

PRG1/EPR: Lecture V18: Winter 2015/16

Prepared by: Prof. Dr. Visvanathan Ramesh

Department of Computer Science & Mathematics, University of Frankfurt & Frankfurt Institute for Advanced Studies

*Source Credits: Adapted from Prof. John Canny's Data Science Course in UC Berkeley.

- Overview of Data Analytics Trends Examples of Intelligent Systems
- Recap of Data Structures, Random Surfer Model, Small Worlds
- Image Processing and Convolutional Neural Networks (Deep Learning)
- Introduction to Software Engineering

- Data Science and Analytics Overview
 - Why Data Science?
 - Data Source Types and Quality
 - Examples of Data Analysis
 - Regression
 - Verifying Model Fit (Cross-Validation)

Data Analysis Has Been Around for a While

1935: "The Design of Experiments"

R.A. Fisher

1977: "Exploratory Data Analysis"

W.E. Demming

1989: "Business Intelligence"

1939: "Quality Control" 1958: "A Business Intelligence System"

1997: "Machine Learning"

2010: "The Data Deluge"

1996: Google

2007:"The Fourth Paradigm"

Howard Dresner

2009: "The Unreasonable Effectiveness of Data"

Abridged Version of Jeff Hammerbacher's timeline (UCBerkeley, CS 194, 2012) 3

15.01.2016

Seven Countries Study (Ancel Keys, UCB 1925,28) ⁸ 13,000 subjects total, 7 5-40 years follow-up. 6 5

Data makes everything clearer

Japan

10

20

FAT CAL. as % of TOTAL

30

0

ο

AGE 55-59

AGE

45 - 49

40

U.S.A.

FIAS Frankfurt Institute for Advanced Studies

DEGENERATIVE HEART DISEASE 1948-49, MEN

Data Science: Why all the Excitement?

Example: Google Flu Trends:

GOETHF

UNIVER

Detecting outbreaks two weeks ahead of CDC data

New models are estimating which cities are most at risk for spread of the Ebola virus.

Why all the Excitement?

elections2012

Numbers nerd Nate Silver's forecasts prove all right on election night

FiveThirtyEight blogger predicted the outcome in all 50 states, assuming Barack Obama's Florida victory is confirmed

Luke Harding guardian.co.uk, Wednesday 7 November 2012 10.45 EST

the signal and th and the noise and the noise and the noise and the noise why most noise a why most noise and the noise and the nate silver noise

...that was just one of several ways that Mr. Obama's campaign operations, some unnoticed by Mr. Romney's aides in Boston, helped save the president's candidacy. In Chicago, the campaign recruited a team of behavioral scientists to build an extraordinarily sophisticated database

...that allowed the Obama campaign not only to alter the very nature of the electorate, making it younger and less white, but also to create a portrait of shifting voter allegiances. The power of this operation stunned Mr. Romney's aides on election night, as they saw voters they never even knew existed turn out in places like Osceola County, Fla.

New York Times, Wed Nov 7, 2012

Does Data Make Everything Clearer?

Epidemiological modeling of online social network dynamics John Cannarella¹, Joshua A. Spechler^{1,*} 1 Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA

* E-mail: Corresponding spechler@princeton.edu

Abstract

The last decade has seen the rise of immense online social networks (OSNs) such as MySpace and Facebook. In this paper we use epidemiological models to explain user adoption and abandonment of OSNs, where adoption is analogous to infection and abandonment is analogous to recovery. We modify the traditional SIR model of disease spread by incorporating infectious recovery dynamics such that contact between a recovered and infected member of the population is required for recovery. The proposed infectious recovery SIR model (irSIR model) is validated using publicly available Google search query data for "MySpace" as a case study of an OSN that has exhibited both adoption and abandonment phases. The irSIR model is then applied to search query data for "Facebook," which is just beginning to show the onset of an abandonment phase. Extrapolating the best fit model into the future predicts a rapid decline in Facebook activity in the next few years.

