf{x}$  with a scalar value h.

Data is reconstructed by multiplying *h* by a parameter  $\phi$  and adding the mean vector  $\mu$ .

 $\ldots$  or even better, lets subtract  $\mu$  from each data example to get mean-zero data

### Simple Example

 $\mathbf{x}_i \approx \boldsymbol{\phi} h_i$ 

Approximate each data example **x** with a scalar value *h*.

Data is reconstructed by multiplying h by a factor  $\phi$ .

#### **Criterion:**

$$\hat{\phi}, \hat{h}_{1...I} = \underset{\phi, h_{1...I}}{\operatorname{argmin}} [E] = \underset{\phi, h_{1...I}}{\operatorname{argmin}} \left[ \sum_{i=1}^{I} \left( \mathbf{x}_{i} - \phi h_{i} \right)^{T} \left( \mathbf{x}_{i} - \phi h_{i} \right) \right]$$

# Criterion

$$\hat{\boldsymbol{\phi}}, \hat{h}_{1...I} = \operatorname*{argmin}_{\boldsymbol{\phi}, h_{1...I}} \begin{bmatrix} E \end{bmatrix} = \operatorname*{argmin}_{\boldsymbol{\phi}, h_{1...I}} \begin{bmatrix} \sum_{i=1}^{I} \left( \mathbf{x}_{i} - \boldsymbol{\phi} h_{i} \right)^{T} \left( \mathbf{x}_{i} - \boldsymbol{\phi} h_{i} \right) \end{bmatrix}$$

<u>Problem</u>: the problem is non-unique. If we multiply **f** by any constant  $\alpha$  and divide each of the hidden variables  $h_{1...I}$  by the same constant we get the same cost. (i.e.  $(f\alpha) (h_i/\alpha) = fh_i$ )

<u>Solution</u>: We make the solution unique by constraining the length of **f** to be 1 using a Lagrange multiplier.

# Criterion

Now we have the new cost function:

$$E = \sum_{i=1}^{I} \left( \mathbf{x}_{i} - \boldsymbol{\phi} h_{i} \right)^{T} \left( \mathbf{x}_{i} - \boldsymbol{\phi} h_{i} \right) + \lambda \left( \boldsymbol{\phi}^{T} \boldsymbol{\phi} - 1 \right)$$
$$= \sum_{i=1}^{I} \mathbf{x}_{i}^{T} \mathbf{x}_{i} - 2h_{i} \boldsymbol{\phi}^{T} \mathbf{x}_{i} + h_{i}^{2} + \lambda \left( \boldsymbol{\phi}^{T} \boldsymbol{\phi} - 1 \right).$$

To optimize this we take derivatives with respect to  $\phi$  and  $h_i$ , equate the resulting expressions to zero and re-arrange.

# Solution

$$\hat{h}_i = \hat{\boldsymbol{\phi}}^T \mathbf{x}_i$$

To compute the hidden value, take dot product with the vector  $\phi$ 

# Solution

$$\hat{h}_i = \hat{\boldsymbol{\phi}}^T \mathbf{x}_i$$

To compute the hidden value, take dot product with the vector  $\phi$ 

or  

$$\begin{aligned} \sum_{i=1}^{I} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \hat{\boldsymbol{\phi}} &= \lambda \hat{\boldsymbol{\phi}} \\ \mathbf{X} \mathbf{X}^{T} \hat{\boldsymbol{\phi}} &= \lambda \hat{\boldsymbol{\phi}} \\ \mathbf{X} = \begin{bmatrix} \mathbf{x}_{1}, \mathbf{x}_{2} \dots \mathbf{x}_{I} \end{bmatrix} \end{aligned}$$

# To compute the vector $\mathbf{\phi}$ , compute the first eigenvector of the scatter matrix $\mathbf{X}\mathbf{X}^T$ .

# Computing *h*



#### To compute the hidden value, take dot product with the vector $\phi$

#### Reconstruction



To reconstruct, multiply the hidden variable h by vector  $\phi$ .

# **Principal Components Analysis**

Same idea, but not the hidden variable  ${f h}$  is multi-dimensional. Each components weights one column of matrix  ${f F}$  so that data is approximated as

 $\mathbf{x}_i pprox \mathbf{\Phi} \mathbf{h}_i$ 

This leads to cost function:

$$\mathbf{\Phi}, \hat{\mathbf{h}}_{1...I} = \operatorname*{argmin}_{\mathbf{\Phi}, \mathbf{h}_{1...I}} [E] = \operatorname*{argmin}_{\mathbf{\Phi}, \mathbf{h}_{1...I}} \left[ \sum_{i=1}^{I} \left( \mathbf{x}_{i} - \mathbf{\Phi} \mathbf{h}_{i} \right)^{T} \left( \mathbf{x}_{i} - \mathbf{\Phi} \mathbf{h}_{i} \right) \right]$$

This has a non-unique optimum so we enforce the constraint that  $\mathbf{F}$  should be a (truncated) rotation matrix and  $\mathbf{F}^{\mathrm{T}}\mathbf{F}=\mathbf{I}$ 

## **PCA Solution**

 $\mathbf{h}_i = \mathbf{\Phi}^T \mathbf{x}_i$ 

To compute the hidden vector, take dot product with each column of  $\Phi$ .

