
Computer vision: models, 
learning and inference 

Chapter 10  

Graphical Models 



Independence 
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• Two variables x1 and x2 are independent if their 
joint probability distribution factorizes as  

 Pr(x1, x2)=Pr(x1) Pr(x2) 

 



Conditional independence 
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• The variable x1 is said to be conditionally 
independent of x3 given x2 when x1 and x3 are 
independent for fixed x2. 

 

 

• When this is true the joint density factorizes in a 
certain way and is hence redundant. 



Conditional independence 
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• Consider joint pdf of three discrete variables x1, x2, x3 



Conditional independence 
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• Consider joint pdf of three discrete variables x1, x2, x3 

• The three marginal distributions show that no pair of variables is independent 
 



Conditional independence 
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• Consider joint pdf of three discrete variables x1, x2, x3 

• The three marginal distributions show that no pair of variables is independent 
• But x1 is independent of x2 given x3 

 



Graphical models 

• A graphical model is a graph based 
representation that makes both factorization 
and conditional independence relations easy 
to establish 

 

• Two important types: 

– Directed graphical model or Bayesian network 

– Undirected graphical model or Markov network 
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Directed graphical models 

• Directed graphical model represents probability 
distribution that factorizes as a product of 
conditional probability distributions 

 

 

   where pa[n] denotes the parents of node n 
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Directed graphical models 
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• To visualize graphical model from factorization 

– add one node per random variable and draw arrow to each 
variable from each of its parents. 

 

• To extract factorization from graphical model 

– Add one term per node in the graph Pr(xn| xpa[n]) 

– If no parents then just add Pr(xn) 

 



Example 1 
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Example 1 
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 = Markov Blanket of variable x8 – Parents, children 
 and parents of children   



Example 1 
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If there is no route between two variables and 
they share no ancestors, they are independent. 



Example 1 
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 A variable is conditionally independent of all others, 
given its Markov Blanket  



Example 1 
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General rule:  



Example 2 
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The joint pdf of this graphical model factorizes as: 



Example 2 
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The joint pdf of this graphical model factorizes as: 

It describes the original example: 



Example 2 
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General rule:  

Here the arrows meet head to tail at x2, and so x1 is 
conditionally independent of x3 given x2. 



Example 2 
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Algebraic proof: 

No dependence on x3 implies that x1 is conditionally 
independent of x3 given x2. 



Redundancy  
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4 x 3 x 2 = 24 entries 

4          +            3 x 4          +       2 x 3 
             = 22 entries 

Conditional independence can be 
thought of as redundancy in the full 
distribution 

Redundancy here only very small, but with larger models 
can be very significant. 



Example 3 
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Mixture of 
Gaussians 

t-distribution Factor analyzer 

Blue boxes = Plates.  Interpretation:  repeat contents of box 
number of times in bottom right corner. 
Bullet = variables which are not treated as uncertain 



Undirected graphical models 
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Probability distribution factorizes as: 

Partition 
function 

(normalization 
constant) 

Product over 
C functions 

Potential function 
(returns non-

negative number) 



Undirected graphical models 
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Probability distribution factorizes as: 

Partition 
function 

(normalization 
constant) 

For large systems, intractable to compute 



Alternative form 
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Can be written as Gibbs Distribution: 

Cost function  
(positive or negative) 

where 



Cliques 
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Better to write undirected model as 

Product over 
cliques 

Clique  
Subset of variables 



Undirected graphical models 
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• To visualize graphical model from factorization 

– Sketch one node per random variable 

– For every clique, sketch connection from every node to 

every other  

 

• To extract factorization from graphical model 

– Add one term to factorization per maximal clique (fully 
connected subset of nodes where it is not possible to add 
another node and remain fully connected) 



Conditional independence 
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•  Much simpler than for directed models: 

 

One set of nodes is conditionally independent of another 

given a third if the third set separates them (i.e. 

Blocks any path from the first node to the second) 



Example 1 
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Represents factorization: 



Example 1 
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By inspection of graphical model: 
 
x1 is conditionally independent of x3 given x2, as the 
route from x1 to x3 is blocked by x2. 

 



Example 1 
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Algebraically: 
 

No dependence on x3 implies that x1 is conditionally 
independent of x3 given x2. 



Example 2 
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• Variables x1 and x2 form a clique (both connected to 
each other) 

• But not a maximal clique, as we can add x3 and it is 
connected to both 



Example 2 
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Graphical model implies factorization: 



Example 2 
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Or could be.... 

