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Setting this gradient to zero gives

0 =
N∑

n=1

tnφ(xn)T − wT

(
N∑

n=1

φ(xn)φ(xn)T
)

. (3.14)

Solving for w we obtain
wML =

(
ΦTΦ

)−1
ΦTt (3.15)

which are known as the normal equations for the least squares problem. Here Φ is an
N×M matrix, called the design matrix, whose elements are given by Φnj = φj(xn),
so that

Φ =

⎛

⎜⎜⎝

φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN ) φ1(xN ) · · · φM−1(xN )

⎞

⎟⎟⎠ . (3.16)

The quantity
Φ† ≡

(
ΦTΦ

)−1
ΦT (3.17)

is known as the Moore-Penrose pseudo-inverse of the matrix Φ (Rao and Mitra,
1971; Golub and Van Loan, 1996). It can be regarded as a generalization of the
notion of matrix inverse to nonsquare matrices. Indeed, if Φ is square and invertible,
then using the property (AB)−1 = B−1A−1 we see that Φ† ≡ Φ−1.

At this point, we can gain some insight into the role of the bias parameter w0. If
we make the bias parameter explicit, then the error function (3.12) becomes

ED(w) =
1
2

N∑

n=1

{tn − w0 −
M−1∑

j=1

wjφj(xn)}2. (3.18)

Setting the derivative with respect to w0 equal to zero, and solving for w0, we obtain

w0 = t −
M−1∑

j=1

wjφj (3.19)

where we have defined

t =
1
N

N∑

n=1

tn, φj =
1
N

N∑

n=1

φj(xn). (3.20)

Thus the bias w0 compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

We can also maximize the log likelihood function (3.11) with respect to the noise
precision parameter β, giving

1
βML

=
1
N

N∑

n=1

{tn − wT
MLφ(xn)}2 (3.21)
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Next we compute the posterior distribution, which is proportional to the product
of the likelihood function and the prior. Due to the choice of a conjugate Gaus-
sian prior distribution, the posterior will also be Gaussian. We can evaluate this
distribution by the usual procedure of completing the square in the exponential, and
then finding the normalization coefficient using the standard result for a normalized
Gaussian. However, we have already done the necessary work in deriving the gen-Exercise 3.7
eral result (2.116), which allows us to write down the posterior distribution directly
in the form

p(w|t) = N (w|mN ,SN ) (3.49)

where

mN = SN

(
S−1

0 m0 + βΦTt
)

(3.50)

S−1
N = S−1

0 + βΦTΦ. (3.51)

Note that because the posterior distribution is Gaussian, its mode coincides with its
mean. Thus the maximum posterior weight vector is simply given by wMAP = mN .
If we consider an infinitely broad prior S0 = α−1I with α → 0, the mean mN

of the posterior distribution reduces to the maximum likelihood value wML given
by (3.15). Similarly, if N = 0, then the posterior distribution reverts to the prior.
Furthermore, if data points arrive sequentially, then the posterior distribution at any
stage acts as the prior distribution for the subsequent data point, such that the new
posterior distribution is again given by (3.49).Exercise 3.8

For the remainder of this chapter, we shall consider a particular form of Gaus-
sian prior in order to simplify the treatment. Specifically, we consider a zero-mean
isotropic Gaussian governed by a single precision parameter α so that

p(w|α) = N (w|0, α−1I) (3.52)

and the corresponding posterior distribution over w is then given by (3.49) with

mN = βSNΦTt (3.53)
S−1

N = αI + βΦTΦ. (3.54)

The log of the posterior distribution is given by the sum of the log likelihood and
the log of the prior and, as a function of w, takes the form

ln p(w|t) = −β

2

N∑

n=1

{tn − wTφ(xn)}2 − α

2
wTw + const. (3.55)

Maximization of this posterior distribution with respect to w is therefore equiva-
lent to the minimization of the sum-of-squares error function with the addition of a
quadratic regularization term, corresponding to (3.27) with λ = α/β.

