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Convex Functions

Af(a1) + (1 = A)f(x2)

fowr 4+ (1= A)aa)

; O
a € Arq + (1 — )\)CL‘Q T2 b

Figure 1: f is conver on [a,b] if f(Axy + (1 — Naa) < Af(xy) + (1 — A)f(a2)
Vay, xe € la,b], A e0,1].
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Definitions

Definition 1 Let f be a real valued function defined on an interval I = |a,b|.
f is said to be convex on I if Yoy, x0 € I. X\ € [0, 1],

fQz1 + (1= Na2) < Af(x1) + (1 = A)f(2).

f is said to be strictly convex if the inequality is strict. Intuitively, this definition
states that the function falls below (strictly convex) or is never above (convex) the
straight line (the secant) from points (x1, f(x1)) to (xa, f(x2)). See Figure (1).

Definition 2 f is concave (strictly concave) if —f is convex (strictly convezr).

Theorem 1 If f(x) is twice differentiable on |a,b] and f"(x) > 0 on [a,b] then
f(x) is convex on |a,b].
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Jensen’s Inequality

Theorem 2 (Jensen’s inequality) Let f be a convex function defined on an
interval I. If x1,29,..., 20 € I and Xy, No, ..., Ny > 0 with >0 A\ =1,

f (Z )\rzﬂ&‘i) < z)\zf(ﬂi‘z)

» Proof follows by Induction (Trivial forn=1, n=2 2>
follows from convexity, demonstrate for n+1 assuming
theorem true for n).

Since In(x) is concave, we may apply Jensen'’s inequality to obtain the useful
result,

lnz)\@-x@ > Z)\@ In(z;). (6)
=1 =1

This allows us to lower-bound a logarithm of a sum, a result that is used in the
derivation of the EM algorithm.
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EM Algorithm Overview

O,

Let X be random vector which results from a parameterized family. We wish
to find € such that P(X|#) is a maximum. This is known as the Maximum
Likelihood (ML) estimate for #. In order to estimate 0, it is typical to introduce
the log likelihood function defined as,

L(0) = In P(X|0). (7)

The likelihood function is considered to be a function of the parameter 8 given
the data X. Since In(x) is a strictly increasing function, the value of # which
maximizes P(X|0) also maximizes L(#).

The EM algorithm is an iterative procedure for maximizing L(f). Assume
that after the nt! iteration the current estimate for  is given by 6,,. Since the
objective is to maximize L(#), we wish to compute an updated estimate 6 such

that,
L(®) > L6, (8)
Equivalently we want to maximize the difference,
L(#) — L(8,) =InP(X]|f) — InP(X]d,). (9)
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EM Algorithm (Derivation)
N

L(#) — L(#,) = In (Z P(X|z, 9)P(z|9)) —InP(X|0). (11)

In (Z P(X|z, 9)’P(z|9)) —InP(X|6,)

In (Z P(X|z )P (z]0) - gg:i g:g) W P(X[6,)

n (Z P(aIX. 0.) ”3.522152,’;5?'9)) WP

S P(#X,6,)In (P%ZQESW)) —mP(X[6,) (12)

P (X[2.0)P(al0)
P o 5oy ) )

z

A(8)6),). (14)

[(0]6,) 2 L(6,) + A(0]6,)

1/29/2016



EMAIlgorithm (Continued)
(8)

A

L(0n+1)

[(0n11]07)

L(9) [(6]6:)

9'n, 9n—|—1 =0

Figure 2: Graphical interpretation of a single iteration of the EM algorithm:
The function [(#]6,,) is bounded above by the likelihood function L(#). The
functions are equal at # = f,,. The EM algorithm chooses ,,+1 as the value of
for which [(6)|6,,) is a maximum. Since L(€) > [(0]6,,) increasing [(0]6,,) ensures
that the value of the likelihood function L(#) is increased at each step.
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EM Algorithm (Derivation)

0,r1 = arg mglx {1(0]60,,)}

P(X0,)P(z| X, 0,)

Now drop terms which are constant w.r.t. 6

— argmgxx{L(@n)—FZP(ﬂX, 0,,) In P(X|z,0)P(z|0) }

= argmax; Z P(z|X.0,) InP(X]|z, 9)73(29)}

0

) ‘ P(X,z,0) P(z,0)
— argmaxizz:?)(ﬂx’gn)ln P(z.0) P(0) }

’

= argmax: Zz: P(z|X.0,)InP(X, z|9)}

= argmax {Ezx.0, {InP(X,z|0)}} (17)
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1. E-step: Determine the conditional expectation Ezx ¢, {InP(X, z|0)}

2. M-step: Maximize this expression with respect to 6.

Key Points:

» lteratively converges to a local maximum

» Detailed Proof done later demonstrates convergence may not be only to
Maxima (e.g. saddle points)

 Method is a unified principle for a number of estimation problems with
Hidden variables and/or missing data.

