
Linear	  Basis	  Func-on	  Models	  (1)	  

Example:	  Polynomial	  Curve	  Fi>ng	  



Linear	  Basis	  Func-on	  Models	  (2)	  

Generally	  
	  
	  
Where	  φj(x)	  are	  known	  as	  basis	  func*ons.	  
Typically,	  φ0(x) = 1,	  so	  that	  w0	  acts	  as	  a	  bias.	  
In	  the	  simplest	  case,	  we	  use	  linear	  basis	  
func-ons	  :	  φd(x) = xd.	  



Curve	  Fi>ng	  Re-‐visited	  



Maximum	  Likelihood	  and	  Least	  Squares	  (1)	  

Assume	  observa-ons	  from	  a	  determinis-c	  func-on	  
with	  added	  Gaussian	  noise:	  

	  
which	  is	  the	  same	  as	  saying,	  
	  

Given	  observed	  inputs,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  and	  targets,	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  we	  obtain	  the	  likelihood	  func-on	  	  	  

	  

where	  



Maximum	  Likelihood	  and	  Least	  Squares	  (2)	  

Taking	  the	  logarithm,	  we	  get	  
	  
	  
	  
where	  
	  
	  
is	  the	  sum-‐of-‐squares	  error.	  
	  



Sum-‐of-‐Squares	  Error	  Func-on	  



Compu-ng	  the	  gradient	  and	  se>ng	  it	  to	  zero	  yields	  
	  
	  
	  

Solving	  for	  w,	  we	  get	  	  
	  
where	  

Maximum	  Likelihood	  and	  Least	  Squares	  (3)	  

The	  Moore-‐Penrose	  
pseudo-‐inverse,	  	  	  	  	  	  	  .	  
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Setting this gradient to zero gives

0 =
N∑

n=1

tnφ(xn)T − wT

(
N∑

n=1

φ(xn)φ(xn)T
)

. (3.14)

Solving for w we obtain
wML =

(
ΦTΦ

)−1
ΦTt (3.15)

which are known as the normal equations for the least squares problem. Here Φ is an
N×M matrix, called the design matrix, whose elements are given by Φnj = φj(xn),
so that

Φ =

⎛

⎜⎜⎝

φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN ) φ1(xN ) · · · φM−1(xN )

⎞

⎟⎟⎠ . (3.16)

The quantity
Φ† ≡

(
ΦTΦ

)−1
ΦT (3.17)

is known as the Moore-Penrose pseudo-inverse of the matrix Φ (Rao and Mitra,
1971; Golub and Van Loan, 1996). It can be regarded as a generalization of the
notion of matrix inverse to nonsquare matrices. Indeed, if Φ is square and invertible,
then using the property (AB)−1 = B−1A−1 we see that Φ† ≡ Φ−1.

At this point, we can gain some insight into the role of the bias parameter w0. If
we make the bias parameter explicit, then the error function (3.12) becomes

ED(w) =
1
2

N∑

n=1

{tn − w0 −
M−1∑

j=1

wjφj(xn)}2. (3.18)

Setting the derivative with respect to w0 equal to zero, and solving for w0, we obtain

w0 = t −
M−1∑

j=1

wjφj (3.19)

where we have defined

t =
1
N

N∑

n=1

tn, φj =
1
N

N∑

n=1

φj(xn). (3.20)

Thus the bias w0 compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

We can also maximize the log likelihood function (3.11) with respect to the noise
precision parameter β, giving

1
βML

=
1
N

N∑

n=1

{tn − wT
MLφ(xn)}2 (3.21)



Regularized	  Least	  Squares	  (1)	  

Consider	  the	  error	  func-on:	  
	  

With	  the	  sum-‐of-‐squares	  error	  func-on	  and	  a	  
quadra-c	  regularizer,	  we	  get	  	  	  

	  
	  
which	  is	  minimized	  by	  

Data	  term	  +	  Regulariza-on	  term	  

λ	  is	  called	  the	  
regulariza-on	  
coefficient.	  



Regularized	  Least	  Squares	  (2)	  

With	  a	  more	  general	  regularizer,	  we	  have	  
	  

Lasso	   Quadra-c	  



Regularized	  Least	  Squares	  (3)	  

Lasso	  tends	  to	  generate	  sparser	  solu-ons	  than	  a	  
quadra-c	  	  
regularizer.	  	  