We can illustrate Bayesian learning in a linear basis function model, as well as
the sequential update of a posterior distribution, using a simple example involving
straight-line fitting. Consider a single input variable x, a single target variable t and
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a linear model of the form y(x,w) = w0 + w1x. Because this has just two adap-
tive parameters, we can plot the prior and posterior distributions directly in parameter
space. We generate synthetic data from the function f(x,a) = a0 +a1x with param-
eter values a0 = −0.3 and a1 = 0.5 by first choosing values of xn from the uniform
distribution U(x|−1, 1), then evaluating f(xn,a), and finally adding Gaussian noise
with standard deviation of 0.2 to obtain the target values tn. Our goal is to recover
the values of a0 and a1 from such data, and we will explore the dependence on the
size of the data set. We assume here that the noise variance is known and hence we
set the precision parameter to its true value β = (1/0.2)2 = 25. Similarly, we fix
the parameter α to 2.0. We shall shortly discuss strategies for determining α and
β from the training data. Figure 3.7 shows the results of Bayesian learning in this
model as the size of the data set is increased and demonstrates the sequential nature
of Bayesian learning in which the current posterior distribution forms the prior when
a new data point is observed. It is worth taking time to study this figure in detail as
it illustrates several important aspects of Bayesian inference. The first row of this
figure corresponds to the situation before any data points are observed and shows a
plot of the prior distribution in w space together with six samples of the function
y(x,w) in which the values of w are drawn from the prior. In the second row, we
see the situation after observing a single data point. The location (x, t) of the data
point is shown by a blue circle in the right-hand column. In the left-hand column is a
plot of the likelihood function p(t|x,w) for this data point as a function of w. Note
that the likelihood function provides a soft constraint that the line must pass close to
the data point, where close is determined by the noise precision β. For comparison,
the true parameter values a0 = −0.3 and a1 = 0.5 used to generate the data set
are shown by a white cross in the plots in the left column of Figure 3.7. When we
multiply this likelihood function by the prior from the top row, and normalize, we
obtain the posterior distribution shown in the middle plot on the second row. Sam-
ples of the regression function y(x,w) obtained by drawing samples of w from this
posterior distribution are shown in the right-hand plot. Note that these sample lines
all pass close to the data point. The third row of this figure shows the effect of ob-
serving a second data point, again shown by a blue circle in the plot in the right-hand
column. The corresponding likelihood function for this second data point alone is
shown in the left plot. When we multiply this likelihood function by the posterior
distribution from the second row, we obtain the posterior distribution shown in the
middle plot of the third row. Note that this is exactly the same posterior distribution
as would be obtained by combining the original prior with the likelihood function
for the two data points. This posterior has now been influenced by two data points,
and because two points are sufficient to define a line this already gives a relatively
compact posterior distribution. Samples from this posterior distribution give rise to
the functions shown in red in the third column, and we see that these functions pass
close to both of the data points. The fourth row shows the effect of observing a total
of 20 data points. The left-hand plot shows the likelihood function for the 20th data
point alone, and the middle plot shows the resulting posterior distribution that has
now absorbed information from all 20 observations. Note how the posterior is much
sharper than in the third row. In the limit of an infinite number of data points, the
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a linear model of the form y(x,w) = w0 + w1x. Because this has just two adap-
tive parameters, we can plot the prior and posterior distributions directly in parameter
space. We generate synthetic data from the function f(x,a) = a0 +a1x with param-
eter values a0 = −0.3 and a1 = 0.5 by first choosing values of xn from the uniform
distribution U(x|−1, 1), then evaluating f(xn,a), and finally adding Gaussian noise
with standard deviation of 0.2 to obtain the target values tn. Our goal is to recover
the values of a0 and a1 from such data, and we will explore the dependence on the
size of the data set. We assume here that the noise variance is known and hence we
set the precision parameter to its true value β = (1/0.2)2 = 25. Similarly, we fix
the parameter α to 2.0. We shall shortly discuss strategies for determining α and
β from the training data. Figure 3.7 shows the results of Bayesian learning in this
model as the size of the data set is increased and demonstrates the sequential nature
of Bayesian learning in which the current posterior distribution forms the prior when
a new data point is observed. It is worth taking time to study this figure in detail as
it illustrates several important aspects of Bayesian inference. The first row of this
figure corresponds to the situation before any data points are observed and shows a
plot of the prior distribution in w space together with six samples of the function
y(x,w) in which the values of w are drawn from the prior. In the second row, we
see the situation after observing a single data point. The location (x, t) of the data
point is shown by a blue circle in the right-hand column. In the left-hand column is a
