
Computer vision: models, 
learning and inference 

Chapter 13  
Image preprocessing and feature 

extraction 
 



Preprocessing 

• The goal of pre-processing is  
– to try to reduce unwanted variation in image due 

to lighting, scale, deformation etc. 
– to reduce data to a manageable size 

• Give the subsequent model a chance 
• Preprocessing definition:  deterministic 

transformation of pixels p to create data 
vector x 

• Usually heuristics based on experience 
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Structure 
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• Per-pixel transformations 
• Edges, corners, and interest points 
• Descriptors 
• Dimensionality reduction 



Normalization 

• Fix first and second moments to standard 
values 

• Remove contrast and constant additive 
luminance variations 

Before  

After  
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Histogram Equalization 

Make all of the moments the same by forcing 
the histogram of intensities to be the same 

Before/ normalized/ Histogram Equalized 
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Histogram Equalization 
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Convolution 

Takes pixel image P and applies a filter F 

Computes weighted sum of pixel values, where 
weights given by filter. 
 
Easiest to see with a concrete example 
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Blurring (convolve with Gaussian) 
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Gradient Filters 

• Rule of thumb:  big response when image 
matches filter 
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Gabor Filters 
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Haar Filters 
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Local binary patterns 
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Textons 

• An attempt to characterize texture 
• Replace each pixel with integer representing the texture ‘type’ 
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Computing Textons 

Take a bank of filters and apply 
to lots of images 

Cluster in filter space 

For new pixel, filter surrounding region with same bank, 
and assign to nearest cluster 
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Structure 
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• Per-pixel transformations 
• Edges, corners, and interest points 
• Descriptors 
• Dimensionality reduction 



Edges 

(from Elder and 
 Goldberg 2000) 
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Canny Edge Detector 
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Canny Edge Detector 

Compute horizontal and vertical gradient images h and v 
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Canny Edge Detector 

Quantize to 4 directions 
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Canny Edge Detector 

Non-maximal suppression 
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Canny Edge Detector 

 

Hysteresis Thresholding 
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Harris Corner Detector 

Make decision based on 
image structure tensor 
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SIFT Detector 

Filter with difference of Gaussian filters at increasing scales 
Build image stack (scale space) 
Find extrema in this 3D volume 
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SIFT Detector 

 

Identified Corners Remove those on 
edges 

Remove those 
where contrast is 

low 
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Assign Orientation 

Orientation 
assigned by looking 
at intensity 
gradients in region 
around point 
 
Form a histogram of 
these gradients by 
binning. 
 
Set orientation to 
peak of histogram. 
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Structure 
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• Per-pixel transformations 
• Edges, corners, and interest points 
• Descriptors 
• Dimensionality reduction 



Sift Descriptor 
Goal:  produce a vector that describes the region 

around the interest point.  

All calculations are relative 
to the  orientation and 
scale of the keypoint 
 
Makes descriptor invariant 
to rotation and scale 
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Sift Descriptor 

1. Compute image gradients 2. Pool into local histograms 
3. Concatenate histograms 
4. Normalize histograms 
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HoG Descriptor 
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Bag of words descriptor 

• Compute visual features in image  
• Compute descriptor around each 
• Find closest match in library and assign index 
• Compute histogram of these indices over the region 
• Dictionary computed using K-means 
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Shape context descriptor 

31 Computer vision: models, learning and inference.  ©2011 Simon J.D. Prince 



Structure 
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• Per-pixel transformations 
• Edges, corners, and interest points 
• Descriptors 
• Dimensionality reduction 



Dimensionality Reduction 

where               is a function that takes the hidden variable and 
a set of parameters θ. 
 

Dimensionality reduction attempt to find a low dimensional (or 
hidden) representation  h which can approximately explain the 
data  x so that 
 
 
 

Typically, we choose the function family              and then learn h 
and θ from training data 
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Least Squares Criterion 

Choose the parameters θ and the hidden variables h so that they 
minimize the least squares approximation error (a measure of 
how well they can reconstruct the data x). 
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Simple Example 

Approximate each data example x with a scalar value h. 
 
Data is reconstructed by multiplying h by a parameter φ and  
adding the mean vector µ. 
 
 
... or even better, lets subtract µ from each data example to get 
mean-zero data 
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Simple Example 

Approximate each data example x with a scalar value h. 
 
Data is reconstructed by multiplying h by a factor φ. 
 
Criterion: 
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Criterion 

Problem:  the problem is non-unique.  If we multiply f by any 
constant α and divide each of the hidden variables h1...I by the 
same constant we get the same cost. (i.e.  (fα) (hi/α) = fhi) 
 
Solution:  We make the solution unique by constraining the 
length of f to be 1 using a Lagrange multiplier. 
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Criterion 
Now we have the new cost function: 

To optimize this we take derivatives with respect to φ and hi, 
equate the resulting expressions to zero and re-arrange.  
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Solution 

To compute the hidden value, take dot product with the vector φ 
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Solution 

To compute the hidden value, take dot product with the vector φ 

or where 

To compute the vector φ, compute the first eigenvector of the 
scatter matrix             . 
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Computing h 

To compute the hidden value, take dot product with the vector φ 
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Reconstruction 

To reconstruct, multiply the hidden variable h by vector φ. 
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Principal Components Analysis 
Same idea, but not the hidden variable h is multi-dimensional. 
Each components weights one column of matrix F so that data is 
approximated as 
 

This leads to cost function: 
 

This has a non-unique optimum so we enforce the constraint 
that F should be a (truncated) rotation matrix and FTF=I 
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PCA Solution 

To compute the hidden vector, take dot product with each 
column of Φ. 

To compute the matrix Φ, compute the first          eigenvectors of 
the scatter matrix             . 

The basis functions in the columns of Φ are called principal 
components and the entries of h are called loadings 
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Dual PCA 
Problem: PCA as described has a major drawback.  We need to 
compute the eigenvectors of the scatter matrix  

But this has size Dx x Dx.  Visual data tends to be very high 
dimensional, so this may be extremely large.     

Solution: Reparameterize the principal components as 
weighted sums of the data 
 
 
 
...and solve for the new variables Ψ. 
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Geometric Interpretation 

Each column of Φ can be 
described as a weighted 
sum of the original 
datapoints. 
 
Weights given in the 
corresponding columns of 
the new variable Ψ. 
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Motivation 
Solution: Reparameterize the principal components as 
weighted sums of the data 
 
 
 
...and solve for the new variables Ψ. 
 
Why?  If the number of datapoints I is less than the number of 
observed dimension Dx then the Ψ will be smaller than Φ and 
the resulting optimization becomes easier. 
 
Intuition:  we are not interested in principal components  that 
are not in the subspace spanned by the data anyway. 
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Cost functions 

...subject to ΦTΦ=I or ΨTXTXΨ=I. 

...subject to ΦTΦ=I. 

Principal components analysis 

Dual principal components analysis 
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Solution 

To compute the hidden vector, take dot product with each 
column of Φ=ΨX. 
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Solution 

To compute the matrix Ψ, compute the first        eigenvectors of 
the inner product matrix XTX. 

The inner product matrix has size I x I.  
 
If the number of examples I is less than the dimensionality of 
the data Dx then this is a smaller eigenproblem. 
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To compute the hidden vector, take dot product with each 
column of Φ=ΨX. 



K-Means algorithm 
Approximate data with a set of means 
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Least squares criterion 

Alternate minimization 
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