
Bayesian	  Model	  Comparison	  (1)	  

How	  do	  we	  choose	  the	  ‘right’	  model?	  
Assume	  we	  want	  to	  compare	  models	  Mi, i=1, …,L,	  
using	  data	  D;	  this	  requires	  compuBng	  

	  
	  
	  

Bayes	  Factor:	  raBo	  of	  evidence	  for	  two	  models	  

Posterior	   Prior	   Model	  evidence	  or	  
marginal	  likelihood	  



Bayesian	  Model	  Comparison	  (2)	  

Having	  computed	  p(MijD),	  we	  can	  compute	  
the	  predicBve	  (mixture)	  distribuBon	  

	  
	  
A	  simpler	  approximaBon,	  known	  as	  model	  
selec6on,	  is	  to	  use	  the	  model	  with	  the	  
highest	  evidence.	  



Bayesian	  Model	  Comparison	  (3)	  

For	  a	  model	  with	  parameters	  w,	  we	  get	  the	  
model	  evidence	  by	  marginalizing	  over	  w	  

	  
	  
Note	  that	  	  



Bayesian	  Model	  Comparison	  (4)	  

For	  a	  given	  model	  with	  a	  
single	  parameter,	  w,	  con-‐
sider	  the	  approximaBon	  
	  
	  
	  
	  
where	  the	  posterior	  is	  
assumed	  to	  be	  sharply	  
peaked.	  	  



Bayesian	  Model	  Comparison	  (5)	  

Taking	  logarithms,	  we	  obtain	  
	  
	  
	  
With	  M	  parameters,	  all	  assumed	  to	  have	  the	  same	  
raBo	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  we	  get	  

NegaBve	  

NegaBve	  and	  linear	  in	  M.	  



Bayesian	  Model	  Comparison	  (6)	  

Matching	  data	  and	  model	  complexity	  



The	  Evidence	  ApproximaBon	  (1)	  

The	  fully	  Bayesian	  predicBve	  distribuBon	  is	  given	  by	  
	  
	  
but	  this	  integral	  is	  intractable.	  Approximate	  with	  
	  
	  
where	  	  	  	  	  	  	  	  	  	  	  is	  the	  mode	  of	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  which	  is	  assumed	  to	  
be	  sharply	  peaked;	  a.k.a.	  empirical	  Bayes,	  type	  II	  or	  gene-‐
ralized	  maximum	  likelihood,	  or	  evidence	  approxima6on.	  



The	  Evidence	  ApproximaBon	  (2)	  

From	  Bayes’	  theorem	  we	  have	  	  
	  

and	  if	  we	  assume	  p(α,β)	  to	  be	  flat	  we	  see	  that	  
	  

	  

General	  results	  for	  Gaussian	  integrals	  give	  	   
	  



The	  Evidence	  ApproximaBon	  (3)	  

Example:	  sinusoidal	  data,	  M	  th	  degree	  polynomial,	  	  
	  





Regression	  vs.	  ClassificaBon	  

Regression:	  
	  
	  
	  
ClassificaBon:	  

x 2 [�1,1], t 2 [�1,1]

x 2 [�1,1], t 2 {0, 1}



Minimum	  MisclassificaBon	  Rate	  



Minimum	  MisclassificaBon	  Rate	  

To	  minimize	  integrand:	  
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the rest of the book. Further background, as well as more detailed accounts, can be
found in Berger (1985) and Bather (2000).

Before giving a more detailed analysis, let us first consider informally how we
might expect probabilities to play a role in making decisions. When we obtain the
X-ray image x for a new patient, our goal is to decide which of the two classes to
assign to the image. We are interested in the probabilities of the two classes given
the image, which are given by p(Ck|x). Using Bayes’ theorem, these probabilities
can be expressed in the form

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
. (1.77)

Note that any of the quantities appearing in Bayes’ theorem can be obtained from
the joint distribution p(x, Ck) by either marginalizing or conditioning with respect to
the appropriate variables. We can now interpret p(Ck) as the prior probability for the
class Ck, and p(Ck|x) as the corresponding posterior probability. Thus p(C1) repre-
sents the probability that a person has cancer, before we take the X-ray measurement.
Similarly, p(C1|x) is the corresponding probability, revised using Bayes’ theorem in
light of the information contained in the X-ray. If our aim is to minimize the chance
of assigning x to the wrong class, then intuitively we would choose the class having
the higher posterior probability. We now show that this intuition is correct, and we
also discuss more general criteria for making decisions.