plot of the likelihood function p(t|x,w) for this data point as a function of w. Note
that the likelihood function provides a soft constraint that the line must pass close to
the data point, where close is determined by the noise precision β. For comparison,
the true parameter values a0 = −0.3 and a1 = 0.5 used to generate the data set
are shown by a white cross in the plots in the left column of Figure 3.7. When we
multiply this likelihood function by the prior from the top row, and normalize, we
obtain the posterior distribution shown in the middle plot on the second row. Sam-
ples of the regression function y(x,w) obtained by drawing samples of w from this
posterior distribution are shown in the right-hand plot. Note that these sample lines
all pass close to the data point. The third row of this figure shows the effect of ob-
serving a second data point, again shown by a blue circle in the plot in the right-hand
column. The corresponding likelihood function for this second data point alone is
shown in the left plot. When we multiply this likelihood function by the posterior
distribution from the second row, we obtain the posterior distribution shown in the
middle plot of the third row. Note that this is exactly the same posterior distribution
as would be obtained by combining the original prior with the likelihood function
for the two data points. This posterior has now been influenced by two data points,
and because two points are sufficient to define a line this already gives a relatively
compact posterior distribution. Samples from this posterior distribution give rise to
the functions shown in red in the third column, and we see that these functions pass
close to both of the data points. The fourth row shows the effect of observing a total
of 20 data points. The left-hand plot shows the likelihood function for the 20th data
point alone, and the middle plot shows the resulting posterior distribution that has
now absorbed information from all 20 observations. Note how the posterior is much
sharper than in the third row. In the limit of an infinite number of data points, the
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a linear model of the form y(x,w) = w0 + w1x. Because this has just two adap-
tive parameters, we can plot the prior and posterior distributions directly in parameter
space. We generate synthetic data from the function f(x,a) = a0 +a1x with param-
eter values a0 = −0.3 and a1 = 0.5 by first choosing values of xn from the uniform
distribution U(x|−1, 1), then evaluating f(xn,a), and finally adding Gaussian noise
with standard deviation of 0.2 to obtain the target values tn. Our goal is to recover
the values of a0 and a1 from such data, and we will explore the dependence on the
size of the data set. We assume here that the noise variance is known and hence we
set the precision parameter to its true value β = (1/0.2)2 = 25. Similarly, we fix
the parameter α to 2.0. We shall shortly discuss strategies for determining α and
β from the training data. Figure 3.7 shows the results of Bayesian learning in this
model as the size of the data set is increased and demonstrates the sequential nature
of Bayesian learning in which the current posterior distribution forms the prior when
a new data point is observed. It is worth taking time to study this figure in detail as
it illustrates several important aspects of Bayesian inference. The first row of this
figure corresponds to the situation before any data points are observed and shows a
plot of the prior distribution in w space together with six samples of the function
y(x,w) in which the values of w are drawn from the prior. In the second row, we
see the situation after observing a single data point. The location (x, t) of the data
point is shown by a blue circle in the right-hand column. In the left-hand column is a
plot of the likelihood function p(t|x,w) for this data point as a function of w. Note
that the likelihood function provides a soft constraint that the line must pass close to
the data point, where close is determined by the noise precision β. For comparison,
the true parameter values a0 = −0.3 and a1 = 0.5 used to generate the data set
are shown by a white cross in the plots in the left column of Figure 3.7. When we
multiply this likelihood function by the prior from the top row, and normalize, we
obtain the posterior distribution shown in the middle plot on the second row. Sam-
ples of the regression function y(x,w) obtained by drawing samples of w from this
posterior distribution are shown in the right-hand plot. Note that these sample lines
all pass close to the data point. The third row of this figure shows the effect of ob-
serving a second data point, again shown by a blue circle in the plot in the right-hand
column. The corresponding likelihood function for this second data point alone is
shown in the left plot. When we multiply this likelihood function by the posterior
distribution from the second row, we obtain the posterior distribution shown in the
middle plot of the third row. Note that this is exactly the same posterior distribution
as would be obtained by combining the original prior with the likelihood function
for the two data points. This posterior has now been influenced by two data points,
and because two points are sufficient to define a line this already gives a relatively
compact posterior distribution. Samples from this posterior distribution give rise to
the functions shown in red in the third column, and we see that these functions pass
close to both of the data points. The fourth row shows the effect of observing a total
of 20 data points. The left-hand plot shows the likelihood function for the 20th data
point alone, and the middle plot shows the resulting posterior distribution that has
now absorbed information from all 20 observations. Note how the posterior is much
