Linear Basis Function Models (1)

Example: Polynomial Curve Fitting

Linear Basis Function Models (2)

Generally

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

Where $\phi_j(x)$ are known as *basis functions*. Typically, $\phi_0(x) = 1$, so that W_0 acts as a bias. In the simplest case, we use linear basis functions : $\phi_d(x) = x_d$.

Curve Fitting Re-visited

Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function with added Gaussian noise:

 $t = y(\mathbf{x}, \mathbf{w}) + \epsilon$ where $p(\epsilon|\beta) = \mathcal{N}(\epsilon|0, \beta^{-1})$

which is the same as saying,

$$p(t|\mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1}).$$

Given observed inputs, $\mathbf{X} = {\{\mathbf{x}_1, \dots, \mathbf{x}_N\}}$, and targets, $\mathbf{t} = [t_1, \dots, t_N]^T$, we obtain the likelihood function $p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^N \mathcal{N}(t_n | \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}).$

Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

ŀ

$$\begin{aligned} & \ln p(\mathbf{t} | \mathbf{w}, \beta) &= \sum_{n=1}^{N} \ln \mathcal{N}(t_n | \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n), \beta^{-1}) \\ &= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta E_D(\mathbf{w}) \end{aligned}$$

where

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2$$

is the sum-of-squares error.

Sum-of-Squares Error Function

Maximum Likelihood and Least Squares (3)

Computing the gradient and setting it to zero yields $_{\!\!N}$

$$\nabla_{\mathbf{w}} \ln p(\mathbf{t} | \mathbf{w}, \beta) = \beta \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n) \right\} \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} = \mathbf{0}.$$
$$0 = \sum_{n=1}^{N} t_n \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} - \mathbf{w}^{\mathrm{T}} \left(\sum_{n=1}^{N} \boldsymbol{\phi}(\mathbf{x}_n) \boldsymbol{\phi}(\mathbf{x}_n)^{\mathrm{T}} \right)$$

Solving for W, we get $\mathbf{w}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi} \right)^{-1} \mathbf{\Phi}$

The Moore-Penrose
pseudo-inverse,
$$\Phi^{T}$$

where

$$\Phi = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}$$

Regularized Least Squares (1)

Consider the error function:

 $E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$

Data term + Regularization term

With the sum-of-squares error function and a quadratic regularizer, we get

$$\frac{1}{2}\sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2}\mathbf{w}^{\mathrm{T}}\mathbf{w}$$

 λ is called the regularization coefficient.

which is minimized by

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

Regularized Least Squares (2)

With a more general regularizer, we have

Lasso

Quadratic

Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a quadratic regularizer. $w_2 \uparrow w_2 \downarrow w_2 \downarrow w_2 \uparrow w_2 \downarrow w_2 \uparrow w_2 \downarrow w_2 \uparrow w_2 \uparrow w_2 \downarrow w_2 \uparrow w_2 \uparrow w_2 \downarrow w_2 \uparrow w_2 \downarrow w_2$

Bayesian Linear Regression (1)

Define a conjugate prior over W

 $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0).$

Combining this with the likelihood function and using results for marginal and conditional Gaussian distributions, gives the posterior

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$$

where

$$\mathbf{m}_{N} = \mathbf{S}_{N} \left(\mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{t} \right)$$

$$\mathbf{S}_{N}^{-1} = \mathbf{S}_{0}^{-1} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}.$$

Bayesian Linear Regression (2)

A common choice for the prior is

 $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$

for which

$$\mathbf{m}_N = \beta \mathbf{S}_N \mathbf{\Phi}^{\mathrm{T}} \mathbf{t} \\ \mathbf{S}_N^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}.$$

The log of the posterior distribution is given by the sum of the log likelihood and the log of the prior

$$\ln p(\mathbf{w}|\mathbf{t}) = -\frac{\beta}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 - \frac{\alpha}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w} + \text{const.}$$

Bayesian Linear Regression (2)