1.5.1 Minimizing the misclassification rate
Suppose that our goal is simply to make as few misclassifications as possible.

We need a rule that assigns each value of x to one of the available classes. Such a
rule will divide the input space into regions Rk called decision regions, one for each
class, such that all points in Rk are assigned to class Ck. The boundaries between
decision regions are called decision boundaries or decision surfaces. Note that each
decision region need not be contiguous but could comprise some number of disjoint
regions. We shall encounter examples of decision boundaries and decision regions in
later chapters. In order to find the optimal decision rule, consider first of all the case
of two classes, as in the cancer problem for instance. A mistake occurs when an input
vector belonging to class C1 is assigned to class C2 or vice versa. The probability of
this occurring is given by

p(mistake) = p(x ∈ R1, C2) + p(x ∈ R2, C1)

=
∫

R1

p(x, C2) dx +
∫

R2

p(x, C1) dx. (1.78)

We are free to choose the decision rule that assigns each point x to one of the two
classes. Clearly to minimize p(mistake) we should arrange that each x is assigned to
whichever class has the smaller value of the integrand in (1.78). Thus, if p(x, C1) >
p(x, C2) for a given value of x, then we should assign that x to class C1. From the
product rule of probability we have p(x, Ck) = p(Ck|x)p(x). Because the factor
p(x) is common to both terms, we can restate this result as saying that the minimum

must	  be	  small	  
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R1 R2

x0 x̂

p(x, C1)

p(x, C2)

x

Figure 1.24 Schematic illustration of the joint probabilities p(x, Ck) for each of two classes plotted
against x, together with the decision boundary x = bx. Values of x ! bx are classified as
class C2 and hence belong to decision region R2, whereas points x < bx are classified
as C1 and belong to R1. Errors arise from the blue, green, and red regions, so that for
x < bx the errors are due to points from class C2 being misclassified as C1 (represented by
the sum of the red and green regions), and conversely for points in the region x ! bx the
errors are due to points from class C1 being misclassified as C2 (represented by the blue
region). As we vary the location bx of the decision boundary, the combined areas of the
blue and green regions remains constant, whereas the size of the red region varies. The
optimal choice for bx is where the curves for p(x, C1) and p(x, C2) cross, corresponding to
bx = x0, because in this case the red region disappears. This is equivalent to the minimum
misclassification rate decision rule, which assigns each value of x to the class having the
higher posterior probability p(Ck|x).

probability of making a mistake is obtained if each value of x is assigned to the class
for which the posterior probability p(Ck|x) is largest. This result is illustrated for
two classes, and a single input variable x, in Figure 1.24.

For the more general case of K classes, it is slightly easier to maximize the
probability of being correct, which is given by

p(correct) =
K∑

k=1

p(x ∈ Rk, Ck)

=
K∑

k=1

∫

Rk

p(x, Ck) dx (1.79)

which is maximized when the regions Rk are chosen such that each x is assigned
to the class for which p(x, Ck) is largest. Again, using the product rule p(x, Ck) =
p(Ck|x)p(x), and noting that the factor of p(x) is common to all terms, we see
that each x should be assigned to the class having the largest posterior probability
p(Ck|x).

Assign	  x	  to	  class	  for	  which	  the	  posterior	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  larger!	  

We	  are	  free	  to	  choose	  the	  decision	  rule	  that	  assigns	  each	  point	  x	  to	  one	  
of	  the	  two	  classes.	  



Three	  strategies	  

1.  Modeling	  the	  class-‐condiBonal	  density	  for	  each	  class	  Ck	  ,	  
and	  prior,	  then	  use	  Bayes	  

	  
2.  First	  solve	  the	  inference	  problem	  of	  determining	  the	  

posterior	  class	  probabiliBes	  p(Ck|x),	  and	  then	  
subsequently	  use	  decision	  theory	  to	  assign	  each	  
new	  x	  to	  one	  of	  the	  classes	  	  

3.  Find	  discriminant	  funcBon	  that	  directly	  maps	  x	  to	  class	  
label	  
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subsequent decision stage in which we use these posterior probabilities to make op-
timal class assignments. An alternative possibility would be to solve both problems
together and simply learn a function that maps inputs x directly into decisions. Such
a function is called a discriminant function.