Figure 3: Data for search query "Myspace" with best fit (a) SIR and (b) irSIR models overlaid. The search query data are normalized such that the maximum data point corresponds to a value of 100.

Does Data Make Everything Clearer?

In keeping with the scientific principle "correlation equals causation," our research unequivocally demonstrated that Princeton may be in danger of disappearing entirely. Looking at page likes on Facebook, we find the following alarming trend:

15.01.2016

http://techcrunch.com/2014/01/23/facebook-losing-users-princeton-losing-credibility/ 10

"Big Data" Sources

. . . .

It's All Happening On-line

Every: Click Ad impression Billing event Fast Forward, pause,.. Server request Transaction Network message Fault

Internet of Things / M2M

User Generated (Web & Mobile)

Health/Scientific Computing

Graph Data

Lots of interesting data has a graph structure:

- Social networks
- Communication networks^{*}
- Computer Networks
- Road networks
- Citations
- Collaborations/Relationships

Some of these graphs can get quite large (e.g., Facebook^{*} user graph)

"Data Science" an Emerging Field

O'Reilly Radar report

The future belongs to the companies and people that turn data into products

Example Machine Learning Competitions

kaggle

Activ	Active Competitions					
8	æ	Flight Quest 2: Flight Optimization Final Phase of Flight Quest 2	33 days Coming soon \$220,000			
Ψ		Packing Santa's Sleigh He's making a list, checking it twice; to fill up his sleigh, he needs your advice	5.8 days 338 teams \$10,000			
*	Genentech	Flu Forecasting D Predict when, where and how strong the flu will be	41 days 37 teams			
4	GALÁXY ZOD	Galaxy Zoo - The Galaxy Challenge Classify the morphologies of distant galaxies in our Universe	2 months 160 teams \$16,000			
	APPROVED	Loan Default Prediction - Imperial College Lon Constructing an optimal portfolio of loans	52 days 82 teams \$10,000			
ń		Dogs vs. Cats Create an algorithm to distinguish dogs from cats	11 days 166 teams Swag			

Data Science – A Definition

Contrast: Databases

		Databases	Data Science		
	Data Value	"Precious"	"Cheap"		
	Data Volume	Modest	Massive		
	Examples	Bank records, Personnel records, Census, Medical records	Online clicks, GPS logs, Tweets, Building sensor readings		
	Priorities	Consistency, Error recovery, Auditability	Speed, Availability, Query richness		
	Structured	Strongly (Schema)	Weakly or none (Text)		
	Properties	Transactions, ACID*	CAP* theorem (2/3), eventual consistency		
	Realizations	SQL	NoSQL: Riak, Memcached, Apache River		
CAP = Consister	ncy, Availability, Partitio	n Tolerance	MongoDB, CouchDB,		
ACID = Atomicity	v, Consistency, Isolatior	n and Durability	Hbase, Cassandra,		

Contrast: Databases

Databases		Data Science				
Querying the past		Querying the future				
the mining of a state of the st	Groundbraking N thang STENEN 0. LEW N MY THINK B THE NEW	ed ands is the to read, it may just price may success." ITT, c-author of Personances KING-BY-NUMBERS V WAY TO BE SHART	FREAKONOMICS A ROGUE ECONOMIST EXPLORES THE HIDDEN SIDE OF EVERYTHING	Competing on		

Business intelligence (**BI**) is the transformation of raw data into meaningful and useful information for <u>business analysis</u> purposes. BI can handle enormous amounts of unstructured data to help identify, develop and otherwise create new strategic business opportunities - Wikipedia

Contrast: Scientific Computing

Supernova

Not

Scientific Modeling

Physics-based models

Problem-Structured

Mostly deterministic, precise

Run on Supercomputer or High-end Computing Cluster

Data-Driven Approach

General inference engine replaces model

Structure not related to problem

Statistical models handle true randomness, and **unmodeled complexity**.