Bayesian	  Linear	  Regression	  (1)	  

Define	  a	  conjugate	  prior	  over	  w 
	  
Combining	  this	  with	  the	  likelihood	  func-on	  and	  using	  	  
results	  for	  marginal	  and	  condi-onal	  Gaussian	  
distribu-ons,	  gives	  the	  posterior	  	  
	  
where	  	  



Bayesian	  Linear	  Regression	  (2)	  

A	  common	  choice	  for	  the	  prior	  is	   
	  
for	  which	  
	  
	  
The	  log	  of	  the	  posterior	  distribu-on	  is	  given	  by	  the	  
sum	  of	  the	  log	  likelihood	  and	  the	  log	  of	  the	  prior	  	  

3.3. Bayesian Linear Regression 153

Next we compute the posterior distribution, which is proportional to the product
of the likelihood function and the prior. Due to the choice of a conjugate Gaus-
sian prior distribution, the posterior will also be Gaussian. We can evaluate this
distribution by the usual procedure of completing the square in the exponential, and
then finding the normalization coefficient using the standard result for a normalized
Gaussian. However, we have already done the necessary work in deriving the gen-Exercise 3.7
eral result (2.116), which allows us to write down the posterior distribution directly
in the form

p(w|t) = N (w|mN ,SN ) (3.49)

where

mN = SN

(
S−1

0 m0 + βΦTt
)

(3.50)

S−1
N = S−1

0 + βΦTΦ. (3.51)

Note that because the posterior distribution is Gaussian, its mode coincides with its
mean. Thus the maximum posterior weight vector is simply given by wMAP = mN .
If we consider an infinitely broad prior S0 = α−1I with α → 0, the mean mN

of the posterior distribution reduces to the maximum likelihood value wML given
by (3.15). Similarly, if N = 0, then the posterior distribution reverts to the prior.
Furthermore, if data points arrive sequentially, then the posterior distribution at any
stage acts as the prior distribution for the subsequent data point, such that the new
posterior distribution is again given by (3.49).Exercise 3.8

For the remainder of this chapter, we shall consider a particular form of Gaus-
sian prior in order to simplify the treatment. Specifically, we consider a zero-mean
isotropic Gaussian governed by a single precision parameter α so that

p(w|α) = N (w|0, α−1I) (3.52)

and the corresponding posterior distribution over w is then given by (3.49) with

mN = βSNΦTt (3.53)
S−1

N = αI + βΦTΦ. (3.54)

The log of the posterior distribution is given by the sum of the log likelihood and
the log of the prior and, as a function of w, takes the form

ln p(w|t) = −β

2

N∑

n=1

{tn − wTφ(xn)}2 − α

2
wTw + const. (3.55)

Maximization of this posterior distribution with respect to w is therefore equiva-
lent to the minimization of the sum-of-squares error function with the addition of a
quadratic regularization term, corresponding to (3.27) with λ = α/β.

We can illustrate Bayesian learning in a linear basis function model, as well as
the sequential update of a posterior distribution, using a simple example involving
straight-line fitting. Consider a single input variable x, a single target variable t and



Bayesian	  Linear	  Regression	  (2)	  

Example:	  es-mate	  linear	  model	  	  
of	  the	  form	  	  
	  
	  
Data:	  draw	  xn	  from	  uniform	  	  
distribu-on,	  then	  plug	  into	  	  
	  
	  
	  