In fact, we can identify three distinct approaches to solving decision problems,
all of which have been used in practical applications. These are given, in decreasing
order of complexity, by:

(a) First solve the inference problem of determining the class-conditional densities
p(x|Ck) for each class Ck individually. Also separately infer the prior class
probabilities p(Ck). Then use Bayes’ theorem in the form

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
(1.82)

to find the posterior class probabilities p(Ck|x). As usual, the denominator
in Bayes’ theorem can be found in terms of the quantities appearing in the
numerator, because

p(x) =
∑

k

p(x|Ck)p(Ck). (1.83)

Equivalently, we can model the joint distribution p(x, Ck) directly and then
normalize to obtain the posterior probabilities. Having found the posterior
probabilities, we use decision theory to determine class membership for each
new input x. Approaches that explicitly or implicitly model the distribution of
inputs as well as outputs are known as generative models, because by sampling
from them it is possible to generate synthetic data points in the input space.

(b) First solve the inference problem of determining the posterior class probabilities
p(Ck|x), and then subsequently use decision theory to assign each new x to
one of the classes. Approaches that model the posterior probabilities directly
are called discriminative models.

(c) Find a function f(x), called a discriminant function, which maps each input x
directly onto a class label. For instance, in the case of two-class problems,
f(·) might be binary valued and such that f = 0 represents class C1 and f = 1
represents class C2. In this case, probabilities play no role.

Let us consider the relative merits of these three alternatives. Approach (a) is the
most demanding because it involves finding the joint distribution over both x and
Ck. For many applications, x will have high dimensionality, and consequently we
may need a large training set in order to be able to determine the class-conditional
densities to reasonable accuracy. Note that the class priors p(Ck) can often be esti-
mated simply from the fractions of the training set data points in each of the classes.
One advantage of approach (a), however, is that it also allows the marginal density
of data p(x) to be determined from (1.83). This can be useful for detecting new data
points that have low probability under the model and for which the predictions may



Class-‐condiBonal	  density	  vs.	  posterior	  
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Figure 1.27 Example of the class-conditional densities for two classes having a single input variable x (left
plot) together with the corresponding posterior probabilities (right plot). Note that the left-hand mode of the
class-conditional density p(x|C1), shown in blue on the left plot, has no effect on the posterior probabilities. The
vertical green line in the right plot shows the decision boundary in x that gives the minimum misclassification
rate.

be of low accuracy, which is known as outlier detection or novelty detection (Bishop,
1994; Tarassenko, 1995).

However, if we only wish to make classification decisions, then it can be waste-
ful of computational resources, and excessively demanding of data, to find the joint
distribution p(x, Ck) when in fact we only really need the posterior probabilities
p(Ck|x), which can be obtained directly through approach (b). Indeed, the class-
conditional densities may contain a lot of structure that has little effect on the pos-
terior probabilities, as illustrated in Figure 1.27. There has been much interest in
exploring the relative merits of generative and discriminative approaches to machine
learning, and in finding ways to combine them (Jebara, 2004; Lasserre et al., 2006).

An even simpler approach is (c) in which we use the training data to find a
discriminant function f(x) that maps each x directly onto a class label, thereby
combining the inference and decision stages into a single learning problem. In the
example of Figure 1.27, this would correspond to finding the value of x shown by
the vertical green line, because this is the decision boundary giving the minimum
probability of misclassification.

With option (c), however, we no longer have access to the posterior probabilities
p(Ck|x). There are many powerful reasons for wanting to compute the posterior
probabilities, even if we subsequently use them to make decisions. These include:

Minimizing risk. Consider a problem in which the elements of the loss matrix are
subjected to revision from time to time (such as might occur in a financial

Posterior	  probabiliBes	  Class-‐condiBonal	  densiBes	  



Several	  dimensions	  



Several	  dimensions	  
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(McCullagh and Nelder, 1989). Note, however, that in contrast to the models used
for regression, they are no longer linear in the parameters due to the presence of the
nonlinear function f(·). This will lead to more complex analytical and computa-
tional properties than for linear regression models. Nevertheless, these models are
still relatively simple compared to the more general nonlinear models that will be
studied in subsequent chapters.

The algorithms discussed in this chapter will be equally applicable if we first
make a fixed nonlinear transformation of the input variables using a vector of basis
functions φ(x) as we did for regression models in Chapter 3. We begin by consider-
ing classification directly in the original input space x, while in Section 4.3 we shall
find it convenient to switch to a notation involving basis functions for consistency
with later chapters.

4.1. Discriminant Functions

A discriminant is a function that takes an input vector x and assigns it to one of K
classes, denoted Ck. In this chapter, we shall restrict attention to linear discriminants,
namely those for which the decision surfaces are hyperplanes. To simplify the dis-
cussion, we consider first the case of two classes and then investigate the extension
to K > 2 classes.