Run on cheaper computer Clusters (EC2)

Data Scientist's Practice

Data Science – A Definition

The Big Picture

Data Preparation Overview

ETL

- We need to extract data from the source(s)
- We need to **load** data into the **sink**
- We need to transform data at the source, sink, or in a staging area
- Sources: file, database, event log, web site, HDFS...
- Sinks: Python, R, SQLite, RDBMS, NoSQL store, files, HDFS...

Process model

- The construction of a new data preparation process is done in many phases
 - Data characterization
 - Data cleaning
 - Data integration
- We must efficiently move data around in space and time
 - Data transfer
 - Data serialization and deserialization (for files or network)

Workflow

- The transformation pipeline or workflow often consists of many steps
 - For example: Unix pipes and filters
 - \$ cat data_science.txt | wc | mail -s "word count" <u>myname@some.com</u>
- If the workflow is to be used more than once, it can be scheduled
 - Scheduling can be time-based or event-based
 - Use publish-subscribe to register interest (e.g. Twitter feeds)
- Recording the execution of a workflow is known as capturing lineage or provenance

Data Sources at Web Companies

Examples from Facebook

- Application databases
- Web server logs
- Event logs
- API server logs
- Ad server logs
- Search server logs
- Advertisement landing page content
- Wikipedia
- Images and video

Data Source Types & Examples

Tabular Data

What is a table?

- A table is a collection of rows and columns
- Each row has an index
- Each column has a **name**
- A cell is specified by an (index, name) pair
- A cell may or may not have a value

Tabular Data

Fortune 500

	Α	В	С	D	Е	F	G	Н	1
1	rank	company	cik	ticker	sic	state_location	state_of_incorporation	revenues	profits
2	1	Wal-Mart Stores	104169	WMT	5331	AR	DE	421849	16389
3	2	Exxon Mobil	34088	XOM	2911	ТХ	NJ	354674	30460
4	3	Chevron	93410	CVX	2911	CA	DE	196337	19024
5	4	ConocoPhillips	1163165	COP	2911	ТХ	DE	184966	11358
6	5	Fannie Mae	310522	FNM	6111	DC	DC	153825	-14014
7	6	General Electric	40545	GE	3600	СТ	NY	151628	11644
8	7	Berkshire Hathaway	1067983	BRKA	6331	NE	DE	136185	12967
9	8	General Motors	1467858	GM	3711	MI	MI	135592	6172
10	9	Bank of America Corp.	70858	BAC	6021	NC	DE	134194	-2238
11	10	Ford Motor	37996	F	3711	MI	DE	128954	6561
12	11	Hewlett-Packard	47217	HPQ	3570	CA	DE	126033	8761
13	12	AT&T	732717	Т	4813	ТХ	DE	124629	19864
14	13	J.P. Morgan Chase & Co.	19617	JPM	6021	NY	DE	115475	17370
15	14	Citigroup	831001	С	6021	NY	DE	111055	10602
16	15	McKesson	927653	MCK	5122	CA	DE	108702	1263
17	16	Verizon Communications	732712	VZ	4813	NY	DE	106565	2549
18	17	American International Group	5272	AIG	6331	NY	DE	104417	7786
19	18	International Business Machines	51143	IBM	3570	NY	NY	99870	14833
20	19	Cardinal Health	721371	CAH	5122	OH	OH	98601.9	642.2
21	20	Freddie Mac	37785	FMC	2800	PA	DE	98368	-14025
			1	1		1		1	4

AT

Tabular Data (csv)