then	  add	  Gaussian	  noise	  to	  obtain	  target	  value	  tn	  
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a linear model of the form y(x,w) = w0 + w1x. Because this has just two adap-
tive parameters, we can plot the prior and posterior distributions directly in parameter
space. We generate synthetic data from the function f(x,a) = a0 +a1x with param-
eter values a0 = −0.3 and a1 = 0.5 by first choosing values of xn from the uniform
distribution U(x|−1, 1), then evaluating f(xn,a), and finally adding Gaussian noise
with standard deviation of 0.2 to obtain the target values tn. Our goal is to recover
the values of a0 and a1 from such data, and we will explore the dependence on the
size of the data set. We assume here that the noise variance is known and hence we
set the precision parameter to its true value β = (1/0.2)2 = 25. Similarly, we fix
the parameter α to 2.0. We shall shortly discuss strategies for determining α and
β from the training data. Figure 3.7 shows the results of Bayesian learning in this
model as the size of the data set is increased and demonstrates the sequential nature
of Bayesian learning in which the current posterior distribution forms the prior when
a new data point is observed. It is worth taking time to study this figure in detail as
it illustrates several important aspects of Bayesian inference. The first row of this
figure corresponds to the situation before any data points are observed and shows a
plot of the prior distribution in w space together with six samples of the function
y(x,w) in which the values of w are drawn from the prior. In the second row, we
see the situation after observing a single data point. The location (x, t) of the data
point is shown by a blue circle in the right-hand column. In the left-hand column is a
plot of the likelihood function p(t|x,w) for this data point as a function of w. Note
that the likelihood function provides a soft constraint that the line must pass close to
the data point, where close is determined by the noise precision β. For comparison,
the true parameter values a0 = −0.3 and a1 = 0.5 used to generate the data set
are shown by a white cross in the plots in the left column of Figure 3.7. When we
multiply this likelihood function by the prior from the top row, and normalize, we
obtain the posterior distribution shown in the middle plot on the second row. Sam-
ples of the regression function y(x,w) obtained by drawing samples of w from this
posterior distribution are shown in the right-hand plot. Note that these sample lines
all pass close to the data point. The third row of this figure shows the effect of ob-
serving a second data point, again shown by a blue circle in the plot in the right-hand
column. The corresponding likelihood function for this second data point alone is
shown in the left plot. When we multiply this likelihood function by the posterior
distribution from the second row, we obtain the posterior distribution shown in the
middle plot of the third row. Note that this is exactly the same posterior distribution
as would be obtained by combining the original prior with the likelihood function
for the two data points. This posterior has now been influenced by two data points,
and because two points are sufficient to define a line this already gives a relatively
compact posterior distribution. Samples from this posterior distribution give rise to
the functions shown in red in the third column, and we see that these functions pass
close to both of the data points. The fourth row shows the effect of observing a total
of 20 data points. The left-hand plot shows the likelihood function for the 20th data
point alone, and the middle plot shows the resulting posterior distribution that has
now absorbed information from all 20 observations. Note how the posterior is much
sharper than in the third row. In the limit of an infinite number of data points, the
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a linear model of the form y(x,w) = w0 + w1x. Because this has just two adap-
tive parameters, we can plot the prior and posterior distributions directly in parameter
space. We generate synthetic data from the function f(x,a) = a0 +a1x with param-
eter values a0 = −0.3 and a1 = 0.5 by first choosing values of xn from the uniform
distribution U(x|−1, 1), then evaluating f(xn,a), and finally adding Gaussian noise
with standard deviation of 0.2 to obtain the target values tn. Our goal is to recover
the values of a0 and a1 from such data, and we will explore the dependence on the
size of the data set. We assume here that the noise variance is known and hence we
set the precision parameter to its true value β = (1/0.2)2 = 25. Similarly, we fix
the parameter α to 2.0. We shall shortly discuss strategies for determining α and
β from the training data. Figure 3.7 shows the results of Bayesian learning in this
model as the size of the data set is increased and demonstrates the sequential nature
of Bayesian learning in which the current posterior distribution forms the prior when
a new data point is observed. It is worth taking time to study this figure in detail as
it illustrates several important aspects of Bayesian inference. The first row of this
figure corresponds to the situation before any data points are observed and shows a
plot of the prior distribution in w space together with six samples of the function
y(x,w) in which the values of w are drawn from the prior. In the second row, we
see the situation after observing a single data point. The location (x, t) of the data
point is shown by a blue circle in the right-hand column. In the left-hand column is a
plot of the likelihood function p(t|x,w) for this data point as a function of w. Note
that the likelihood function provides a soft constraint that the line must pass close to
the data point, where close is determined by the noise precision β. For comparison,
the true parameter values a0 = −0.3 and a1 = 0.5 used to generate the data set
are shown by a white cross in the plots in the left column of Figure 3.7. When we
multiply this likelihood function by the prior from the top row, and normalize, we
obtain the posterior distribution shown in the middle plot on the second row. Sam-
ples of the regression function y(x,w) obtained by drawing samples of w from this
posterior distribution are shown in the right-hand plot. Note that these sample lines
all pass close to the data point. The third row of this figure shows the effect of ob-
serving a second data point, again shown by a blue circle in the plot in the right-hand
column. The corresponding likelihood function for this second data point alone is
shown in the left plot. When we multiply this likelihood function by the posterior
distribution from the second row, we obtain the posterior distribution shown in the
middle plot of the third row. Note that this is exactly the same posterior distribution
as would be obtained by combining the original prior with the likelihood function
for the two data points. This posterior has now been influenced by two data points,
and because two points are sufficient to define a line this already gives a relatively
compact posterior distribution. Samples from this posterior distribution give rise to
the functions shown in red in the third column, and we see that these functions pass
close to both of the data points. The fourth row shows the effect of observing a total
of 20 data points. The left-hand plot shows the likelihood function for the 20th data
point alone, and the middle plot shows the resulting posterior distribution that has
now absorbed information from all 20 observations. Note how the posterior is much
sharper than in the third row. In the limit of an infinite number of data points, the



