Exercise 1. Reproduce the plots shown in Figure 1 (from the book by CM Bishop (Springer Series), p.157-158). Consider a target variable t given by a deterministic function $y(\mathbf{x}, \mathbf{w})$ depending on input \mathbf{x} and parameters \mathbf{w} with additive Gaussian noise so that

$$
t=y(\mathbf{x}, \mathbf{w})+\epsilon
$$

where ϵ is a zero mean Gaussian random variable with precision parameter β. This can also be written as

$$
p(t \mid \mathbf{x}, \mathbf{w}, \beta)=\mathcal{N}\left(t \mid y(\mathbf{x}, \mathbf{w}), \beta^{-1}\right) .
$$

Choosing a Gaussian prior

$$
p(\mathbf{w} \mid \alpha)=\mathcal{N}\left(\mathbf{w} \mid \mathbf{0}, \alpha^{-1} \mathbf{I}\right)
$$

the predictive distribution is also Gaussian and given by

$$
p(t \mid \mathbf{x}, \mathbf{t}, \mathbf{X}, \alpha, \beta)=\mathcal{N}\left(t \mid \mathbf{m}_{N}^{T} \phi(\mathbf{x}), \sigma_{N}^{2}(\mathbf{x})\right)
$$

with mean

$$
\mathbf{m}_{N}=\beta \mathbf{S}_{N} \boldsymbol{\Phi}^{T} \mathbf{t}
$$

and variance

$$
\sigma_{N}^{2}(\mathbf{x})=\frac{1}{\beta}+\phi(\mathbf{x})^{T} \mathbf{S}_{N} \phi(\mathbf{x}),
$$

where the matrix \mathbf{S}_{N} is defined as

$$
\mathbf{S}_{N}^{-1}=\alpha \mathbf{I}+\beta \boldsymbol{\Phi}^{T} \boldsymbol{\Phi},
$$

the vector of basis functions given by

$$
\phi\left(\mathbf{x}_{n}\right)=\left(\phi_{0}\left(\mathbf{x}_{n}\right), \phi_{1}\left(\mathbf{x}_{n}\right), \cdots, \phi_{M-1}\left(\mathbf{x}_{n}\right)\right)^{T}
$$

the matrix of basis functions given by

$$
\boldsymbol{\Phi}=\left(\begin{array}{cccc}
\phi_{0}\left(\mathbf{x}_{1}\right) & \phi_{1}\left(\mathbf{x}_{1}\right) & \cdots & \phi_{M-1}\left(\mathbf{x}_{1}\right) \\
\phi_{0}\left(\mathbf{x}_{2}\right) & \phi_{1}\left(\mathbf{x}_{2}\right) & \cdots & \phi_{M-1}\left(\mathbf{x}_{2}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{0}\left(\mathbf{x}_{N}\right) & \phi_{1}\left(\mathbf{x}_{N}\right) & \cdots & \phi_{M-1}\left(\mathbf{x}_{N}\right)
\end{array}\right)
$$

with the vectors of input training data $\mathbf{X}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ and corresponding output training values $\mathbf{t}=\left\{t_{1}, \ldots, t_{n}\right\}$, and the value t to be predicted for a new input \mathbf{x}.

Generate synthetic data from

$$
f(x)=\sin (2 \pi x)-\cos (\pi x)
$$

where $x \in[0,1]$ (i.e. the inputs x_{n} are one-dimensional and randomly drawn from a uniform distribution over the interval $[0,1]$) and add Gaussian noise with some standard deviation $\beta^{-1 / 2}$ (try out different values) to the data points generated. Explore data sets of various size, e.g. $N=2, N=4$, $N=10$ and $N=100$. Plot an analog to Figure 1 by computing the predictive distribution for different data samples using the recipe above and then describe and interpret it thoroughly. Consider a model consisting of 1 constant function ϕ_{0} and 8 Gaussian basis functions (thus M is 9-dimensional) of the form

$$
\phi_{j}(x)=\exp \left\{-\frac{\left(x-\mu_{j}\right)^{2}}{2 s^{2}}\right\}
$$

with identical width s and means μ_{j} equally distributed between 0 and 1.

7 points

Exercise 2. Draw samples from the posterior distribution over \mathbf{w} and then plot the corresponding functions $y(x, \mathbf{w})$ analog to those shown in Figure 2 for your solutions obtained in the previous exercise. The posterior distribution is given by

$$
p(\mathbf{w} \mid \mathbf{t})=\mathcal{N}\left(\mathbf{w} \mid \mathbf{m}_{N}, \mathbf{S}_{N}\right) .
$$

To sample from this multivariate Gaussian distribution, apply the technique learned in one of the previous problem sheets. Describe and interpret these plots thoroughly.
N. Bertschinger
M. Kaschube
V. Ramesh

Machine Learning II
Exercise Sheet 4
Due on Wednesday, May 18, 14:15

Figure 1: Predictive distribution for a model comprising a linear combinationq of Gaussian basis functions using data generated by a sinusoid. For each plot, the red curve shows the mean of the corresponding Gaussian predictive distribution, and the red shaded region spans one standard deviation either side of the mean.

Figure 2: Plots of the function $y(x, \mathbf{w})$ using samples from the posterior distributions over w corresponding to the plots in Figure 1.