000 Fortune 500 with ticker and EDGAR - Plus Ticker and EDGAR.txt rank.company.cik.ticker.sic.state_location.state_of_incorporation.revenues.profits 1.Wal-Mart Stores, 104169, WMT, 5331, AR, DE, 421849, 16389 2,Exxon Mobil,34088,X0M,2911,TX,NJ,354674,30460 3,Chevron,93410,CVX,2911,CA,DE,196337,19024 4,ConocoPhillips,1163165,COP,2911,TX,DE,184966,11358 5,Fannie Mae,310522,FNM,6111,DC,DC,153825,-14014 6,General Electric,40545,GE,3600,CT,NY,151628,11644 7,Berkshire Hathaway,1067983,BRKA,6331,NE,DE,136185,12967 8,General Motors,1467858,GM,3711,MI,MI,135592,6172 9.Bank of America Corp., 70858, BAC, 6021, NC, DE, 134194, -2238 10,Ford Motor, 37996, F, 3711, MI, DE, 128954, 6561 11,Hewlett-Packard,47217,HP0,3570,CA,DE,126033,8761 12,AT&T,732717,T,4813,TX,DE,124629,19864 13.J.P. Morgan Chase & Co., 19617, JPM, 6021, NY, DE, 115475, 17370 14,Citigroup,831001,C,6021,NY,DE,111055,10602 15, McKesson, 927653, MCK, 5122, CA, DE, 108702, 1263 16, Verizon Communications, 732712, VZ, 4813, NY, DE, 106565, 2549 17.American International Group, 5272, AIG, 6331, NY, DE, 104417, 7786 18, International Business Machines, 51143, IBM, 3570, NY, NY, 99870, 14833 19,Cardinal Health,721371,CAH,5122,OH,OH,98601.9,642.2 20,Freddie Mac, 37785,FMC, 2800, PA, DE, 98368, -14025 21,CVS Caremark,64803,CVS,5912,RI,DE,96413,3427 22, UnitedHealth Group, 731766, UNH, 6324, MN, MN, 94155, 4634 23, Wells Fargo, 72971, WFC, 6021, CA, DE, 93249, 12362 24, Valero Energy, 1035002, VL0, 2911, TX, DE, 86034, 324 25,Kroger,56873,KR,5411,0H,0H,82189.4,1116.3 26, Procter & Gamble, 80424, PG, 2840, OH, OH, 79689, 12736 27, AmerisourceBergen, 1140859, ABC, 5122, PA, DE, 77954, 636.7 28,Costco Wholesale,909832,COST,5331,WA,WA,77946,1303 29, Marathon 0il, 101778, MR0, 2911, TX, DE, 68413, 2568 30,Home Depot, 354950,HD, 5211,GA, DE, 67997, 3338

Fortune 500

Protein Data Bank

HEADER APOPTOSIS 05-OCT-10 3IZA TITLE STRUCTURE OF AN APOPTOSOME-PROCASPASE-9 CARD COMPLEX COMPND MOL ID: 1; COMPND 2 MOLECULE: APOPTOTIC PROTEASE-ACTIVATING FACTOR 1: COMPND 3 CHAIN: A, B, C, D, E, F, G; COMPND 4 SYNONYM: APAF-1: COMPND 5 ENGINEERED: YES SOURCE MOL ID: 1; SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; SOURCE 3 ORGANISM COMMON: HUMAN; SOURCE 4 ORGANISM TAXID: 9606; SOURCE 5 GENE: APAF1, KIAA0413; SOURCE 6 EXPRESSION SYSTEM: SPODOPTERA FRUGIPERDA; SOURCE 7 EXPRESSION SYSTEM TAXID: 7108; SOURCE 8 EXPRESSION SYSTEM STRAIN: SF21; SOURCE 9 EXPRESSION SYSTEM VECTOR TYPE: INSECT VIRUS; SOURCE 10 EXPRESSION SYSTEM PLASMID: PFASTBAC1 KEYWDS APOPTOSOME, APAF-1, PROCASPASE-9 CARD, APOPTOSIS EXPDTA ELECTRON MICROSCOPY AUTHOR S.YUAN, X.YU, M.TOPF, S.J.LUDTKE, X.WANG, C.W.AKEY REVDAT 1 03-NOV-10 3IZA 0 SPRSDE 03-NOV-10 3IZA 3IYT JRNL AUTH S.YUAN.X.YU.M.TOPF.S.J.LUDTKE.X.WANG.C.W.AKEY JRNL TITL STRUCTURE OF AN APOPTOSOME-PROCASPASE-9 CARD COMPLEX JRNL REF STRUCTURE V. 18 571 2010

Challenges:

- May be many missing fields (a particular sensor may not produce all types of output).
- Device may go offline for a while.
- Device may be damaged (permanently or intermittently).
- Timestamps usually critical but may not be accurate.
- Other meta-data (location, device ID) may have errors.