4.1.1 Two classes
The simplest representation of a linear discriminant function is obtained by tak-

ing a linear function of the input vector so that

y(x) = wTx + w0 (4.4)

where w is called a weight vector, and w0 is a bias (not to be confused with bias in
the statistical sense). The negative of the bias is sometimes called a threshold. An
input vector x is assigned to class C1 if y(x) ! 0 and to class C2 otherwise. The cor-
responding decision boundary is therefore defined by the relation y(x) = 0, which
corresponds to a (D − 1)-dimensional hyperplane within the D-dimensional input
space. Consider two points xA and xB both of which lie on the decision surface.
Because y(xA) = y(xB) = 0, we have wT(xA−xB) = 0 and hence the vector w is
orthogonal to every vector lying within the decision surface, and so w determines the
orientation of the decision surface. Similarly, if x is a point on the decision surface,
then y(x) = 0, and so the normal distance from the origin to the decision surface is
given by

wTx
∥w∥ = − w0

∥w∥ . (4.5)

We therefore see that the bias parameter w0 determines the location of the decision
surface. These properties are illustrated for the case of D = 2 in Figure 4.1.

Furthermore, we note that the value of y(x) gives a signed measure of the per-
pendicular distance r of the point x from the decision surface. To see this, consider

weight	  
vector	   bias	  
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Figure 4.1 Illustration of the geometry of a
linear discriminant function in two dimensions.
The decision surface, shown in red, is perpen-
dicular to w, and its displacement from the
origin is controlled by the bias parameter w0.
Also, the signed orthogonal distance of a gen-
eral point x from the decision surface is given
by y(x)/∥w∥.
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w
x

y(x)
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y = 0
y < 0

y > 0

R2

R1

an arbitrary point x and let x⊥ be its orthogonal projection onto the decision surface,
so that

x = x⊥ + r
w

∥w∥ . (4.6)

Multiplying both sides of this result by wT and adding w0, and making use of y(x) =
wTx + w0 and y(x⊥) = wTx⊥ + w0 = 0, we have

r =
y(x)
∥w∥ . (4.7)

This result is illustrated in Figure 4.1.
As with the linear regression models in Chapter 3, it is sometimes convenient

to use a more compact notation in which we introduce an additional dummy ‘input’
value x0 = 1 and then define w̃ = (w0,w) and x̃ = (x0,x) so that

y(x) = w̃Tx̃. (4.8)

In this case, the decision surfaces are D-dimensional hyperplanes passing through
the origin of the D + 1-dimensional expanded input space.

4.1.2 Multiple classes
Now consider the extension of linear discriminants to K > 2 classes. We might

be tempted be to build a K-class discriminant by combining a number of two-class
discriminant functions. However, this leads to some serious difficulties (Duda and
Hart, 1973) as we now show.

Consider the use of K−1 classifiers each of which solves a two-class problem of
separating points in a particular class Ck from points not in that class. This is known
as a one-versus-the-rest classifier. The left-hand example in Figure 4.2 shows an

Decision	  surface	  



Fisher’s	  linear	  discriminant	  1	  

ProjecBng	  data	  down	  to	  one	  dimension	  
	  
But	  how?	  
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Figure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red
(×), green (+), and blue (◦). Lines denote the decision boundaries, and the background colours denote the
respective classes of the decision regions. On the left is the result of using a least-squares discriminant. We see
that the region of input space assigned to the green class is too small and so most of the points from this class
are misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing
correct classification of the training data.

dimensional input vector x and project it down to one dimension using

y = wTx. (4.20)

If we place a threshold on y and classify y ! −w0 as class C1, and otherwise class
C2, then we obtain our standard linear classifier discussed in the previous section.
In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original D-dimensional space may
become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vector w, we can select a projection that maximizes the class
separation. To begin with, consider a two-class problem in which there are N1 points
of class C1 and N2 points of class C2, so that the mean vectors of the two classes are
given by

m1 =
1

N1

∑

n∈ C1

xn, m2 =
1

N2

∑

n∈ C2

xn. (4.21)

The simplest measure of the separation of the classes, when projected onto w, is the
separation of the projected class means. This suggests that we might choose w so as
to maximize

m2 − m1 = wT(m2 − m1) (4.22)

where
mk = wTmk (4.23)