To compute the matrix  $\mathbf{\Phi}$ , compute the first  $D_h$  eigenvectors of the scatter matrix  $\mathbf{X}\mathbf{X}^T$ .

The basis functions in the columns of  $\Phi$  are called principal components and the entries of **h** are called loadings

# **Dual PCA**

Problem: PCA as described has a major drawback. We need to compute the eigenvectors of the scatter matrix

# $\mathbf{X}\mathbf{X}^T$

But this has size  $D_x \times D_x$ . Visual data tends to be very high dimensional, so this may be extremely large.

Solution: Reparameterize the principal components as weighted sums of the data

 $\Phi = \mathbf{X} \Psi$ 

#### ...and solve for the new variables $\Psi$ .

## **Geometric Interpretation**

 $\Phi = \mathbf{X} \Psi$ 

Each column of  $\Phi$  can be described as a weighted sum of the original datapoints.

Weights given in the corresponding columns of the new variable  $\Psi$ .



# Motivation

Solution: Reparameterize the principal components as weighted sums of the data

# $\mathbf{\Phi} = \mathbf{X} \mathbf{\Psi}$

...and solve for the new variables  $\Psi$ .

Why? If the number of datapoints I is less than the number of observed dimension  $D_x$  then the  $\Psi$  will be smaller than  $\Phi$  and the resulting optimization becomes easier.

Intuition: we are not interested in principal components that are not in the subspace spanned by the data anyway.

## **Cost functions**

Principal components analysis

$$\mathbf{\Phi}, \hat{\mathbf{h}}_{1...I} = \operatorname*{argmin}_{\mathbf{\Phi}, \mathbf{h}_{1...I}} [E] = \operatorname*{argmin}_{\mathbf{\Phi}, \mathbf{h}_{1...I}} \left[ \sum_{i=1}^{I} \left( \mathbf{x}_{i} - \mathbf{\Phi} \mathbf{h}_{i} \right)^{T} \left( \mathbf{x}_{i} - \mathbf{\Phi} \mathbf{h}_{i} \right) \right]$$

...subject to  $\Phi^{T}\Phi = I$ .

Dual principal components analysis

$$E = \sum_{i=1}^{I} \left( \mathbf{x}_{i} - \mathbf{X} \boldsymbol{\Psi} \mathbf{h}_{i} \right)^{T} \left( \mathbf{x}_{i} - \mathbf{X} \boldsymbol{\Psi} \mathbf{h}_{i} \right)$$

...subject to  $\Phi^T \Phi = I$  or  $\Psi^T X^T X \Psi = I$ .

# Solution $\mathbf{h}_i = \mathbf{\Psi}^T \mathbf{X}^T \mathbf{x}_i = \mathbf{\Phi}^T \mathbf{x}_i$

To compute the hidden vector, take dot product with each column of  $\Phi = \Psi X$ .

# Solution $\mathbf{h}_i = \mathbf{\Psi}^T \mathbf{X}^T \mathbf{x}_i = \mathbf{\Phi}^T \mathbf{x}_i$

To compute the hidden vector, take dot product with each column of  $\Phi = \Psi X$ .

To compute the matrix  $\Psi$ , compute the first  $D_h$  eigenvectors of the inner product matrix  $\mathbf{X}^{\mathrm{T}}\mathbf{X}$ .

The inner product matrix has size *I* x *I*.

If the number of examples I is less than the dimensionality of the data  $D_x$  then this is a smaller eigenproblem.

## **K-Means algorithm**

Approximate data with a set of means

$$\mathbf{x}_i pprox oldsymbol{\mu}_{h_i}$$

Least squares criterion

$$\hat{\boldsymbol{\mu}}_{1...K}, \hat{h}_{1...I} = \operatorname*{argmin}_{\boldsymbol{\mu},h} \left[ \sum_{i=1}^{I} \left( \mathbf{x}_{i} - \boldsymbol{\mu}_{h_{i}} \right)^{T} \left( \mathbf{x}_{i} - \boldsymbol{\mu}_{h_{i}} \right) \right]$$

Alternate minimization

$$\hat{h}_{i} = \underset{h_{i}}{\operatorname{argmin}} \left[ \left( \mathbf{x}_{i} - \boldsymbol{\mu}_{h_{i}} \right)^{T} \left( \mathbf{x}_{i} - \boldsymbol{\mu}_{h_{i}} \right) \right]$$
$$\hat{\mu}_{k} = \underset{\mu_{k}}{\operatorname{argmin}} \left[ \sum_{i=1}^{I} \left[ \left( \mathbf{x}_{i} - \boldsymbol{\mu}_{h_{i}} \right)^{T} \left( \mathbf{x}_{i} - \boldsymbol{\mu}_{h_{i}} \right) \right] \right]$$
$$= \frac{\sum_{i=1}^{I} \mathbf{x}_{i} \delta[h_{i} - k]}{\sum_{i=1}^{I} \delta[h_{i} - k]},$$



Computer vision: models, learning and inference. ©2011 Simon J.D. Prince