sharper than in the third row. In the limit of an infinite number of data points, the
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a linear model of the form y(x,w) = w0 + w1x. Because this has just two adap-
tive parameters, we can plot the prior and posterior distributions directly in parameter
space. We generate synthetic data from the function f(x,a) = a0 +a1x with param-
eter values a0 = −0.3 and a1 = 0.5 by first choosing values of xn from the uniform
distribution U(x|−1, 1), then evaluating f(xn,a), and finally adding Gaussian noise
with standard deviation of 0.2 to obtain the target values tn. Our goal is to recover
the values of a0 and a1 from such data, and we will explore the dependence on the
size of the data set. We assume here that the noise variance is known and hence we
set the precision parameter to its true value β = (1/0.2)2 = 25. Similarly, we fix
the parameter α to 2.0. We shall shortly discuss strategies for determining α and
β from the training data. Figure 3.7 shows the results of Bayesian learning in this
model as the size of the data set is increased and demonstrates the sequential nature
of Bayesian learning in which the current posterior distribution forms the prior when
a new data point is observed. It is worth taking time to study this figure in detail as
it illustrates several important aspects of Bayesian inference. The first row of this
figure corresponds to the situation before any data points are observed and shows a
plot of the prior distribution in w space together with six samples of the function
y(x,w) in which the values of w are drawn from the prior. In the second row, we
see the situation after observing a single data point. The location (x, t) of the data
point is shown by a blue circle in the right-hand column. In the left-hand column is a
plot of the likelihood function p(t|x,w) for this data point as a function of w. Note
that the likelihood function provides a soft constraint that the line must pass close to
the data point, where close is determined by the noise precision β. For comparison,
the true parameter values a0 = −0.3 and a1 = 0.5 used to generate the data set
are shown by a white cross in the plots in the left column of Figure 3.7. When we
multiply this likelihood function by the prior from the top row, and normalize, we
obtain the posterior distribution shown in the middle plot on the second row. Sam-
ples of the regression function y(x,w) obtained by drawing samples of w from this
posterior distribution are shown in the right-hand plot. Note that these sample lines
all pass close to the data point. The third row of this figure shows the effect of ob-
serving a second data point, again shown by a blue circle in the plot in the right-hand
column. The corresponding likelihood function for this second data point alone is
shown in the left plot. When we multiply this likelihood function by the posterior
distribution from the second row, we obtain the posterior distribution shown in the
middle plot of the third row. Note that this is exactly the same posterior distribution
as would be obtained by combining the original prior with the likelihood function
for the two data points. This posterior has now been influenced by two data points,
and because two points are sufficient to define a line this already gives a relatively
compact posterior distribution. Samples from this posterior distribution give rise to
the functions shown in red in the third column, and we see that these functions pass
close to both of the data points. The fourth row shows the effect of observing a total
of 20 data points. The left-hand plot shows the likelihood function for the 20th data
point alone, and the middle plot shows the resulting posterior distribution that has
now absorbed information from all 20 observations. Note how the posterior is much
sharper than in the third row. In the limit of an infinite number of data points, the
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a linear model of the form y(x,w) = w0 + w1x. Because this has just two adap-
tive parameters, we can plot the prior and posterior distributions directly in parameter
space. We generate synthetic data from the function f(x,a) = a0 +a1x with param-
eter values a0 = −0.3 and a1 = 0.5 by first choosing values of xn from the uniform
distribution U(x|−1, 1), then evaluating f(xn,a), and finally adding Gaussian noise
with standard deviation of 0.2 to obtain the target values tn. Our goal is to recover
the values of a0 and a1 from such data, and we will explore the dependence on the
size of the data set. We assume here that the noise variance is known and hence we
set the precision parameter to its true value β = (1/0.2)2 = 25. Similarly, we fix
the parameter α to 2.0. We shall shortly discuss strategies for determining α and
β from the training data. Figure 3.7 shows the results of Bayesian learning in this
model as the size of the data set is increased and demonstrates the sequential nature
of Bayesian learning in which the current posterior distribution forms the prior when
a new data point is observed. It is worth taking time to study this figure in detail as
it illustrates several important aspects of Bayesian inference. The first row of this
figure corresponds to the situation before any data points are observed and shows a
plot of the prior distribution in w space together with six samples of the function
y(x,w) in which the values of w are drawn from the prior. In the second row, we
see the situation after observing a single data point. The location (x, t) of the data
point is shown by a blue circle in the right-hand column. In the left-hand column is a
plot of the likelihood function p(t|x,w) for this data point as a function of w. Note