Bayesian	  Linear	  Regression	  (3)	  

0	  data	  points	  observed	  

Prior	   Data	  Space	  
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a linear model of the form y(x,w) = w0 + w1x. Because this has just two adap-
tive parameters, we can plot the prior and posterior distributions directly in parameter
space. We generate synthetic data from the function f(x,a) = a0 +a1x with param-
eter values a0 = −0.3 and a1 = 0.5 by first choosing values of xn from the uniform
distribution U(x|−1, 1), then evaluating f(xn,a), and finally adding Gaussian noise
with standard deviation of 0.2 to obtain the target values tn. Our goal is to recover
the values of a0 and a1 from such data, and we will explore the dependence on the
size of the data set. We assume here that the noise variance is known and hence we
set the precision parameter to its true value β = (1/0.2)2 = 25. Similarly, we fix
the parameter α to 2.0. We shall shortly discuss strategies for determining α and
β from the training data. Figure 3.7 shows the results of Bayesian learning in this
model as the size of the data set is increased and demonstrates the sequential nature
of Bayesian learning in which the current posterior distribution forms the prior when
a new data point is observed. It is worth taking time to study this figure in detail as
it illustrates several important aspects of Bayesian inference. The first row of this
figure corresponds to the situation before any data points are observed and shows a
plot of the prior distribution in w space together with six samples of the function
y(x,w) in which the values of w are drawn from the prior. In the second row, we
see the situation after observing a single data point. The location (x, t) of the data
point is shown by a blue circle in the right-hand column. In the left-hand column is a
plot of the likelihood function p(t|x,w) for this data point as a function of w. Note
that the likelihood function provides a soft constraint that the line must pass close to
the data point, where close is determined by the noise precision β. For comparison,
the true parameter values a0 = −0.3 and a1 = 0.5 used to generate the data set
are shown by a white cross in the plots in the left column of Figure 3.7. When we
multiply this likelihood function by the prior from the top row, and normalize, we
obtain the posterior distribution shown in the middle plot on the second row. Sam-
ples of the regression function y(x,w) obtained by drawing samples of w from this
posterior distribution are shown in the right-hand plot. Note that these sample lines
all pass close to the data point. The third row of this figure shows the effect of ob-
serving a second data point, again shown by a blue circle in the plot in the right-hand
column. The corresponding likelihood function for this second data point alone is
shown in the left plot. When we multiply this likelihood function by the posterior
distribution from the second row, we obtain the posterior distribution shown in the
middle plot of the third row. Note that this is exactly the same posterior distribution
as would be obtained by combining the original prior with the likelihood function
for the two data points. This posterior has now been influenced by two data points,
and because two points are sufficient to define a line this already gives a relatively
compact posterior distribution. Samples from this posterior distribution give rise to
the functions shown in red in the third column, and we see that these functions pass
close to both of the data points. The fourth row shows the effect of observing a total
of 20 data points. The left-hand plot shows the likelihood function for the 20th data
point alone, and the middle plot shows the resulting posterior distribution that has
now absorbed information from all 20 observations. Note how the posterior is much
sharper than in the third row. In the limit of an infinite number of data points, the



