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Convex Functions

Af(a1) + (1 = A)f(x2)

fowr 4+ (1= A)aa)

; O
a € Arq + (1 — )\)CL‘Q T2 b

Figure 1: f is conver on [a,b] if f(Axy + (1 — Naa) < Af(xy) + (1 — A)f(a2)
Vay, xe € la,b], A e0,1].
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Definitions

Definition 1 Let f be a real valued function defined on an interval I = |a,b|.
f is said to be convex on I if Yoy, x0 € I. X\ € [0, 1],

fQz1 + (1= Na2) < Af(x1) + (1 = A)f(2).

f is said to be strictly convex if the inequality is strict. Intuitively, this definition
states that the function falls below (strictly convex) or is never above (convex) the
straight line (the secant) from points (x1, f(x1)) to (xa, f(x2)). See Figure (1).

Definition 2 f is concave (strictly concave) if —f is convex (strictly convezr).

Theorem 1 If f(x) is twice differentiable on |a,b] and f"(x) > 0 on [a,b] then
f(x) is convex on |a,b].
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Jensen’s Inequality

Theorem 2 (Jensen’s inequality) Let f be a convex function defined on an
interval I. If x1,29,..., 20 € I and Xy, No, ..., Ny > 0 with >0 A\ =1,

f (Z )\rzﬂ&‘i) < z)\zf(ﬂi‘z)

» Proof follows by Induction (Trivial forn=1, n=2 2>
follows from convexity, demonstrate for n+1 assuming
theorem true for n).

Since In(x) is concave, we may apply Jensen'’s inequality to obtain the useful
result,

lnz)\@-x@ > Z)\@ In(z;). (6)
=1 =1

This allows us to lower-bound a logarithm of a sum, a result that is used in the
derivation of the EM algorithm.
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EM Algorithm Overview

O,

Let X be random vector which results from a parameterized family. We wish
to find € such that P(X|#) is a maximum. This is known as the Maximum
Likelihood (ML) estimate for #. In order to estimate 0, it is typical to introduce
the log likelihood function defined as,

L(0) = In P(X|0). (7)

The likelihood function is considered to be a function of the parameter 8 given
the data X. Since In(x) is a strictly increasing function, the value of # which
maximizes P(X|0) also maximizes L(#).

The EM algorithm is an iterative procedure for maximizing L(f). Assume
that after the nt! iteration the current estimate for  is given by 6,,. Since the
objective is to maximize L(#), we wish to compute an updated estimate 6 such

that,
L(®) > L6, (8)
Equivalently we want to maximize the difference,
L(#) — L(8,) =InP(X]|f) — InP(X]d,). (9)
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EM Algorithm (Derivation)
N

L(#) — L(#,) = In (Z P(X|z, 9)P(z|9)) —InP(X|0). (11)

In (Z P(X|z, 9)’P(z|9)) —InP(X|6,)

In (Z P(X|z )P (z]0) - gg:i g:g) W P(X[6,)

n (Z P(aIX. 0.) ”3.522152,’;5?'9)) WP

S P(#X,6,)In (P%ZQESW)) —mP(X[6,) (12)

P (X[2.0)P(al0)
P o 5oy ) )

z

A(8)6),). (14)

[(0]6,) 2 L(6,) + A(0]6,)

1/28/2016



EMAIlgorithm (Continued)
(8)

A

L(0n+1)

[(0n11]07)

L(9) [(6]6:)

9'n, 9n—|—1 =0

Figure 2: Graphical interpretation of a single iteration of the EM algorithm:
The function [(#]6,,) is bounded above by the likelihood function L(#). The
functions are equal at # = f,,. The EM algorithm chooses ,,+1 as the value of
for which [(6)|6,,) is a maximum. Since L(€) > [(0]6,,) increasing [(0]6,,) ensures
that the value of the likelihood function L(#) is increased at each step.
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EM Algorithm (Derivation)

0,r1 = arg mglx {1(0]60,,)}

P(X0,)P(z| X, 0,)

Now drop terms which are constant w.r.t. 6

— argmgxx{L(@n)—FZP(ﬂX, 0,,) In P(X|z,0)P(z|0) }

= argmax; Z P(z|X.0,) InP(X]|z, 9)73(29)}

0

) ‘ P(X,z,0) P(z,0)
— argmaxizz:?)(ﬂx’gn)ln P(z.0) P(0) }

’

= argmax: Zz: P(z|X.0,)InP(X, z|9)}

= argmax {Ezx.0, {InP(X,z|0)}} (17)
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1. E-step: Determine the conditional expectation Ezx ¢, {InP(X, z|0)}

2. M-step: Maximize this expression with respect to 6.

Key Points:

» lteratively converges to a local maximum

» Detailed Proof done later demonstrates convergence may not be only to
Maxima (e.g. saddle points)

 Method is a unified principle for a number of estimation problems with
Hidden variables and/or missing data.

» Several methods followed addressing computational speedups of algorithm



	Machine Learning�- Winter 2015/16
	Outline
	 
	Definitions
	Jensen’s Inequality
	 
	EM Algorithm (Derivation)
	EMAlgorithm (Continued)
	EM Algorithm (Derivation)
	EM Algorithm - Summary