... but this is less general 



Comparing directed and undirected models 
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Executive summary: 
 
• Some conditional independence patterns can be 

represented as both directed and undirected 
• Some can be represented only by directed 
• Some can be represented only by undirected 
• Some can be represented by neither 
 
 
 



Comparing directed and undirected models 
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These models represent same independence /  
conditional independence relations 

There is no undirected model that 
can describe these relations 



Comparing directed and undirected models 
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There is no directed model that 
can describe these relations 

Closest example, 
but not the same 
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Graphical models in computer vision 

Chain model  
(hidden Markov model) 

Interpreting sign  
language sequences 
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Graphical models in computer vision 

Tree model Parsing the human body 
Note direction of links, indicating that we’re 
building a probability distribution over the data, i.e. 
generative models: 
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Graphical models in computer vision 

Grid model 
Markov random field 

(blue nodes) 

Semantic  
segmentation 
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Graphical models in computer vision 

Chain model 
Kalman filter 

Tracking contours 



Inference in models with many 
unknowns 

• Ideally we would compute full posterior 
distribution Pr(w1...N|x1...N). 

• But for most models this is a very large 
discrete distribution – intractable to compute 

• Other solutions: 
– Find MAP solution 

– Find marginal posterior distributions 

– Maximum marginals 

– Sampling posterior 
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Finding MAP solution 
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• Still difficult to compute – must search 
through very large number of states to find 
the best one. 



Marginal posterior distributions 

42 Computer vision: models, learning and inference.  ©2011 Simon J.D. Prince 

• Compute one distribution for each variable wn.   

• Obviously cannot be computed by computing 
full distribution and explicitly marginalizing. 

• Must use algorithms that exploit conditional 
independence! 



Maximum marginals 
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• Maximum of marginal posterior distribution for 
each variable wn. 

• May have probability zero;  the states can be 
individually probable, but never co-occur. 



Maximum marginals 
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Sampling the posterior 
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• Draw samples from posterior Pr(w1...N|x1...N).  
– use samples as representation of distribution 

– select sample with highest prob. as point sample 

– compute empirical max-marginals  
• Look at marginal statistics of samples 

 



Drawing samples - directed 
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To sample from directed model, use ancestral sampling  
 
• work through graphical model, sampling one variable at 

a time. 
• Always sample parents before sampling variable 
• Condition on previously sampled values 



Ancestral sampling example 
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Ancestral sampling example 
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1. Sample x1
* from Pr(x1) 

2. Sample x2
* from Pr(x2| x1

*) 
3. Sample x4

* from Pr(x4| x1
*, x2

*) 
 

4. Sample x3
* from Pr(x3| x2

*,x4
*) 

5. Sample x5
* from Pr(x5| x3

*) 

To generate one sample: 



Drawing samples - undirected 

• Can’t use ancestral sampling as no sense of 
parents / children and don’t have conditional 
probability distributions 

• Instead us Markov chain Monte Carlo method 

– Generate series of samples (chain) 

– Each depends on previous sample (Markov) 

– Generation stochastic (Monte Carlo) 

• Example MCMC method = Gibbs sampling 
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50 Computer vision: models, learning and inference.  ©2011 Simon J.D. Prince 

Gibbs sampling 

To generate new sample x in the chain 

– Sample each dimension in any order 

– To update nth dimension xn 

• Fix other N-1 dimensions  

• Draw from conditional distribution Pr(xn| x1...N\n) 

Get samples by selecting from chain 

– Needs burn-in period 

– Choose samples spaced apart, so not correlated 



Gibbs sampling example: bi-variate 
normal distribution 
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Gibbs sampling example: bi-variate 
normal distribution 
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Learning in directed models 

Use standard ML formulation 

 

 

 
 

where xi,n is the nth dimension of the ith training example. 
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Learning in undirected models 
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Write in form of Gibbs distribution 

Maximum likelihood formulation 



Learning in undirected models 
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PROBLEM:  To compute first term, we must sum over 
all possible states.  This is intractable 



Contrastive divergence 
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Some algebraic manipulation 



Contrastive divergence 
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Now approximate: 

Where xj
* is one of J samples from the distribution.   

Can be computed using Gibbs sampling. In practice, it is 
possible to run MCMC for just 1 iteration and still OK. 



Contrastive divergence 
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Conclusions 

Can characterize joint distributions as 
– Graphical models 

– Sets of conditional independence relations 

– Factorizations  

Two types of graphical model, represent 
different but overlapping subsets of possible 
conditional independence relations 
– Directed (learning easy, sampling easy) 

– Undirected (learning hard, sampling hard) 
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