that the likelihood function provides a soft constraint that the line must pass close to
the data point, where close is determined by the noise precision β. For comparison,
the true parameter values a0 = −0.3 and a1 = 0.5 used to generate the data set
are shown by a white cross in the plots in the left column of Figure 3.7. When we
multiply this likelihood function by the prior from the top row, and normalize, we
obtain the posterior distribution shown in the middle plot on the second row. Sam-
ples of the regression function y(x,w) obtained by drawing samples of w from this
posterior distribution are shown in the right-hand plot. Note that these sample lines
all pass close to the data point. The third row of this figure shows the effect of ob-
serving a second data point, again shown by a blue circle in the plot in the right-hand
column. The corresponding likelihood function for this second data point alone is
shown in the left plot. When we multiply this likelihood function by the posterior
distribution from the second row, we obtain the posterior distribution shown in the
middle plot of the third row. Note that this is exactly the same posterior distribution
as would be obtained by combining the original prior with the likelihood function
for the two data points. This posterior has now been influenced by two data points,
and because two points are sufficient to define a line this already gives a relatively
compact posterior distribution. Samples from this posterior distribution give rise to
the functions shown in red in the third column, and we see that these functions pass
close to both of the data points. The fourth row shows the effect of observing a total
of 20 data points. The left-hand plot shows the likelihood function for the 20th data
point alone, and the middle plot shows the resulting posterior distribution that has
now absorbed information from all 20 observations. Note how the posterior is much
sharper than in the third row. In the limit of an infinite number of data points, the
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a linear model of the form y(x,w) = w0 + w1x. Because this has just two adap-
tive parameters, we can plot the prior and posterior distributions directly in parameter
space. We generate synthetic data from the function f(x,a) = a0 +a1x with param-
eter values a0 = −0.3 and a1 = 0.5 by first choosing values of xn from the uniform
distribution U(x|−1, 1), then evaluating f(xn,a), and finally adding Gaussian noise
with standard deviation of 0.2 to obtain the target values tn. Our goal is to recover
the values of a0 and a1 from such data, and we will explore the dependence on the
size of the data set. We assume here that the noise variance is known and hence we
set the precision parameter to its true value β = (1/0.2)2 = 25. Similarly, we fix
the parameter α to 2.0. We shall shortly discuss strategies for determining α and
β from the training data. Figure 3.7 shows the results of Bayesian learning in this
model as the size of the data set is increased and demonstrates the sequential nature
of Bayesian learning in which the current posterior distribution forms the prior when
a new data point is observed. It is worth taking time to study this figure in detail as
it illustrates several important aspects of Bayesian inference. The first row of this
figure corresponds to the situation before any data points are observed and shows a
plot of the prior distribution in w space together with six samples of the function
y(x,w) in which the values of w are drawn from the prior. In the second row, we
see the situation after observing a single data point. The location (x, t) of the data
point is shown by a blue circle in the right-hand column. In the left-hand column is a
plot of the likelihood function p(t|x,w) for this data point as a function of w. Note
that the likelihood function provides a soft constraint that the line must pass close to
the data point, where close is determined by the noise precision β. For comparison,
the true parameter values a0 = −0.3 and a1 = 0.5 used to generate the data set
are shown by a white cross in the plots in the left column of Figure 3.7. When we
multiply this likelihood function by the prior from the top row, and normalize, we
obtain the posterior distribution shown in the middle plot on the second row. Sam-
ples of the regression function y(x,w) obtained by drawing samples of w from this
posterior distribution are shown in the right-hand plot. Note that these sample lines
all pass close to the data point. The third row of this figure shows the effect of ob-
serving a second data point, again shown by a blue circle in the plot in the right-hand
column. The corresponding likelihood function for this second data point alone is
shown in the left plot. When we multiply this likelihood function by the posterior
distribution from the second row, we obtain the posterior distribution shown in the
middle plot of the third row. Note that this is exactly the same posterior distribution
as would be obtained by combining the original prior with the likelihood function
for the two data points. This posterior has now been influenced by two data points,
and because two points are sufficient to define a line this already gives a relatively
compact posterior distribution. Samples from this posterior distribution give rise to
the functions shown in red in the third column, and we see that these functions pass
close to both of the data points. The fourth row shows the effect of observing a total
of 20 data points. The left-hand plot shows the likelihood function for the 20th data
point alone, and the middle plot shows the resulting posterior distribution that has
now absorbed information from all 20 observations. Note how the posterior is much
sharper than in the third row. In the limit of an infinite number of data points, the



