Curve Fitting Re-visited

Linear Basis Function Models (1)

Example: Polynomial Curve Fitting

0 1

y(z, w) — wo + w1z + wox® + ... +wy™ = ijazj

Linear Basis Function Models (2)

Generally
M—1

w; (X WTCb(X)

7=0
Where ¢;(X) are known as basis functions.

Typically, do(X) = 1, so that wy acts as a bias.

In the simplest case, we use linear basis
functions : ¢4(X) = Xy.

Maximum Likelihood

Data . b)t
— (tla . 7tN)
B+ N
Inp(t|x,w,) = — 5 nz::l {y(x,,w) —t,} " +—1Inpg — 5} In(27)
BE(w)

Determine WL, by minimizing sum-of-squares error, E(W)
Determine also the precision parameter (inverse variance):

1 1 <)
G N > Ay(@n, wan) =t}

Sum-of-Squares Error Function

A

y ol
/ /ﬂ

Predictive Distribution

p(t|z, W, Bur) = N (tly(z, wr), 51_41L>

MAP: A Step towards Bayes

B i (O (M+1)/2 o T
p(wla) = N(wl|0,a 1) = (%> exp {—§W W}
p(W(x, t, i,) o< p(t|x, w, B)p(w|a)

éﬁ: _p2 . G,T
5 Y(xp, W n}°+ 2W W

Determine WMAP by minimizing regularized sum-of-squares error, E(W) :

Bayesian Curve Fitting

p(tlx,x,t) = /p(t|:c,w)p(w|x,t) dw = N (t|jm(z), s*(z))

Training data

m(z) = Bep(x)"S > P(xn)tn s2(z) = B + ¢(2) TS ()

N
Where S~ l=al+3 Z ¢($n)¢($n)T
n=1

T
E.g. polynomials as basis functions ~ ¢(z,) = (25, ...,),)

Bayesian Predictive Distribution

p(tlz,x,t) = N (t|m(z), s*(z))

Predictive Distribution (2)

Example: Sinusoidal data, 9 Gaussian basis functions,
1 data point

i‘ i fﬁi !
| y(x, w) .

0]

Predictive Distribution (3)

Example: Sinusoidal data, 9 Gaussian basis functions,
2 data points

Predictive Distribution (4)

Example: Sinusoidal data, 9 Gaussian basis functions,
4 data points

Predictive Distribution (5)

Example: Sinusoidal data, 9 Gaussian basis functions,
25 data points

Regression vs. Classification

Regression:

T € |—00,00],t € [—00, 0]

Classification:

r € [—00,00],t € {0,1}

Neural Example: neuron in MT

Middle temporal cortex: large receptive fields sensitive to
object motion

record from single neuron during movement patterns such
as the ones below

animal is trained to decide if the coherent movement is
upwards or downwards

0% coherence 50% coherence 100% coherence

Left: behavioral performance of the animal and of an “ideal
observer” considering single neuron

Right: histograms (thinned) of average firing rate for different
stimuli (up/down) at different coherence levels

A

1.0 -

fraction correct

0.6 1

0.8 1

@® behavior /‘,17""
O neuronal / ",O
o

number of trials

T T

0
coherence (%)

100

B
coherence=12.8%
20—
.
O—J
00 coherence=3.2%
0 Qo
00 coherence=0.8%
0 L l]
0 10 20 30 40 50 60

firing rate (Hz)

Maximum likelihood

Optimal strategy for discriminating between two alternative signals
presented in background of noise?

Let’s call the two alternative signals: + and —
Assume we must base our decisions on the observation of a single
observable x

x could be e.g. the firing rate of a neuron when x is present

If the signal is + then the values of x are chosen from P(x|+)
If the signal is - then the values of x are chosen from P(x|-)

If we have seen a particular value of x, can we tell which signal was
presented?

Intuition: Divide x axis at critical point x,: Everything to right is called a +,
everything to the left a -.

How should we choose x, ?