Bayesian	  Linear	  Regression	  (4)	  

1	  data	  point	  observed	  

Likelihood	   Posterior	   Data	  Space	  
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a linear model of the form y(x,w) = w0 + w1x. Because this has just two adap-
tive parameters, we can plot the prior and posterior distributions directly in parameter
space. We generate synthetic data from the function f(x,a) = a0 +a1x with param-
eter values a0 = −0.3 and a1 = 0.5 by first choosing values of xn from the uniform
distribution U(x|−1, 1), then evaluating f(xn,a), and finally adding Gaussian noise
with standard deviation of 0.2 to obtain the target values tn. Our goal is to recover
the values of a0 and a1 from such data, and we will explore the dependence on the
size of the data set. We assume here that the noise variance is known and hence we
set the precision parameter to its true value β = (1/0.2)2 = 25. Similarly, we fix
the parameter α to 2.0. We shall shortly discuss strategies for determining α and
β from the training data. Figure 3.7 shows the results of Bayesian learning in this
model as the size of the data set is increased and demonstrates the sequential nature
of Bayesian learning in which the current posterior distribution forms the prior when
a new data point is observed. It is worth taking time to study this figure in detail as
it illustrates several important aspects of Bayesian inference. The first row of this
figure corresponds to the situation before any data points are observed and shows a
plot of the prior distribution in w space together with six samples of the function
y(x,w) in which the values of w are drawn from the prior. In the second row, we
see the situation after observing a single data point. The location (x, t) of the data
point is shown by a blue circle in the right-hand column. In the left-hand column is a
plot of the likelihood function p(t|x,w) for this data point as a function of w. Note
that the likelihood function provides a soft constraint that the line must pass close to
the data point, where close is determined by the noise precision β. For comparison,
the true parameter values a0 = −0.3 and a1 = 0.5 used to generate the data set
are shown by a white cross in the plots in the left column of Figure 3.7. When we
multiply this likelihood function by the prior from the top row, and normalize, we
obtain the posterior distribution shown in the middle plot on the second row. Sam-
ples of the regression function y(x,w) obtained by drawing samples of w from this
posterior distribution are shown in the right-hand plot. Note that these sample lines
all pass close to the data point. The third row of this figure shows the effect of ob-
serving a second data point, again shown by a blue circle in the plot in the right-hand
column. The corresponding likelihood function for this second data point alone is
shown in the left plot. When we multiply this likelihood function by the posterior
distribution from the second row, we obtain the posterior distribution shown in the
middle plot of the third row. Note that this is exactly the same posterior distribution
as would be obtained by combining the original prior with the likelihood function
for the two data points. This posterior has now been influenced by two data points,
and because two points are sufficient to define a line this already gives a relatively
compact posterior distribution. Samples from this posterior distribution give rise to
the functions shown in red in the third column, and we see that these functions pass
close to both of the data points. The fourth row shows the effect of observing a total
of 20 data points. The left-hand plot shows the likelihood function for the 20th data
point alone, and the middle plot shows the resulting posterior distribution that has
now absorbed information from all 20 observations. Note how the posterior is much
sharper than in the third row. In the limit of an infinite number of data points, the



Bayesian	  Linear	  Regression	  (5)	  

