Bayesian Model Comparison (1)

How do we choose the ‘right’ model?
Assume we want to compare models M, 1=1, ...,L,
using data D; this requires computing
p(M;|D) o< p(M;)p(DIM;).

Posterior Prior Model evidence or
marginal likelihood

Bayes Factor: ratio of evidence for two models
p(DIM;)
p(DIM;)




Bayesian Model Comparison (2)

Having computed p(M;jD), we can compute
the predictive (mixture) distribution

L
p(t|x, D) = Zp(t‘xa M, D)p(M;|D).
i—1

A simpler approximation, known as model
selection, is to use the model with the
highest evidence.




Bayesian Model Comparison (3)

For a model with parameters w, we get the
model evidence by marginalizing over w

p(D|M;) = /p(D|W,M¢>p(W|M7;)dW.
!
Note that

p(D|M;)
T

p(w|D, M) = 2




Bayesian Model Comparison (4)

For a given model with a

single parameter, w, con- AWposterior
sider the approximation 'f—\.

p(D) = / p(Dlw)p(w) dw

A'wposterior

~ p(D|lwmap)

A/wprior /
where the posterior is j

assumed to be sharply < .
peaked. AWprior

o\

WMAP w




Bayesian Model Comparison (5)

Taking logarithms, we obtain

A osterior
In p(D) ~ In p(D|wmap) + In ( “post ) .

Aprrior
Y

Negative

With M parameters, all assumed to have the same
ratio Aprosteriox‘/A/wplriort we gEt

Inp(D) ~ Inp(D|wnmap) + M In (

\

Negative and linear in M.




Bayesian Model Comparison (6)

Matching data and model complexity

p(D)




The Evidence Approximation (1)

The fully Bayesian predictive distribution is given by
p(t) = [ [ [ pltiw. Bp(wlt, o pa Blt) dwdads
but this integral is intractable. Approximate with

p(t[t) zp(t]t, a, B) _ /p(uwﬁ)p(wu, &, B) dw

where(@, 3) is the mode of p(a, 8|t), which is assumed to
be sharply peaked; a.k.a. empirical Bayes, type Il or gene-

ralized maximum likelihood, or evidence approximation.




The Evidence Approximation (2)

From Bayes’ theorem we have
p(a, BJt) o p(ta, B)p(a, B)
and if we assume p(o,p) to be flat we see that
pa, Blt) o p(tle, B)
— [ pltiw, Bp(wla) dw.

General results for Gaussian integrals give

M N 1 N
Inp(tja, ) = > Ina + 5} Ing — E(my) + 5 In |[Sn| — 5} In(27).




The Evidence Approximation (3)

Example: sinusoidal data, Mt degree polynomial,
a=>5x10""

—18







Regression vs. Classification

Regression:

T € |—00,00],t € [—00, 0]

Classification:

r € [—00,00],t € {0,1}




Minimum Misclassification Rate

A

8)

< Lo >

R4 R

p(mistake) = p(x € Ry1,C2) + p(x € Ro,C1)

= /Rlp(X,Cz)deL/ p(x,C1) dx.

R2




Minimum Misclassification Rate

p(iB,Cl) i
| p(@,C2) p(mistake) = p(x € Ry,C2) + p(x € Ra,Cy)
i = / p(x, Cg)dX+/ p(x,Cy) dx.
. Rl R2
* R4 . " Ro g

We are free to choose the decision rule that assigns each point x to one
of the two classes.

To minimize integrand: p(x,Cr) = p(Ci|x)p(x) must be small

Assign x to class for which the posterior p(Cx|x) is larger!




Three strategies

1. Modeling the class-conditional density for each class C,,
and prior, then use Bayes

p(x|Cr)p(C)
p(x)

p(Cr|x) =

2. First solve the inference problem of determining the
posterior class probabilities p(C, | x), and then
subsequently use decision theory to assign each
new x to one of the classes

3. Find discriminant function that directly maps x to class
label




Class-conditional density vs. posterior

class densities

Class-conditional densities

p(z|C1)

p(z|C2)
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Posterior probabilities

p(Cilz)

p(Calz)




IMensions

Several d
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Several dimensions

Decision surface

T

Y(x) =W X + wy
weight _
vector bias

Crify(x) =20

C, otherwise




Fisher’s linear discriminant 1

Projecting data down to one dimension

y=w' x

But how?




Fisher’s linear discriminant 2

Define class means

Try maximize

Mo — 1M :WT(m2 —ml) ot




Fisher’s linear discriminant 3

Instead, consider: ratio of between class
variance to within class variance

~ (ma — m )’
J(w) = s9 + 83
With e Z (Y — migp)”
neCy

Called Fisher criterion. Maximize it!




Fisher’s linear discriminant 4

Maximizing the Fisher Criterion we obtain
w o Sy (my — my)

with the total within class covariance

This is called Fisher’s linear discriminant




Fisher’s linear discriminant 4

Fisher’s linear discriminant

w o Sy (my — my)

Fisher Criterion

(mg —mq)?

J(w) =
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Least squares for classification fails

Use logistic regression instead!




Bernoulli Distribution

1 Pr(x=0) = 1-—\
> Pr(x=1) = A\
% or
'8 A\ 1l—x
£ Pr(x) = A*(1 - \)
For short we write:
0

Pr(z) = Bern,[\]

Bernoulli distribution describes situation where only two possible
outcomes y=0/y=1 or failure/success

Takes a single parameter\ € [0, 1]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 24



Logistic Regression

Consider two class problem.
* Choose Bernoulli distribution over world.
 Make parameter A a function of x

Pr(w|po, p,x) = Bern,, [sigla]]

Model activation with a linear function

a=¢o+ ¢ x

creates number between [—OO, OO] Maps to [O, 1] with

sigla] = :

1+ exp[—d]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 25



Pr(w|z) = Berny, [sig[¢o + ¢12]]

10

—
—

sig[¢o +¢1~’E]

$o + P17

-10 1 :
0 €T 1 T

Two parameters
0 = {¢07¢1}

Learning by standard methods (ML,MAP, Bayesian)
Inference: Just evaluate Pr(w|x)

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 26



Neater Notation

Pr(w|pg, p,x) = Bern,, [sig|a]]

To make notation easier to handle, we
e Attach a1 to the start of every data vector

T]T

7

x; < |1 x
* Attach the offset to the start of the gradient vector ¢

¢+ [¢po ¢']"

New model:

1
Pr(w|¢,x) = Bern,, L n exp[quX]]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 27



Logistic regression
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0 =@ 090)) & ©
XL
Prwig.x) = Bern, | ————|
r(w|o,x) = Bern,,
1+exp[—qux]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 28