Processes, usually daemons, create logs e.g., httpd, mysqld, syslogd

66.249.65.107 - - [08/Oct/2007:04:54:20 -0400] "GET /support.html HTTP/1.1" 200 11179 "-" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"

111.111.111.111 - - [08/Oct/2007:11:17:55 -0400] "GET / HTTP/1.1" 200 10801 "http://www.google.com/search?q=log+analyzer&ie=utf-8&oe=utf-8 &aq=t&rls=org.mozilla:en-US:official&client=firefox-a" "Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7"

111.111.111.111 - - [08/Oct/2007:11:17:55 -0400] "GET /style.css HTTP/1.1" 200 3225 ""<u>http://www.loganalyzer.net</u>/" "Mozilla/5.0 (Windows; U; Windows NT 5.2; en-US; rv:1.8.1.7) Gecko/20070914 Firefox/2.0.0.7"

"Splunking"

- Grab data from many machines
- Index it
- Check for unusual events:
 - Disk problems
 - Network congestion
 - Security attacks
- Monitor Resources
 - Network
 - Memory usage
 - Disk use, latency
 - Threads
- Dashboard for cloud administration.

Files

What is a file?

- A file is a named sequence of bytes
 - Typically stored as a collection of pages (or blocks)
- A filesystem is a collection of files organized within an hierarchical namespace
 - Responsible for laying out those bytes on physical media
 - Stores file metadata
 - Provides an API for interaction with files
- Standard operations
 - open()/close()
 - seek()
 - read()/write()

Considerations for a file format

- Data model: tabular, hierarchical, array
- Physical layout
- Field units and validation
- Metadata: header, side file, specification, other?
- Plain text or binary
- Encoding: ASCII, UTF-8, other?
- Delimiters and escaping
- Compression, encryption, checksums?
- Schema evolution

Read/Write time (180 MB tabular file)

	Read Time (Text)	Write Time (Text)	Read Time (Binary)	Write Time (Binary)
Pandas (Python)	88 secs	107 secs	**	**
Scala/Java	12 secs	30 secs	0.5-2* secs	0.5-2* secs

** Pandas doesn't have a default binary file I/O library – you can use Python, but performance depends on what you pick.

* 2 seconds is the time for sustainable read/write. May be faster due to caching

File Performance – Compression

Read/Write time (180 MB tabular file, Scala/Java)

Binary File	Read Time	Write Time	File Size
Gzip level 6 (Java default)	1-2 secs	11 secs	35 MB
Gzip level 3	1-2 secs	4 secs	37 MB
Gzip level 1	1-2 secs	2 secs	38 MB
LZ4 fast	1-2 secs	1-2 secs	63 MB

Text File	Read Time	Write Time	File Size
Gzip level 6 (default)	1-2 secs	22 secs	32 MB
Gzip level 3	1-2 secs	14 secs	35 MB
Gzip level 1	1-2 secs	12 secs	39 MB
LZ4 fast	1-2 secs	11 secs	63 MB

"Table-Like" Data Model Example

pandas: powerful Python data analysis toolkit

Release 0.17.0

Wes McKinney & PyData Development Team

Series: a named, ordered dictionary

- The keys of the dictionary are the **indexes**
- Built on NumPy's ndarray
- Values can be any Numpy data type object

DataFrame: a table with named columns

- Represented as a Dict (col_name -> series)
- Each Series object represents a column

Operations

map() functions filter (apply predicate to rows) sort/group by aggregate: sum, count, average, max, min Pivot or reshape Relational:

- union, intersection, difference, cartesian product (CROSS JOIN)
- select/filter, project
- join: natural join (INNER JOIN), theta join, semi-join, etc.
- rename

GOETHE UNIVERSITÄT

Dirty Data: Errors in Data Sources

Dirty Data

The Statistics View:

- There is a process that produces data
- We want to model ideal samples of that process, but in practice we have non-ideal samples:
 - Distortion some samples are corrupted by a process
 - Selection Bias likelihood of a sample depends on its value
 - Left and right censorship users come and go from our scrutiny
 - Dependence samples are supposed to be independent, but are not (e.g. social networks)
- You can add new models for each type of imperfection, but you can't model everything.
- What's the best trade-off between accuracy and simplicity?