2	  data	  points	  observed	  

Likelihood	   Posterior	   Data	  Space	  
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a linear model of the form y(x,w) = w0 + w1x. Because this has just two adap-
tive parameters, we can plot the prior and posterior distributions directly in parameter
space. We generate synthetic data from the function f(x,a) = a0 +a1x with param-
eter values a0 = −0.3 and a1 = 0.5 by first choosing values of xn from the uniform
distribution U(x|−1, 1), then evaluating f(xn,a), and finally adding Gaussian noise
with standard deviation of 0.2 to obtain the target values tn. Our goal is to recover
the values of a0 and a1 from such data, and we will explore the dependence on the
size of the data set. We assume here that the noise variance is known and hence we
set the precision parameter to its true value β = (1/0.2)2 = 25. Similarly, we fix
the parameter α to 2.0. We shall shortly discuss strategies for determining α and
β from the training data. Figure 3.7 shows the results of Bayesian learning in this
model as the size of the data set is increased and demonstrates the sequential nature
of Bayesian learning in which the current posterior distribution forms the prior when
a new data point is observed. It is worth taking time to study this figure in detail as
it illustrates several important aspects of Bayesian inference. The first row of this
figure corresponds to the situation before any data points are observed and shows a
plot of the prior distribution in w space together with six samples of the function
y(x,w) in which the values of w are drawn from the prior. In the second row, we
see the situation after observing a single data point. The location (x, t) of the data
point is shown by a blue circle in the right-hand column. In the left-hand column is a
plot of the likelihood function p(t|x,w) for this data point as a function of w. Note
that the likelihood function provides a soft constraint that the line must pass close to
the data point, where close is determined by the noise precision β. For comparison,
the true parameter values a0 = −0.3 and a1 = 0.5 used to generate the data set
are shown by a white cross in the plots in the left column of Figure 3.7. When we
multiply this likelihood function by the prior from the top row, and normalize, we
obtain the posterior distribution shown in the middle plot on the second row. Sam-
ples of the regression function y(x,w) obtained by drawing samples of w from this
posterior distribution are shown in the right-hand plot. Note that these sample lines
all pass close to the data point. The third row of this figure shows the effect of ob-
serving a second data point, again shown by a blue circle in the plot in the right-hand
column. The corresponding likelihood function for this second data point alone is
shown in the left plot. When we multiply this likelihood function by the posterior
distribution from the second row, we obtain the posterior distribution shown in the
middle plot of the third row. Note that this is exactly the same posterior distribution
as would be obtained by combining the original prior with the likelihood function
for the two data points. This posterior has now been influenced by two data points,
and because two points are sufficient to define a line this already gives a relatively
compact posterior distribution. Samples from this posterior distribution give rise to
the functions shown in red in the third column, and we see that these functions pass
close to both of the data points. The fourth row shows the effect of observing a total
of 20 data points. The left-hand plot shows the likelihood function for the 20th data
point alone, and the middle plot shows the resulting posterior distribution that has
now absorbed information from all 20 observations. Note how the posterior is much
sharper than in the third row. In the limit of an infinite number of data points, the



Bayesian	  Linear	  Regression	  (6)	  

20	  data	  points	  observed	  

Likelihood	   Posterior	   Data	  Space	  
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a linear model of the form y(x,w) = w0 + w1x. Because this has just two adap-
tive parameters, we can plot the prior and posterior distributions directly in parameter
space. We generate synthetic data from the function f(x,a) = a0 +a1x with param-
eter values a0 = −0.3 and a1 = 0.5 by first choosing values of xn from the uniform
distribution U(x|−1, 1), then evaluating f(xn,a), and finally adding Gaussian noise
with standard deviation of 0.2 to obtain the target values tn. Our goal is to recover
the values of a0 and a1 from such data, and we will explore the dependence on the
size of the data set. We assume here that the noise variance is known and hence we
set the precision parameter to its true value β = (1/0.2)2 = 25. Similarly, we fix
the parameter α to 2.0. We shall shortly discuss strategies for determining α and
β from the training data. Figure 3.7 shows the results of Bayesian learning in this
model as the size of the data set is increased and demonstrates the sequential nature
of Bayesian learning in which the current posterior distribution forms the prior when
a new data point is observed. It is worth taking time to study this figure in detail as
it illustrates several important aspects of Bayesian inference. The first row of this
figure corresponds to the situation before any data points are observed and shows a
plot of the prior distribution in w space together with six samples of the function
y(x,w) in which the values of w are drawn from the prior. In the second row, we
see the situation after observing a single data point. The location (x, t) of the data
point is shown by a blue circle in the right-hand column. In the left-hand column is a
plot of the likelihood function p(t|x,w) for this data point as a function of w. Note
that the likelihood function provides a soft constraint that the line must pass close to
the data point, where close is determined by the noise precision β. For comparison,
the true parameter values a0 = −0.3 and a1 = 0.5 used to generate the data set
are shown by a white cross in the plots in the left column of Figure 3.7. When we
multiply this likelihood function by the prior from the top row, and normalize, we
obtain the posterior distribution shown in the middle plot on the second row. Sam-
ples of the regression function y(x,w) obtained by drawing samples of w from this
posterior distribution are shown in the right-hand plot. Note that these sample lines
all pass close to the data point. The third row of this figure shows the effect of ob-
serving a second data point, again shown by a blue circle in the plot in the right-hand
column. The corresponding likelihood function for this second data point alone is
shown in the left plot. When we multiply this likelihood function by the posterior
distribution from the second row, we obtain the posterior distribution shown in the
middle plot of the third row. Note that this is exactly the same posterior distribution
as would be obtained by combining the original prior with the likelihood function
for the two data points. This posterior has now been influenced by two data points,
and because two points are sufficient to define a line this already gives a relatively
compact posterior distribution. Samples from this posterior distribution give rise to
the functions shown in red in the third column, and we see that these functions pass
close to both of the data points. The fourth row shows the effect of observing a total
of 20 data points. The left-hand plot shows the likelihood function for the 20th data
point alone, and the middle plot shows the resulting posterior distribution that has
now absorbed information from all 20 observations. Note how the posterior is much
sharper than in the third row. In the limit of an infinite number of data points, the



