N. Bertschinger

Machine Learning II

M. Kaschube

Exercise Sheet 3

V. Ramesh

Due on Wednesday, May 11, 14:15

Exercise 1. Let $p(x|\mu)$ be a univariate Gaussian $\mathcal{N}(\mu, \sigma^2)$ with unknown parameter mean, to be estimated. The prior is also assumed to follow a Gaussian $\mathcal{N}(\mu_0, \sigma_0^2)$. For the posterior we have

$$p(\mu|X) = \frac{p(X|\mu)p(\mu)}{p(X)} = \frac{1}{\alpha} \prod_{k=1}^{N} p(x_k|\mu)p(\mu)$$

where for a given training data set, X, p(X) is a constant denoted as α . Write down the explicit expression for $p(\mu|X)$.

1 points

Exercise 2. Show that, given a number of samples, N, the posterior $p(\mu|X)$ turns out to be also Gaussian, that is

$$p(\mu|X) = \frac{1}{\sigma_N \sqrt{2\pi}} \exp\left(-\frac{(\mu - \mu_N)^2}{2\sigma_N^2}\right)$$

with mean value

$$\mu_N = \frac{N\sigma_0^2 \bar{x}_N + \sigma^2 \mu_0}{N\sigma_0^2 + \sigma^2}$$

and variance

$$\sigma_N^2 = \frac{\sigma^2 \sigma_0^2}{N \sigma_0^2 + \sigma^2}$$

where $\bar{x}_N = \frac{1}{N} \sum_{k=1}^N x_k$. In the limit of large N, what happens to the mean value μ_N and to the standard deviation σ_N ?

2 points

Exercise 3. Plot the posterior distribution $p(\mu|X)$ in one graph for various N. The largest N should be at least as large as N=500. Generate data X using a pseudorandom number generator following a Gaussian pdf with mean value equal $\mu=2$ and variance $\sigma^2=4$. The mean value is assumed to be unknown and the prior pdf is also a Gaussian with $\mu_0=0$ and $\sigma_0^2=8$. Also include the prior in this plot and describe what happens when increasing N.

2 points

N. Bertschinger

Machine Learning II

M. Kaschube

Exercise Sheet 3

V. Ramesh

Due on Wednesday, May 11, 14:15

Exercise 4. Show that the posterior pdf estimate in the Bayesian inference task, for independent variables, can be computed recursively, that is,

$$p(\theta|x_1,...,x_N) = \frac{p(x_N|\theta)p(\theta|x_1,...,x_{N-1})}{p(x_N|x_1,...,x_{N-1})}.$$

You may either do this for the general expression above or for the example of Gaussian distributions.

1 points

Exercise 5. Reproduce the plots shown in Figure 1 (from the book by CM Bishop (Springer Series), p.155), using a slightly more complicated model. Generate your own synthetic data from the function

$$f(x, \mathbf{a}) = a_0 + a_1 x + a_2 x^2$$

with parameter values $a_0 = -0.3$, $a_1 = 0.5$, $a_2 = 0.4$ by first choosing values of x_n from the uniform distribution U(x|-1,1), then evaluating $f(x_n, \mathbf{a})$, and finally adding Gaussian noise with standard deviation of s=0.2 to obtain the target values t_n . The goal is to recover the values of a_0 , a_1 and a_2 from such data, and to explore the dependence on the size of the data set. To achieve this, assume a model in which individual data points are generated by

$$p(t|x, \mathbf{w}) = \mathcal{N}(t|y(x, \mathbf{w}), s^2)$$
,

where $y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2$ with weights \mathbf{w} to be estimated and a fixed standard deviation s = 0.2, i.e. assumed to be known. The likelihood is then given by

$$p(\mathbf{t}|X,\mathbf{w}) = \prod_{n=1}^{N} \mathcal{N}(t_n|y(x_n,\mathbf{w}),s^2) .$$

Finally, assume a Gaussian distributed prior $p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha)$ with $\alpha = 2$. Generate two plots analog to those shown in Figure 1, one for (w_0, w_1) and one for (w_1, w_2) . Describe and interpret these plots thoroughly.

4 points

Exercise Sheet 3

V. Ramesh Due on Wednesday, May 11, 14:15

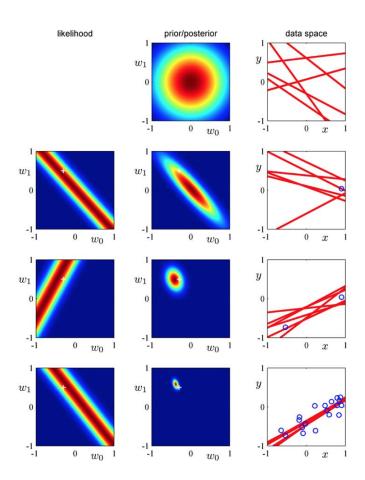


Figure 1: Illustration of sequential Bayesian learning for a linear model.