Predic-ve	
  Distribu-on	
  (1)	
  

Predict	
  t	
  for	
  new	
  values	
  of	
  x	
  by	
  integra-ng	
  
over	
  w:	
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Predic-ve	
  Distribu-on	
  (2)	
  

Example:	
  Sinusoidal	
  data,	
  9	
  Gaussian	
  basis	
  func-ons,	
  
1	
  data	
  point	
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Example:	
  Sinusoidal	
  data,	
  9	
  Gaussian	
  basis	
  func-ons,	
  
2	
  data	
  points	
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Example:	
  Sinusoidal	
  data,	
  9	
  Gaussian	
  basis	
  func-ons,	
  
4	
  data	
  points	
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Example:	
  Sinusoidal	
  data,	
  9	
  Gaussian	
  basis	
  func-ons,	
  
25	
  data	
  points	
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The	
  Bias-­‐Variance	
  Decomposi-on	
  (1)	
  

Recall	
  the	
  expected	
  squared	
  loss,	
  
	
  

where	
  
	
  

The	
  second	
  term	
  of	
  E[L] corresponds	
  to	
  the	
  noise	
  
inherent	
  in	
  the	
  random	
  variable	
  t.	
  

What	
  about	
  the	
  first	
  term?	
  

	
  



The	
  Bias-­‐Variance	
  Decomposi-on	
  (2)	
  

Suppose	
  we	
  were	
  given	
  mul-ple	
  data	
  sets,	
  each	
  of	
  
size	
  N.	
  Any	
  par-cular	
  data	
  set,	
  D,	
  will	
  give	
  a	
  
par-cular	
  func-on	
  y(x;D).	
  We	
  then	
  have	
  

	
  
	
  
	
  



The	
  Bias-­‐Variance	
  Decomposi-on	
  (3)	
  

Taking	
  the	
  expecta-on	
  over	
  D	
  yields	
  



The	
  Bias-­‐Variance	
  Decomposi-on	
  (4)	
  

Thus	
  we	
  can	
  write	
  
	
  
where	
  	
  



The	
  Bias-­‐Variance	
  Decomposi-on	
  (5)	
  

Example:	
  25	
  data	
  sets	
  from	
  the	
  sinusoidal,	
  varying	
  
the	
  degree	
  of	
  regulariza-on,	
  ¸.	
  



The	
  Bias-­‐Variance	
  Decomposi-on	
  (6)	
  

Example:	
  25	
  data	
  sets	
  from	
  the	
  sinusoidal,	
  varying	
  
the	
  degree	
  of	
  regulariza-on,	
  ¸.	
  



The	
  Bias-­‐Variance	
  Decomposi-on	
  (7)	
  

Example:	
  25	
  data	
  sets	
  from	
  the	
  sinusoidal,	
  varying	
  
the	
  degree	
  of	
  regulariza-on,	
  ¸.	
  



The	
  Bias-­‐Variance	
  Trade-­‐off	
  

From	
  these	
  plots,	
  we	
  note	
  
that	
  an	
  over-­‐regularized	
  
model	
  (large	
  ¸)	
  will	
  have	
  a	
  
high	
  	
  bias,	
  while	
  an	
  under-­‐
regularized	
  model	
  (small	
  ¸)	
  
will	
  have	
  a	
  high	
  variance.	
  




