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Exercise 1. Show that the Dirichlet distribution supported on p = (p1, . . . , pK) ⊆
(0, 1)K with

∑K
i=1 pi = 1 and probability density function

p(p;α) =
Γ(
∑K

i=1 αi)∏K
i=1 Γ(αi)

K∏
i=1

pαi−1
i

is the conjugate prior for the categorical distribution on K outcomes:

p(X = i | p) = pi

Why are the parameters α = (α1, . . . , αK) often called pseudo-counts?
Hint: Consider that the likelihood of a data set D = {xn}Nn=1, where each
xn ∈ {1, . . . , K}, can be written as

p(D) =
K∏
k=1

p
#{xn=k : xn∈D}
k

2 points

Exercise 2. Implement Ridge regression and illustrate the effect of the reg-
ularization parameter λ using the polynomial model and data sets from the
course website as in Ex. 1 of sheet 3.
Optimize λ using leaving-one-out cross-validation (LOOCV). Does LOOCV
find the parameter value giving the lowest testing error?
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Exercise 3. Implement Bayesian linear regression as explained in the lecture:

� Prior: w ∼ N (0, α−1I)

� Likelihood: t ∼ N (wTΦ(x), β−1)

� Posterior (on training data D = {(xn, tn)}Nn=1):

p(w|D) = N (µN ,ΣN)

where

ΣN = (αI + βΦTΦ)−1

µN = βΣNΦT t

with design matrix (Φ)ni = (Φ(xn))i.

� Evidence:

log p(D) =
M

2
lnα+

N

2
ln β−N

2
ln(2π)+

1

2
ln |ΣN |−

α

2
µTNµN−

β

2
||t−Φw||2

1. Illustrate how the marginal likelihood can be used for model selection
on the polynomial regression example, again using the same data sets
from the course website.

2. Compare your results to the ones obtained with LOOCV in Ex. 2 above.
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