Fisher’s	  linear	  discriminant	  2	  

Define	  class	  means	  
	  
	  
Try	  maximize	  	  
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C2, then we obtain our standard linear classifier discussed in the previous section.
In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original D-dimensional space may
become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vector w, we can select a projection that maximizes the class
separation. To begin with, consider a two-class problem in which there are N1 points
of class C1 and N2 points of class C2, so that the mean vectors of the two classes are
given by

m1 =
1

N1

∑

n∈ C1

xn, m2 =
1

N2

∑

n∈ C2

xn. (4.21)

The simplest measure of the separation of the classes, when projected onto w, is the
separation of the projected class means. This suggests that we might choose w so as
to maximize

m2 − m1 = wT(m2 − m1) (4.22)

where
mk = wTmk (4.23)
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Figure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red
(×), green (+), and blue (◦). Lines denote the decision boundaries, and the background colours denote the
respective classes of the decision regions. On the left is the result of using a least-squares discriminant. We see
that the region of input space assigned to the green class is too small and so most of the points from this class
are misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing
correct classification of the training data.
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y = wTx. (4.20)

If we place a threshold on y and classify y ! −w0 as class C1, and otherwise class
C2, then we obtain our standard linear classifier discussed in the previous section.
In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original D-dimensional space may
become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vector w, we can select a projection that maximizes the class
separation. To begin with, consider a two-class problem in which there are N1 points
of class C1 and N2 points of class C2, so that the mean vectors of the two classes are
given by

m1 =
1

N1

∑

n∈ C1

xn, m2 =
1
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∑
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xn. (4.21)

The simplest measure of the separation of the classes, when projected onto w, is the
separation of the projected class means. This suggests that we might choose w so as
to maximize

m2 − m1 = wT(m2 − m1) (4.22)

where
mk = wTmk (4.23)
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Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,
showing the greatly improved class separation.

is the mean of the projected data from class Ck. However, this expression can be
made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that

∑
i w2

i = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find thatAppendix E
w ∝ (m2 −m1). There is still a problem with this approach, however, as illustratedExercise 4.4
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by

s2
k =

∑

n∈Ck

(yn − mk)2 (4.24)

where yn = wTxn. We can define the total within-class variance for the whole
data set to be simply s2

1 + s2
2. The Fisher criterion is defined to be the ratio of the

between-class variance to the within-class variance and is given by

J(w) =
(m2 − m1)2

s2
1 + s2

2

. (4.25)

We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the formExercise 4.5
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Called	  Fisher	  criterion.	  Maximize	  it!	  
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made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that
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i = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find thatAppendix E
w ∝ (m2 −m1). There is still a problem with this approach, however, as illustratedExercise 4.4
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by
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data set to be simply s2

1 + s2
2. The Fisher criterion is defined to be the ratio of the
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rewrite the Fisher criterion in the formExercise 4.5
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in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.
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into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by

s2
k =

∑

n∈Ck

(yn − mk)2 (4.24)
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J(w) =
wTSBw
wTSWw

(4.26)

where SB is the between-class covariance matrix and is given by

SB = (m2 − m1)(m2 − m1)T (4.27)

and SW is the total within-class covariance matrix, given by

SW =
∑

n∈C1

(xn − m1)(xn − m1)T +
∑

n∈C2

(xn − m2)(xn − m2)T. (4.28)

Differentiating (4.26) with respect to w, we find that J(w) is maximized when

(wTSBw)SWw = (wTSWw)SBw. (4.29)

From (4.27), we see that SBw is always in the direction of (m2−m1). Furthermore,
we do not care about the magnitude of w, only its direction, and so we can drop the
scalar factors (wTSBw) and (wTSWw). Multiplying both sides of (4.29) by S−1

W
we then obtain

w ∝ S−1
W (m2 − m1). (4.30)

Note that if the within-class covariance is isotropic, so that SW is proportional to the
unit matrix, we find that w is proportional to the difference of the class means, as
discussed above.

The result (4.30) is known as Fisher’s linear discriminant, although strictly it
is not a discriminant but rather a specific choice of direction for projection of the
data down to one dimension. However, the projected data can subsequently be used
to construct a discriminant, by choosing a threshold y0 so that we classify a new
point as belonging to C1 if y(x) ! y0 and classify it as belonging to C2 otherwise.
For example, we can model the class-conditional densities p(y|Ck) using Gaussian
distributions and then use the techniques of Section 1.2.4 to find the parameters
of the Gaussian distributions by maximum likelihood. Having found Gaussian ap-
proximations to the projected classes, the formalism of Section 1.5.1 then gives an
expression for the optimal threshold. Some justification for the Gaussian assumption
comes from the central limit theorem by noting that y = wTx is the sum of a set of
random variables.