Maximum likelihood

Compute probability of correct decision as function of threshold...
...then find the value of the threshold that maximizes this probability!

Probability of correctly identifying signal +:

P(say +|signal is +) = / dxP(x|+)
Probability of correctly identifying signal -

x

0
P(say -|signal is -) = / dxP(x|—)

oo

Probability of making correct choice:
Zo

P.(xo) = P(+) /OO drP(z|+) + P(—)/ dxP(x|—)

To o0

Maximum likelihood

Probability of making correct choice:

P.(xo) = P(+) /OO dzP(z|+) + P(—) /xo dxP(x|—)

dPC(CE())

Maximize it! dxo

=0

P(—F)d;jso /OO dxP(x|+) + P(—)d%ljo /5’70 dxP(x|—) =0

=) —P(+) P(xo|+) + P(—)P(xo|—) =0
=)

P(+) P(xol+) = P(—)P(z0|—)

Maximum likelihood
P(+)P(zo|+) = P(=)P(xo|—)

In the simple case that signals x and — are equally likely, i.e. P(+)=P(-)

mm) P(zol+) = P(xo|—)

Set threshold where two probabilities cross
A B

coherence =12.8%

number of trials

Maximum likelihood

==) P(xol+) = P(xo|-)
There can be several dividing lines

2 Normal distributions

0.8

0.6

0.2

Maximum likelihood

In general: One cannot do better than the likelihood ratio
P L

(@) = 2ElF) _ L)

P(z|-) L(—|z)

2 Normal distributions

0.8

0.6

0.4

0.2

Very general result. Applies also to multimodal and
multivariate distributions.

0.5
>
= 0.4
3
T 0.37
=y
5 0.2}
©
®)
© 0.1
o
OO) 10 15
Firing rate

Alternative method: likelihood ratio —

Minimum Misclassification Rate

A

8)

< Lo >

R4 R

p(mistake) = p(x € Ry1,C2) + p(x € Ro,C1)

= /Rlp(X,Cz)deL/ p(x,C1) dx.

R2

Minimum Misclassification Rate

p(iB,Cl) i
| p(@,C2) p(mistake) = p(x € Ry,C2) + p(x € Ra,Cy)
i = / p(x, Cg)dX+/ p(x,Cy) dx.
. Rl R2
* R4 . " Ro g

We are free to choose the decision rule that assigns each point x to one
of the two classes.

To minimize integrand: p(x,Cr) = p(Ci|x)p(x) must be small

Assign x to class for which the posterior p(Cx|x) is larger!

Three strategies

1. Modeling the class-conditional density for each class C,,
and prior, then use Bayes

p(x|Cr)p(C)
p(x)

p(Cr|x) =

2. First solve the inference problem of determining the
posterior class probabilities p(C, | x), and then
subsequently use decision theory to assign each
new x to one of the classes

3. Find discriminant function that directly maps x to class
label

Class-conditional density vs. posterior

class densities

Class-conditional densities

p(z|C1)

p(z|C2)

0.2

0.4

0.6

0.8

1.2

0.8}

0.6

04r

027

Posterior probabilities

p(Cilz)

p(Calz)

IMensions

Several d

10

®e
3 « ° n
,,.. ea -ﬁo
\ * N o 1
a o’o’.. * e ®
o A | - . @
o o @ el -
o o sirlead St
L . Q/ ..”' .0..0
.a w e
«..‘.m .,‘l”.0 1N
. f.m.u.w.....% ¥
l.“. ﬁq .‘. e 0. 0. -
- L °. (N e
*ey o,
o&oo ooo o‘oolo [1°
oy @ ‘o
PO
® 9 -
® 9 0 \ 11
o .. ,.,

Several dimensions

Decision surface

T

Y(x) =W X + wy
weight _
vector bias

Crify(x) =20

C, otherwise

Fisher’s linear discriminant 1

Projecting data down to one dimension

y=w' x

But how?

