N. Bertschinger
M. Kaschube Machine Learning 11
V. Ramesh Exercise Sheet

Exercise 1. Monte-Carlo integration: Consider the expectation of f(x) un-
der some distribution with density p(x), i.e.

E,[f] = = / f(@)p(a)dz

Then, if samples x1,...,xy from p(x) are available the above expectation can

be approrimated as
| XN
By 2

Show that this Monte-Carlo estimate is unbiased, i.e. E,[f] = p
2 points

Exercise 2. Inversion sampling: Consider sampling from a standard normal
distribution:

1. Does your favorite library function, i.e. numpy.random.normal, use
inversion sampling? If not, which algorithm is used instead?

1 point

2. How does the Box-Muller method work?
3 points
Exercise 3. Rejection sampling: Consider the problem of sampling from a
multi-variate Gaussian with mean zero and diagonal covariance matrix agID

where Ip denotes the D x D identity matriz. As a sampling density, we
choose another Gaussian with zero mean and covariance O’?ID.

1. The condition, cq > p now requires that 02 > ‘712>' What is the optimal,
i.e. minimal, choice for c?

1 point

2. How does the acceptance rate behave, when you increase the dimension

D? Illustrate your findings with an example where o, exceeds o, by 1%.

3 points
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Exercise 1. Metropolis-Hastings: Show that the Markov chain defined by
the Metropolis-Hastings algorithm satisfies detailed balance.
3 points

Exercise 2. MCMC: Sample from a multi-modal distribution, e.g. a mizture
of two one-dimensional Gaussian:

1 1 2 W

=-N(—=,1)+ =N(=,1

1. Use the Metropolis-Hastings algorithm with a Gaussian of width o as
proposal distribution.

2. Illustrate the effect of the proposal width o and the separation p between
the two modes on the sampling efficiency.

5 points

Exercise 3. Gibbs sampling: Show that Gibbs sampling is a special case of
Metropolis-Hastings sampling, i.e. show that its proposal is always accepted.
2 points
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Exercise 1. Conjugate priors: Show that the Dirichlet distribution p(0) with
parameters (au, . .., ) is the conjugate prior for the categorical variable Z,
1.€.

p(Z=kl0) =0, Vk=1,... K

1. Compute the posterior parameters, 1i.e.

p(by,...,0k|D)
where D = (21,...,2N)-
2. Why are the Dirichlet parameters called pseudo-counts ¢
3 points
Exercise 2. Gaussian mixtures:

1. Explore the collapsed Gibbs sampler on different data sets, e.qg. with two
components of varying size and separation. When does it work well and
when does it fail to miz?

3 points

2. Ezxplain, e.q. in pseudo-code, how you would implement the uncollapsed
Gibbs sampler, i.e. sampling from the full posterior

P((Zn>5:1v {Nk:}i{:h {Ak}f:ﬂx)

Hint: Which conditional independencies can you exploit?
3 points
3. Compare the uncollapsed and collapsed Gibbs sampler. Which algo-
rithm would you expect to miz better and why?

1 points