» Several methods followed addressing computational speedups of algorithm



Basics of Optimization

* From Appendix B — Prince’s Book (2012)

Figure B.1 Local minima. Optimiza-
tion methods aim to find the minimum
of the objective function f[#] with
respect to parameters 6. Roughly.
they work by starting with an initial
estimate 01°1 and moving iteratively
downhill until no more progress can
be made (final position represented by
6’["0]). Unfortunately. it 1s possible to
terminate i a local minimum. For ex-
ample, if we start at ’l°0 and move

downhill, we wind up in position g'tel ()

Objective function f|6]
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Optimization: Line search

e choose a search direction s based on the local properties of the function. and

e search to find the minimum along the chosen direction. In other words, we
seek the distance A\ to move such that

-~

A = argmin [ 1o + /\s]] ? (B.2)
A

and then set @1 — glt] 4+ \s. This is termed a line search.
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Optimization — via Steepest Descent

Steepest Descent Steepest Descent

C) Close up of steepest descent

of _ [0+ ae;] — f16]
00 a |

2

d) Newton e) Newton

glt+1l _ gitl _ \ OF

4 Tterations

91 81

Figure B.3 Optimization on a two dimensional function (color represents
height of function). We wish to find the parameters that minimize the
function (green cross). Given an initial starting point 8° (blue cross), we
choose a direction and then perform a local search to find the optimal point
in that direction. a) One way to chose the direction is steepest descent:
at each iteration, we head in the direction where the function changes the
fastest. b) When we initialize from a different position, the steepest descent
method takes many iterations to converge due to oscillatory behavior. c)
Close-up of oscillatory region (see main text). d) Setting the direction using
Newton’s method results in faster convergence. e) Newton’s method does not
undergo oscillatory behavior when we initialize from the second position.
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Optimization (Newton’s method)

Figure B.4 Use of second derivatives.
The gradient at the red and blue
points is the same, but the magnitude
of the second derivative is larger at

< Newt.on _meth(’d the red point than the blue point: the
A loca?lpp;(;fﬁmzfsra e egradient i1s changing faster at the red
& Y a point than the blue point. The dis-
5 tance we move should be moderated
E by the second derivative: if the gra-
v dient 1s changing fast, then the min-
B imum may be nearby and we should
% ° move a small distance. If it 1s chang-
@) 5 ing slowly, then it is safe to move fur-
S ' > ther. Newton’s method takes into ac-

2nd derivative large 2nd derivative small count the second derivative: it uses a

take small step take large step

Taylor expansion to create a quadratic
0 approximation to the function and
then moves toward the minimum.
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Newton’s method: Derivation

To see how to exploit the second derivatives algebraically, consider a truncated
Taylor expansion around the current estimate plil.

rofl 1

(9 _ g[t])T 82_f (3 _ g[t]) (B 5)
00 g1 2 ’ '

6] ~ (160" + (6 — 6"
f10] = f10%] +( ) 962 |

where 6@ is a D x 1 variable, the first derivative vector is of size D x 1, and the
Hessian matrix of second derivatives i1s D x D. To find the local extrema, we now
take derivatives with respect to @ and set the result to zero

92 f

+ —= 0 — ol = 0. B.6
o 08 em( ) (B.6)

By re-arranging this equation, we get an expression for the minimum 9,
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Newton’s Method

. 82]" -1 df
_ plt]
=26 ( 2) Tl (B.7)

where the derivatives are still taken at G[t], but we have stopped writing this for
clarity. In practice we would implement Newton’s method as a series of iterations

B[t—l—l] _ B[t] — )\ (62f)_1 g (BS)

06°) 08’
where the A is the step size. This can be set to one, or we can find the optimal
value using line search.
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Line Search Using Bracketing

« b ¢ d a b ¢ d a b oc d

Figure B.5 Line search over region [a,d] using bracketing approach. Gray
region indicates current search region. a) We define two points b, ¢ that are
imnterior to the search region and evaluate the function at these points. Here
f[b] > f[c] so we eliminate the range [a,b]. b) We evaluate two points [b. c|
imnterior to the new range and compare their values. This time we find that
f[b] < fle] so we eliminate the range [c,d]. ¢) We repeat this process until
the minimum 1s closely bracketed.
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