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Exercise 1. Monte-Carlo integration: Consider the expectation of f(x) un-
der some distribution with density p(x), i.e.

Ep[f ] = µ =

∫
f(x)p(x)dx

Then, if samples x1, . . . , xN from p(x) are available the above expectation can
be approximated as

Ep[f ] ≈ µ̂ =
1

N

N∑
i=1

f(xi)

Show that this Monte-Carlo estimate is unbiased, i.e. Ep[µ̂] = µ
2 points

Exercise 2. Inversion sampling: Consider sampling from a standard normal
distribution:

1. Does your favorite library function, i.e. numpy.random.normal, use
inversion sampling? If not, which algorithm is used instead?

1 point

2. How does the Box-Muller method work?

3 points

Exercise 3. Rejection sampling: Consider the problem of sampling from a
multi-variate Gaussian with mean zero and diagonal covariance matrix σ2

pID
where ID denotes the D × D identity matrix. As a sampling density, we
choose another Gaussian with zero mean and covariance σ2

qID.

1. The condition, cq ≥ p now requires that σ2
q ≥ σ2

p. What is the optimal,
i.e. minimal, choice for c?

1 point

2. How does the acceptance rate behave, when you increase the dimension
D? Illustrate your findings with an example where σq exceeds σp by 1%.

3 points
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Exercise 1. Metropolis-Hastings: Show that the Markov chain defined by
the Metropolis-Hastings algorithm satisfies detailed balance.

3 points

Exercise 2. MCMC: Sample from a multi-modal distribution, e.g. a mixture
of two one-dimensional Gaussian:

p(x) =
1

3
N (−µ

2
, 1) +

2

3
N (

µ

2
, 1)

1. Use the Metropolis-Hastings algorithm with a Gaussian of width σ as
proposal distribution.

2. Illustrate the effect of the proposal width σ and the separation µ between
the two modes on the sampling efficiency.

5 points

Exercise 3. Gibbs sampling: Show that Gibbs sampling is a special case of
Metropolis-Hastings sampling, i.e. show that its proposal is always accepted.

2 points
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Exercise 1. Conjugate priors: Show that the Dirichlet distribution p(θ) with
parameters (α1, . . . , αK) is the conjugate prior for the categorical variable Z,
i.e.

p(Z = k|θ) = θk ∀k = 1, . . . , K

1. Compute the posterior parameters, i.e.

p(θ1, . . . , θK |D)

where D = (z1, . . . , zN).

2. Why are the Dirichlet parameters called pseudo-counts?

3 points

Exercise 2. Gaussian mixtures:

1. Explore the collapsed Gibbs sampler on different data sets, e.g. with two
components of varying size and separation. When does it work well and
when does it fail to mix?

3 points

2. Explain, e.g. in pseudo-code, how you would implement the uncollapsed
Gibbs sampler, i.e. sampling from the full posterior

p((zn)Kn=1, {µk}Kk=1, {Λk}Kk=1|X )

Hint: Which conditional independencies can you exploit?

3 points

3. Compare the uncollapsed and collapsed Gibbs sampler. Which algo-
rithm would you expect to mix better and why?

1 points