The Database View:

- I got my hands on this data set
- Some of the values are missing, corrupted, wrong, duplicated
- Results are absolute (relational model)
- You get a better answer by improving the quality of the values in your dataset

The Domain Expert's View:

- This Data Doesn't look right
- This Answer Doesn't look right
- What happened?

Domain experts have an implicit model of the data that they can test against...

The Data Scientist's View:

• Some Combination of all of the above

(Source) Data is dirty on its own.

- Transformations corrupt the data (complexity of software pipelines).
- Data sets are clean but integration (i.e., combining them) screws them up.
- "Rare" errors can become frequent after transformation or integration.
- Data sets are clean but suffer "bit rot"
 - Old data loses its value/accuracy over time

Any combination of the above

12 13 14 21 22 26 33 35 36 37 39 42 45 47 54 57 61 68 450

ages of employees (US)

- median 37
- mean 58.52632
- variance 9252.041

Source: Joe Hellerstein's UCB CS 194 Guest Lecture

Data Cleaning Makes Everything Okay?

The appearance of a hole in the earth's ozone layer over Antarctica, first detected in 1976, was so unexpected that scientists didn't pay attention to what their instruments were telling them; they thought their instruments were malfunctioning.

National Center for Atmospheric Research

In fact, the data were rejected as unreasonable by data quality control algorithms

Dirty Data Problems

From Stanford Data Integration Course:

- 1) parsing text into fields (separator issues)
- 2) Naming conventions: ER: NYC vs New York
- 3) Missing required field (e.g. key field)
- 4) Different representations (2 vs Two)
- 5) Fields too long (get truncated)
- 6) Primary key violation (from un- to structured or during integration
- 7) Redundant Records (exact match or other)
- 8) Formatting issues especially dates
- 9) Licensing issues/Privacy/ keep you from using the data as you would like?

Data Quality: Modern Definition?

- Reflects the use of the data
- Leads to improvements in processes
- Is measurable (we can define metrics)

First, we need a better understanding of how and where data quality problems occur

• The data quality continuum

Meaning of Data Quality (2)

There are many types of data, which have different uses and typical quality problems

- Federated data
- High dimensional data
- Descriptive data
- Longitudinal data
- Streaming data
- Web (scraped) data
- Numeric vs. categorical vs. text data

Meaning of Data Quality (2)

There are many uses of data

- Operations
- Aggregate analysis
- Customer relations …

Data Interpretation : the data is useless if we don't know all of the rules behind the data.

Data Suitability : Can you get the answer from the available data

- Use of proxy data
- Relevant data is missing

The Data Quality Continuum

Data and information is not static, it flows in a data collection and usage process

- Data gathering
- Data delivery
- Data storage
- Data integration
- Data retrieval
- Data mining/analysis

Machine Learning

Supervised: We are given input samples (X) and output samples (y) of a function y = f(X). We would like to "learn" f, and evaluate it on new data. Types:

- Classification: y is discrete (class labels).
- Regression: y is continuous, e.g. linear regression.

Unsupervised: Given only samples X of the data, we compute a function f such that y = f(X) is "simpler".

- Clustering: y is discrete
- Y is continuous: Matrix factorization, Kalman filtering, unsupervised neural networks.

Supervised:

- Is this image a cat, dog, car, house?
- How would this user score that restaurant?
- Is this email spam?
- Is this blob a supernova?

Unsupervised

- Cluster some hand-written digit data into 10 classes.
- What are the top 20 topics in Twitter right now?
- Find and cluster distinct accents of people at Berkeley.