Example: estimate linear model of the form

$$y(x,\mathbf{w}) = w_0 + w_1 x$$

Data: draw x_n from uniform distribution, then plug into

$$f(x, \mathbf{a}) = a_0 + a_1 x$$

then add Gaussian noise to obtain target value t_n

Bayesian Linear Regression (3)

0 data points observed

Bayesian Linear Regression (4)

1 data point observed

Bayesian Linear Regression (5)

2 data points observed

Bayesian Linear Regression (6)

20 data points observed

Predictive Distribution (1)

Predict t for new values of x by integrating over W:

$$p(t|\mathbf{t}, \alpha, \beta) = \int p(t|\mathbf{w}, \beta) p(\mathbf{w}|\mathbf{t}, \alpha, \beta) \, \mathrm{d}\mathbf{w}$$
$$= \mathcal{N}(t|\mathbf{m}_N^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}), \sigma_N^2(\mathbf{x}))$$

where

$$\sigma_N^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}).$$

Predictive Distribution (2)

Example: Sinusoidal data, 9 Gaussian basis functions, 1 data point

Predictive Distribution (3)

Example: Sinusoidal data, 9 Gaussian basis functions, 2 data points

Predictive Distribution (4)

Example: Sinusoidal data, 9 Gaussian basis functions, 4 data points

Predictive Distribution (5)

Example: Sinusoidal data, 9 Gaussian basis functions, 25 data points

Predictive Distribution

$$p(t|x, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}\left(t|y(x, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1}\right)$$

Bayesian Predictive Distribution

$$p(t|x, \mathbf{x}, \mathbf{t}) = \mathcal{N}\left(t|m(x), s^2(x)\right)$$

The Bias-Variance Decomposition (1)

Recall the expected squared loss,

$$\mathbb{E}[L] = \int \left\{ y(\mathbf{x}) - h(\mathbf{x}) \right\}^2 p(\mathbf{x}) \, \mathrm{d}\mathbf{x} + \iint \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$

here
$$h(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}] = \int tp(t|\mathbf{x}) \, \mathrm{d}t.$$

The second term of E[L] corresponds to the noise inherent in the random variable t.

What about the first term?

W

The Bias-Variance Decomposition (2)

Suppose we were given multiple data sets, each of size N. Any particular data set, D, will give a particular function y(x;D). We then have

$$\begin{split} \{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\}^2 \\ &= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] + \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^2 \\ &= \{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^2 + \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^2 \\ &+ 2\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}. \end{split}$$

The Bias-Variance Decomposition (3)

Taking the expectation over D yields

$$\mathbb{E}_{\mathcal{D}}\left[\{y(\mathbf{x}; \mathcal{D}) - h(\mathbf{x})\}^{2}\right] \\ = \underbrace{\{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})] - h(\mathbf{x})\}^{2}}_{(\text{bias})^{2}} + \underbrace{\mathbb{E}_{\mathcal{D}}\left[\{y(\mathbf{x}; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}; \mathcal{D})]\}^{2}\right]}_{\text{variance}}.$$

The Bias-Variance Decomposition (4)

Thus we can write

expected $loss = (bias)^2 + variance + noise$

where

$$(\text{bias})^2 = \int \{\mathbb{E}_{\mathcal{D}}[y(\mathbf{x};\mathcal{D})] - h(\mathbf{x})\}^2 p(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

variance =
$$\int \mathbb{E}_{\mathcal{D}} \left[\{y(\mathbf{x};\mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x};\mathcal{D})]\}^2 \right] p(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

noise =
$$\iint \{h(\mathbf{x}) - t\}^2 p(\mathbf{x},t) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$

The Bias-Variance Decomposition (5)

Example: 25 data sets from the sinusoidal, varying the degree of regularization, .

The Bias-Variance Decomposition (6)

Example: 25 data sets from the sinusoidal, varying the degree of regularization, .

The Bias-Variance Decomposition (7)

Example: 25 data sets from the sinusoidal, varying the degree of regularization, .

The Bias-Variance Trade-off

From these plots, we note that an over-regularized model (large ,) will have a high bias, while an underregularized model (small ,) will have a high variance.

