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Bayesian	  Inference	  for	  the	  Gaussian	  (1)	  

Assume	  σ	  is	  known.	  Given	  i.i.d.	  data	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  the	  likelihood	  func.on	  for	  
µ	  is	  given	  by	  

	  
	  
This	  has	  a	  Gaussian	  shape	  as	  a	  func.on	  of	  µ 
(but	  it	  is	  not	  a	  distribu.on	  over	  µ).	  



Bayesian	  Inference	  for	  the	  Gaussian	  (2)	  

Combined	  with	  a	  Gaussian	  prior	  over	  µ,	  
	  
	  

this	  gives	  the	  posterior	  
	  
	  

Comple.ng	  the	  square	  over	  µ,	  we	  see	  that	  



Bayesian	  Inference	  for	  the	  Gaussian	  (3)	  

…	  where	  
	  
	  
	  
Note:	  
	  
	  



Bayesian	  Inference	  for	  the	  Gaussian	  (4)	  

Example:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  N = 0, 1, 2 
and	  10.	  



Bayesian	  Inference	  for	  the	  Gaussian	  (5)	  

Sequen.al	  Es.ma.on	  
	  
	  
	  
	  
The	  posterior	  obtained	  aYer	  observing	  N -1	  
data	  points	  becomes	  the	  prior	  when	  we	  
observe	  the	  N 

th	  data	  point.	  



Curve	  Fi8ng	  Re-‐visited	  



Maximum	  Likelihood	  

Determine	  	  	  	  	  	  	  	  	  	  	  	  by	  minimizing	  sum-‐of-‐squares	  error,	  	  	  	  	  	  	  	  	  	  	  	  	  .	  
Determine	  also	  the	  precision	  parameter	  (inverse	  variance):	  
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Figure 1.15 Illustration of how bias arises in using max-
imum likelihood to determine the variance
of a Gaussian. The green curve shows
the true Gaussian distribution from which
data is generated, and the three red curves
show the Gaussian distributions obtained
by fitting to three data sets, each consist-
ing of two data points shown in blue, us-
ing the maximum likelihood results (1.55)
and (1.56). Averaged across the three data
sets, the mean is correct, but the variance
is systematically under-estimated because
it is measured relative to the sample mean
and not relative to the true mean.

(a)

(b)

(c)

In Section 10.1.3, we shall see how this result arises automatically when we adopt a
Bayesian approach.

Note that the bias of the maximum likelihood solution becomes less significant
as the number N of data points increases, and in the limit N → ∞ the maximum
likelihood solution for the variance equals the true variance of the distribution that
generated the data. In practice, for anything other than small N , this bias will not
prove to be a serious problem. However, throughout this book we shall be interested
in more complex models with many parameters, for which the bias problems asso-
ciated with maximum likelihood will be much more severe. In fact, as we shall see,
the issue of bias in maximum likelihood lies at the root of the over-fitting problem
that we encountered earlier in the context of polynomial curve fitting.

1.2.5 Curve fitting re-visited
We have seen how the problem of polynomial curve fitting can be expressed in

terms of error minimization. Here we return to the curve fitting example and view itSection 1.1
from a probabilistic perspective, thereby gaining some insights into error functions
and regularization, as well as taking us towards a full Bayesian treatment.

The goal in the curve fitting problem is to be able to make predictions for the
target variable t given some new value of the input variable x on the basis of a set of
training data comprising N input values x = (x1, . . . , xN )T and their corresponding
target values t = (t1, . . . , tN )T. We can express our uncertainty over the value of
the target variable using a probability distribution. For this purpose, we shall assume
that, given the value of x, the corresponding value of t has a Gaussian distribution
with a mean equal to the value y(x,w) of the polynomial curve given by (1.1). Thus
we have

p(t|x,w, β) = N
(
t|y(x,w), β−1

)
(1.60)

where, for consistency with the notation in later chapters, we have defined a preci-
sion parameter β corresponding to the inverse variance of the distribution. This is
illustrated schematically in Figure 1.16.
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Data	  



Predic.ve	  Distribu.on	  



MAP:	  A	  Step	  towards	  Bayes	  

Determine	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  by	  minimizing	  regularized	  sum-‐of-‐squares	  error,	  	  	  	  	  	  	  	  	  	  	  	  	  .	  



Bayesian	  Curve	  Fi8ng	  



Bayesian	  Predic.ve	  Distribu.on	  



Regression	  Models	  
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Arc	  Tan	  Func.ons	  
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Radial	  basis	  func.ons	  
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RBF	  Kernel	  Fits	  
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