Linear Basis Function Models (1)

Example: Polynomial Curve Fitting
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y(z, w) — wo + w1z + wox® + ... +wy™ = ijazj




Linear Basis Function Models (2)

Generally
M—1

w; (X WTCb(X)

7=0
Where ¢;(X) are known as basis functions.

Typically, do(X) = 1, so that wy acts as a bias.

In the simplest case, we use linear basis
functions : ¢4(X) = Xy.




Curve Fitting Re-visited




Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function
with added Gaussian noise:

t=y(x,w)+e where p(elf) = N(E‘Oaﬁ_l)
which is the same as saying,
p(tlx, w, 3) = N(tly(x,w), 671).

Given observed inputs, X = {x1,...,xn}, and targets,
t=[t1,...,tx]", we obtain the likelihood function

p(t| X, w, §) = HN th|lWi(x,),571).




Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

N
Inp(tiw, 8) = > InN(ta|w e(x,),57")
n=1

_ % In g3 — gln(%) — BED(w)
where

1 N

Ep(w) =5 ) {ta =W ¢(xn)}’

n=1

is the sum-of-squares error.




Sum-of-Squares Error Function




Maximum Likelihood and Least Squares (3)

Computing the gradient and setting it to zero yields
N

Vwlnp(tlw,3) =8> {tn — W d(xs)} ¢(x,)" = 0.

n=1

0= tu(x,)T — wT (Z qb(xn)qs(xn)T)
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The Moore-Penrose
pseudo-inverse, 3

Solving for w, we get ——
WL = <<I>T<I>> BT

where (%(Xl) p1(x1) - ¢M—1(X1>\
Po(x2) d1(x2) -+ dm-1(x2)

\ dolxn) di(xn) - duro1(xn)




Regularized Least Squares (1)

Consider the error function:
ED(W) + )\Ew<W)

Data term + Regularization term

With the sum-of-squares error function and a
guadratic regularizer we get

A
—Z{t —who(x,)} + §WTW
A is called the
which is minimized by regularization
coefficient.
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Regularized Least Squares (2)

With a more general regularizer, we have

—Z{t — W (xa)} + Z\wg\q




Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a
quadratic
regularizer.
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Bayesian Linear Regression (1)

Define a conjugate prior over w
p(w) = N(w|myg, Sp).

Combining this with the likelihood function and using
results for marginal and conditional Gaussian
distributions, gives the posterior

p(w|t) = N(w|/my,Sy)
where
my = Sy (Salmo—l—ﬁ@Tt)
Sy = S;l+pele.




Bayesian Linear Regression (2)

A common choice for the prior is
p(w) = N(w|0,a7'T)
for which
my = [Sy®'t
Sy ol + o' ®.

The log of the posterior distribution is given by the
sum of the log likelihood and the log of the prior

Inp(wit) = Z{t —wip(x,)} — —W Tw + const.




Bayesian Linear Regression (2)

Example: estimate linear model
of the form

y(r,w) = wg + wrx

Data: draw x,, from uniform
distribution, then plug into

f(x,a) =ag+ax

then add Gaussian noise to obtain target value t




Bayesian Linear Regression (3)

0 data points observed

Prior Data Space




Bayesian Linear Regression (4)

1 data point observed

Likelihood Posterior Data Space




Bayesian Linear Regression (5)

2 data points observed

Likelihood Posterior Data Space




Bayesian Linear Regression (6)

20 data points observed

Likelihood Posterior Data Space




Predictive Distribution (1)

Predict t for new values of X by integrating
over W:

p(tlt, o, B) = / p(tlw, B)p(wlt, a, B) dw
—  N(tm5é(x), 0% (x))

where

% L $(x) Sy (x).
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Predictive Distribution (2)

Example: Sinusoidal data, 9 Gaussian basis functions,
1 data point

i‘ i fﬁi !
| y(x, w) .

N (timyd(x), o3 (%))
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Predictive Distribution (3)

Example: Sinusoidal data, 9 Gaussian basis functions,
2 data points

N (timyd(x), o3 (%))




Predictive Distribution (4)

Example: Sinusoidal data, 9 Gaussian basis functions,
4 data points




Predictive Distribution (5)

Example: Sinusoidal data, 9 Gaussian basis functions,
25 data points




Predictive Distribution

p(t|z, W, Bur) = N (tly(z, wr), 51\_41L>




Bayesian Predictive Distribution

p(tlz,x,t) = N (t|m(z), s*(z))




The Bias-Variance Decomposition (1)

Recall the expected squared loss,

/{y x)} p(x dx—l—//{h ) — t}2p(x, t)dxdt

where Lo |
h(x) = E[t|x] = /tp(t|x) dt. o |

The second term of E[L] corresponds to the noise
inherent in the random variable 1.

What about the first term?




The Bias-Variance Decomposition (2)

Suppose we were given multiple data sets, each of
size N. Any particular data set, D, will give a
particular function y(Xx;D). We then have

{y(x; D) — h(x)}*
{y(x; D) — Eply(x; D)] + Eply(x; D)] — h(x)}
= {y(xD) — Eply(x; D)]}* + {Eply(x; D)] — h(x)
+2{y(; D) = Eply(x; D) HEp [y(x; D)] — h(x) ]

}2
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The Bias-Variance Decomposition (3)

Taking the expectation over D yields

Ep [{y(x; D) — h(x)}’]
= {Enly(x D) — h(x)}" +Ep [{y(x D) —Enly(x D))}’ .
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The Bias-Variance Decomposition (4)

Thus we can write

expected loss = (bias)? 4 variance + noise

where
(bias)? = /{ED x; D) x) }°p(x) dx
variance = /ED {y(x; D) — Ep[y(x; D)]}?] p(x) dx

noise = / / {h(x) — t}*p(x,t) dx dt




The Bias-Variance Decomposition (5)

Example: 25 data sets from the sinusoidal, varying
the degree of regularization, ..

In\A=26




The Bias-Variance Decomposition (6)

Example: 25 data sets from the sinusoidal, varying
the degree of regularization, ..




The Bias-Variance Decomposition (7)

Example: 25 data sets from the sinusoidal, varying
the degree of regularization, ..

N
W\ 7

ST




The Bias-Variance Trade-off

From these plots, we note  0.15
that an over-regularized 0121
model (large ,) will have a
high bias, while an under-
regularized model (small |)  0.06¢
will have a high variance.
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