N. Bertschinger M. Kaschube V. Ramesh

Machine Learning II Exercise Sheet

Exercise 1. Monte-Carlo integration: Consider the expectation of f(x) under some distribution with density p(x), i.e.

$$\mathbb{E}_p[f] = \mu = \int f(x)p(x)dx$$

Then, if samples x_1, \ldots, x_N from p(x) are available the above expectation can be approximated as

$$\mathbb{E}_p[f] \approx \hat{\mu} = \frac{1}{N} \sum_{i=1}^N f(x_i)$$

Show that this Monte-Carlo estimate is **unbiased**, i.e. $\mathbb{E}_p[\hat{\mu}] = \mu$

2 points

Exercise 2. Inversion sampling: *Consider sampling from a standard normal distribution:*

1. Does your favorite library function, i.e. numpy.random.normal, use inversion sampling? If not, which algorithm is used instead?

1 point

2. How does the Box-Muller method work?

3 points

Exercise 3. Rejection sampling: Consider the problem of sampling from a multi-variate Gaussian with mean zero and diagonal covariance matrix $\sigma_p^2 \mathbf{I}_D$ where \mathbf{I}_D denotes the $D \times D$ identity matrix. As a sampling density, we choose another Gaussian with zero mean and covariance $\sigma_a^2 \mathbf{I}_D$.

1. The condition, $cq \ge p$ now requires that $\sigma_q^2 \ge \sigma_p^2$. What is the optimal, *i.e. minimal, choice for c?*

1 point

2. How does the acceptance rate behave, when you increase the dimension D? Illustrate your findings with an example where σ_q exceeds σ_p by 1%.

3 points

Exercise 1. Metropolis-Hastings: Show that the Markov chain defined by the Metropolis-Hastings algorithm satisfies detailed balance.

3 points

Exercise 2. MCMC: Sample from a multi-modal distribution, e.g. a mixture of two one-dimensional Gaussian:

$$p(x) = \frac{1}{3}\mathcal{N}(-\frac{\mu}{2}, 1) + \frac{2}{3}\mathcal{N}(\frac{\mu}{2}, 1)$$

- 1. Use the Metropolis-Hastings algorithm with a Gaussian of width σ as proposal distribution.
- 2. Illustrate the effect of the proposal width σ and the separation μ between the two modes on the sampling efficiency.

5 points

Exercise 3. Gibbs sampling: Show that Gibbs sampling is a special case of Metropolis-Hastings sampling, i.e. show that its proposal is always accepted. 2 points

Machine Learning II Exercise Sheet

Exercise 1. Conjugate priors: Show that the Dirichlet distribution $p(\theta)$ with parameters $(\alpha_1, \ldots, \alpha_K)$ is the conjugate prior for the categorical variable Z, *i.e.*

$$p(Z=k|\theta)=\theta_k \quad \forall k=1,\ldots,K$$

1. Compute the posterior parameters, i.e.

$$p(\theta_1,\ldots,\theta_K|\mathcal{D})$$

where $\mathcal{D} = (z_1, \ldots, z_N)$.

2. Why are the Dirichlet parameters called pseudo-counts?

3 points

Exercise 2. Gaussian mixtures:

1. Explore the collapsed Gibbs sampler on different data sets, e.g. with two components of varying size and separation. When does it work well and when does it fail to mix?

3 points

2. Explain, e.g. in pseudo-code, how you would implement the uncollapsed Gibbs sampler, i.e. sampling from the full posterior

$$p((z_n)_{n=1}^K, \{\mu_k\}_{k=1}^K, \{\Lambda_k\}_{k=1}^K | \mathcal{X})$$

Hint: Which conditional independencies can you exploit?

3 points

3. Compare the uncollapsed and collapsed Gibbs sampler. Which algorithm would you expect to mix better and why?

1 points