Fisher’s linear discriminant 2

Define class means

Try maximize

Mo — 1M :WT(m2 —ml) ot

Fisher’s linear discriminant 3

Instead, consider: ratio of between class
variance to within class variance

~ (ma — m)’
J(w) = s9 + 83
With e Z (Y — migp)”
neCy

Called Fisher criterion. Maximize it!

Fisher’s linear discriminant 4

Maximizing the Fisher Criterion we obtain
w o Sy (my — my)

with the total within class covariance

This is called Fisher’s linear discriminant

Fisher’s linear discriminant 4

Fisher’s linear discriminant

w o Sy (my — my)

Fisher Criterion

(mg —mq)?

J(w) =

st +
4t e
\ o Cee .~":~:
\e N IODRN
»‘”+ | ”? %
o R \
oy, i
K/ i
",. 2t *
Q\\

-2

2

6

Least squares for classification fails

Use logistic regression instead!

Bernoulli Distribution

1 Pr(x=0) = 1-—\
> Pr(x=1) = A\
% or
'8 A\ 1l—x
£ Pr(x) = A*(1 - \)
For short we write:
0

Pr(z) = Bern,[\]

Bernoulli distribution describes situation where only two possible
outcomes y=0/y=1 or failure/success

Takes a single parameter\ € [0, 1]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 36

Logistic Regression

Consider two class problem.
* Choose Bernoulli distribution over world.
 Make parameter A a function of x

Pr(w|po, p,x) = Bern,, [sigla]]

Model activation with a linear function

a=¢o+ ¢ x

creates number between [—OO, OO] Maps to [O, 1] with

sigla] = :

1+ exp[—d]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 37

Pr(w|z) = Berny, [sig[¢o + ¢12]]

10

—
—

sig[¢o +¢1~’E]

$o + P17

-10 1 :
0 €T 1 T

Two parameters
0 = {¢07¢1}

Learning by standard methods (ML,MAP, Bayesian)
Inference: Just evaluate Pr(w|x)

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 38

Neater Notation

Pr(w|pg, p,x) = Bern,, [sig|a]]

To make notation easier to handle, we
e Attach a1 to the start of every data vector

T]T

7

x; < |1 x
* Attach the offset to the start of the gradient vector ¢

¢+ [¢po ¢']"

New model:

1
Pr(w|¢,x) = Bern,, L n exp[quX]]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 39

Logistic regression

a)
1
&
™
|
S
~
¥
' ;1 €S
z;,1 € So e 0000 ¢ 0
0 =@ 090)) & ©
XL
Prwig.x) = Bern, | ————|
r(w|o,x) = Bern,,
1+exp[—qux]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 40

Maximum Likelihood

Pr(wX,¢) = H)\’“’i(l—)\)l"“’i

Take logarithm

! 1
L = Zwi log {
i=1

I+ eXp[_¢TXi] i=1

Take derivative:
1

- (v

o1 \ 1 +expl

—QbTXz'] B wl) i

1

— Z (sigla;] — w;) x;

1=1

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

41

Derivatives

I I

0L 1 :

Unfortunately, there is no closed form solution— we cannot
get an expression for ¢ in terms of x and w

Have to use a general purpose technique:

“iterative non-linear optimization”

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 42

Optimization

Goal:

N\

6 = argmin 116]

How can we find the minimum?

Cost function or

. . Objective function
Basic idea: J

 Start with estimate 0
 Take a series of small steps to 9[1]q 0[2] . H[OO]
 Make sure that each step decreases cost

* When can’t improve, then must be at minimum

0]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 43

Local Minima

910]

g’ 1<)

Objective function f|6]

glo<]

0

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 44

Convexity

-
-
-
-
-
-~
-~
-
-
-
-~
-~
-
-
-
-~
~ -
-~

-
-
-
-
=
-
-
-
=
-
-

Objective function f 0]

0

If a function is convex, then it has only a single minimum.
Can tell if a function is convex by looking at 2"d derivatives