Predic-ve	  Distribu-on	  (1)	  

Predict	  t	  for	  new	  values	  of	  x	  by	  integra-ng	  
over	  w:	  

	  
	  
	  
where	  



Predic-ve	  Distribu-on	  (2)	  

Example:	  Sinusoidal	  data,	  9	  Gaussian	  basis	  func-ons,	  
1	  data	  point	  



Predic-ve	  Distribu-on	  (3)	  

Example:	  Sinusoidal	  data,	  9	  Gaussian	  basis	  func-ons,	  
2	  data	  points	  



Predic-ve	  Distribu-on	  (4)	  

Example:	  Sinusoidal	  data,	  9	  Gaussian	  basis	  func-ons,	  
4	  data	  points	  



Predic-ve	  Distribu-on	  (5)	  

Example:	  Sinusoidal	  data,	  9	  Gaussian	  basis	  func-ons,	  
25	  data	  points	  



Predic-ve	  Distribu-on	  



Bayesian	  Predic-ve	  Distribu-on	  



The	  Bias-‐Variance	  Decomposi-on	  (1)	  

Recall	  the	  expected	  squared	  loss,	  
	  

where	  
	  

The	  second	  term	  of	  E[L] corresponds	  to	  the	  noise	  
inherent	  in	  the	  random	  variable	  t.	  

What	  about	  the	  first	  term?	  

	  



The	  Bias-‐Variance	  Decomposi-on	  (2)	  

Suppose	  we	  were	  given	  mul-ple	  data	  sets,	  each	  of	  
size	  N.	  Any	  par-cular	  data	  set,	  D,	  will	  give	  a	  
par-cular	  func-on	  y(x;D).	  We	  then	  have	  

	  
	  
	  



The	  Bias-‐Variance	  Decomposi-on	  (3)	  

Taking	  the	  expecta-on	  over	  D	  yields	  



The	  Bias-‐Variance	  Decomposi-on	  (4)	  

Thus	  we	  can	  write	  
	  
where	  	  



The	  Bias-‐Variance	  Decomposi-on	  (5)	  

Example:	  25	  data	  sets	  from	  the	  sinusoidal,	  varying	  
the	  degree	  of	  regulariza-on,	  ¸.	  



The	  Bias-‐Variance	  Decomposi-on	  (6)	  

Example:	  25	  data	  sets	  from	  the	  sinusoidal,	  varying	  
the	  degree	  of	  regulariza-on,	  ¸.	  



The	  Bias-‐Variance	  Decomposi-on	  (7)	  

Example:	  25	  data	  sets	  from	  the	  sinusoidal,	  varying	  
the	  degree	  of	  regulariza-on,	  ¸.	  



The	  Bias-‐Variance	  Trade-‐off	  

From	  these	  plots,	  we	  note	  
that	  an	  over-‐regularized	  
model	  (large	  ¸)	  will	  have	  a	  
high	  	  bias,	  while	  an	  under-‐
regularized	  model	  (small	  ¸)	  
will	  have	  a	  high	  variance.	  