73

Linear Regression

We want to find the best line (linear function y=f(X)) to explain the data.

The predicted value of y is given by:

$$\widehat{y} = \widehat{\beta}_0 + \sum_{j=1}^p X_j \widehat{\beta}_j$$

The vector of coefficients $\hat{\beta}$ is the regression model.

If $X_0 = 1$, the formula becomes a matrix product: $\hat{y} = X \hat{\beta}$

We can write all of the input samples in a single matrix **X**:

i.e. rows of
$$\mathbf{X} = \begin{pmatrix} X_{11} & \cdots & X_{1n} \\ \vdots & \ddots & \vdots \\ X_{m1} & \cdots & X_{mn} \end{pmatrix}$$

are distinct observations, columns of X are input features.

To determine the model parameters $\hat{\beta}$ from some data, we can write down the Residual Sum of Squares:

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - \beta x_i)^2$$

or symbolically $RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$. To minimize it, take the derivative wrt β which gives:

$$\mathbf{X}^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = 0$$

And if $\mathbf{X}^T \mathbf{X}$ is non-singular, the unique solution is:

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- The exact method requires us to invert a matrix (**X**^T**X**) whose size is nfeatures x nfeatures. This will often be too big.
- There are many gradient-based methods which reduce the RSS error by taking the derivative wrt β

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - \beta x_i)^2$$

which was

$$\nabla = \mathbf{X}^T (\mathbf{y} - \mathbf{X}\beta)$$

A very important set of iterative algorithms use stochastic gradient updates.

They use a small subset or mini-batch X of the data, and use it to compute a gradient which is added to the model

$$\beta' = \beta + \alpha \nabla$$

Where α is called the learning rate.

These updates happen many times in one pass over the dataset.

Its possible to compute high-quality models with very few passes, sometime with less than one pass over a large dataset.

We can **always** fit a linear model to any dataset, but how do we know if there is a **real linear relationship**?

R²-values and P-values

Approach: Use a hypothesis test. The null hypothesis is that there is no linear relationship ($\beta = 0$).

Statistic: Some value which should be small under the null hypothesis, and large if the alternate hypothesis is true.

R-squared: a suitable statistic. Let $\hat{y} = X \hat{\beta}$ be a predicted value, and \bar{y} be the sample mean. Then the R-squared statistic is

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

And can be described as the fraction of the total variance not explained by the model.

R-squared

Statistic: From R-squared we can derive another statistic (using degrees of freedom) that has a standard distribution called an F-distribution.

From the CDF for the F-distribution, we can derive a Pvalue for the data.

The P-value is, as usual, the probability of observing the data under the null hypothesis of no linear relationship.

If **p** is small, say less than 0.05, we conclude that there is a linear relationship.

- Your model should ideally fit an infinite sample of the type of data you're interested in.
- In reality, you only have a finite set to train on. A good model for this subset is a good model for the infinite set, up to a point.
- Beyond that point, the model quality (measured on new data) starts to decrease.
- Beyond that point, the model is over-fitting the data.

Over-fitting

Regularization and Over-fitting

Adding a regularizer:

- Cross-validation involves partitioning your data into distinct training and test subsets.
- The test set should never be used to train the model.
- The test set is then used to evaluate the model after training.

- To get more accurate estimates of performance you can do this k times.
- Break the data into k equal-sized subsets A_i
- For each i in 1,...,k do:
 - Train a model on all the other folds $A_1, \ldots, A_{i-1}, A_{i+1}, \ldots, A_k$
 - Test the model on A_i
- Compute the average performance of the k runs

5-fold Cross-Validation

		Test	
--	--	------	--

Conclusion

- Exciting times to study Computer Science
- Advances in Sensing, Computing, Networking, Applied Mathematics, Statistics, Machine Learning, Artificial Intelligence enable Distributed, Networked, Human-like Intelligent Systems
- Engineering of Complex Systems require advanced platforms, tools and software/systems engineering practices.

'Thank you' -- The End

Backup