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 45

::]~

. 1—wj;
(w|X Y[expl-¢'x]
X, ¢) = Pl (1 + exp[— qu i) (1 + eXp[—quxz-] -

—

a) Pr(¢lzi.,wi.r) b) log[Pr(¢lzi. r,wi.1)] ¢

!
+9 © 32
b2 =
¢1 b1 I
)
<
b0 ®o ° &L
1 1 T
1 exp|—¢@~ x;]
L= wilog[]Jr 1 —w;)log
; 1+ exp[—¢Txi] ;() 1+ exp[—quxi]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 46

Gradient Based Optimization

* Choose a search direction s based on the local properties
of the function

* Perform an intensive search along the chosen direction.
This is called line search

A

% = argmin [1ol + As]}
A

e Then set

A

ol — gll 1 \s

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

47

Gradient Descent

Steepest Descent

¥

Consider standing on a hillside

Look at gradient where you
are standing

Find the steepest direction
downhill

Walk in that direction for some
distance (line search)

5 Iterations

01

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 48

Finite differences

What if we can’t compute the gradient?

Compute finite difference approximation:

of _ [10+ae;|— [0
c‘?GjN a

where g is the unit vector in the jth direction

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

49

Steepest Descent Problems

Close up

22 lterations

01

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 50

Second Derivatives

R —

2nd derivative large
take small step

2nd derivative small
take large step

0

In higher dimensions, 2"9 derivatives change how much we should move

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 51

Newton’s Method

Approximate function with Taylor expansion

r Of r 0F
9] ~ o' + (9 — 6! 0 —othT —| (-9l
fle]~ 10 + (0 - 0") Gl 500" Tl 06"
Take derivative
of 0 f
L | (-6 =0
00 00 |, + 06% |4 ()
Re-arrange ,
. 2 - (derivatives
0 =0l _ (%) % taken at time t)

Adding line search

AN
gltt1ll _ gltl _ Z I ZJ
A 00° 00

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 52

Newton’s Method

O*f\ " of

gltt1l —pglt] _ \ (2L ~J
00? Bl

Newton method
approximates

locally with quadratic Matrix of second derivatives is

called the Hessian.
9 Expensive to compute via finite
- : - differences.
2nd derivative large 2nd derivative small|
take small step take large step

0 If positive definite, then convex

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 53

Newton vs. Steepest Descent

a) Steepest Descent
==

5 Iterations

d) Newton
+

3 Iterations

01

b)

e)

Steepest Descent

22 Iterations

Newton

4 Tterations

01

C) Close up of steepest descent

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 54

Line Search

@ b ¢ d a« b ¢ d o b oc d

Gradually narrow down range

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 55

Optimization for Logistic Regression

82L>1 oL

t] _ plt—1] Z - -
qb —qb +&<8¢2 a¢

Derivatives of log likelihood:

L :
—— = _ Z(sig[ai] — W;)X;
0 i—1
9L - T
pye = — Z sigla;](1 — sigla;])x;ix;
¢ i—1

Positive definite!

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 56

::]~

. 1—wj;
(w|X Y[expl-¢'x]
X, ¢) = Pl (1 + exp[— qu i) (1 + eXp[—quxz-] -

—

a) Pr(¢lzi.,wi.r) b) log[Pr(¢lzi. r,wi.1)] ¢

!
+9 © 32
b2 =
¢1 b1 I
)
<
b0 ®o ° &L
1 1 T
1 exp|—¢@~ x;]
L= wilog[]Jr 1 —w;)log
; 1+ exp[—¢Txi] ;() 1+ exp[—quxi]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 57

Maximum likelihood fits

a)
1
&
™
|
S
~
¥
' ;1 €S
z;,1 € So e 0000 ¢ 0
0 =@ 090)) & ©
XL
Prwig.x) = Bern, | ————|
r(w|o,x) = Bern,,
1+exp[—qux]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 58