4.1.5 Relation to least squares
The least-squares approach to the determination of a linear discriminant was

based on the goal of making the model predictions as close as possible to a set of
target values. By contrast, the Fisher criterion was derived by requiring maximum
class separation in the output space. It is interesting to see the relationship between
these two approaches. In particular, we shall show that, for the two-class problem,
the Fisher criterion can be obtained as a special case of least squares.

So far we have considered 1-of-K coding for the target values. If, however, we
adopt a slightly different target coding scheme, then the least-squares solution for
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Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,
showing the greatly improved class separation.

is the mean of the projected data from class Ck. However, this expression can be
made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that

∑
i w2

i = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find thatAppendix E
w ∝ (m2 −m1). There is still a problem with this approach, however, as illustratedExercise 4.4
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by

s2
k =

∑

n∈Ck

(yn − mk)2 (4.24)

where yn = wTxn. We can define the total within-class variance for the whole
data set to be simply s2

1 + s2
2. The Fisher criterion is defined to be the ratio of the

between-class variance to the within-class variance and is given by

J(w) =
(m2 − m1)2

s2
1 + s2

2

. (4.25)

We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the formExercise 4.5
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is the mean of the projected data from class Ck. However, this expression can be
made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that

∑
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i = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find thatAppendix E
w ∝ (m2 −m1). There is still a problem with this approach, however, as illustratedExercise 4.4
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by

s2
k =
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(yn − mk)2 (4.24)

where yn = wTxn. We can define the total within-class variance for the whole
data set to be simply s2
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2. The Fisher criterion is defined to be the ratio of the

between-class variance to the within-class variance and is given by
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We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the formExercise 4.5

Fisher’s	  linear	  discriminant	   Fisher	  Criterion	  
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Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

boundary. In Section 7.1.2, we shall consider several alternative error functions for
classification and we shall see that they do not suffer from this difficulty.

However, problems with least squares can be more severe than simply lack of
robustness, as illustrated in Figure 4.5. This shows a synthetic data set drawn from
three classes in a two-dimensional input space (x1, x2), having the property that lin-
ear decision boundaries can give excellent separation between the classes. Indeed,
the technique of logistic regression, described later in this chapter, gives a satisfac-
tory solution as seen in the right-hand plot. However, the least-squares solution gives
poor results, with only a small region of the input space assigned to the green class.

The failure of least squares should not surprise us when we recall that it cor-
responds to maximum likelihood under the assumption of a Gaussian conditional
distribution, whereas binary target vectors clearly have a distribution that is far from
Gaussian. By adopting more appropriate probabilistic models, we shall obtain clas-
sification techniques with much better properties than least squares. For the moment,
however, we continue to explore alternative nonprobabilistic methods for setting the
parameters in the linear classification models.

4.1.4 Fisher’s linear discriminant
One way to view a linear classification model is in terms of dimensionality

reduction. Consider first the case of two classes, and suppose we take the D-

Use	  logisBc	  regression	  instead!	  



Bernoulli	  DistribuBon	  

or	  

For	  short	  we	  write:	  

Bernoulli	  distribuBon	  describes	  situaBon	  where	  only	  two	  possible	  
outcomes	  y=0/y=1	  or	  failure/success	  
	  
Takes	  a	  single	  parameter	  
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LogisBc	  Regression	  
Consider	  two	  class	  problem.	  	  	  

•  Choose	  Bernoulli	  distribuBon	  over	  world.	  	  	  
•  Make	  parameter	  λ	  a	  funcBon	  of	  x	  

Model	  acBvaBon	  with	  a	  linear	  funcBon	  
	  
	  
	  
creates	  number	  between	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  .	  	  Maps	  to	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  with	  
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Two	  parameters	  
	  
Learning	  by	  standard	  methods	  (ML,MAP,	  Bayesian)	  
Inference:	  	  Just	  evaluate	  Pr(w|x)	  
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Neater	  NotaBon	  

To	  make	  notaBon	  easier	  to	  handle,	  we	  
•  Ahach	  a	  1	  to	  the	  start	  of	  every	  data	  vector	  

•  Ahach	  the	  offset	  to	  the	  start	  of	  the	  gradient	  vector	  φ

New	  model:	  
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LogisBc	  regression	  
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