Computer vision: models, learning and inference

Chapter 9 Classification Models

Structure

- Logistic regression
- Bayesian logistic regression
- Non-linear logistic regression
- Kernelization and Gaussian process classification
- Incremental fitting, boosting and trees
- Multi-class classification
- Random classification trees
- Non-probabilistic classification
- Applications

Models for machine vision

Table 5.1: Example models in this chapter. These can be categorized into those that arebased on modelling probability density functions, those that are based on linearregression and those that are based on logistic regression.

Example application: Gender Classification

Type 1: Model Pr(**w**|**x**) - Discriminative

How to model $Pr(\mathbf{w} | \mathbf{x})$?

- Choose an appropriate form for Pr(w)
- Make parameters a function of x
- Function takes parameters θ that define its shape

Learning algorithm: learn parameters θ from training data x,w Inference algorithm: just evaluate Pr(w|x)

Logistic Regression

Consider two class problem.

- Choose Bernoulli distribution over world.
- Make parameter λ a function of x

$$Pr(w|\phi_0, \phi, \mathbf{x}) = \operatorname{Bern}_w[\operatorname{sig}[a]]$$

Model activation with a linear function

$$a = \phi_0 + \phi^T \mathbf{x}$$
 creates number between $[-\infty, \infty]$. Maps to $[0, 1]$ with $\mathrm{sig}[a] = rac{1}{1 + \exp[-a]}$

Two parameters

 $oldsymbol{ heta} \,=\, \{\phi_0,\phi_1\}$

Learning by standard methods (ML,MAP, Bayesian) Inference: Just evaluate Pr(w|x)

Neater Notation

 $Pr(w|\phi_0, \phi, \mathbf{x}) = \operatorname{Bern}_w[\operatorname{sig}[a]]$

To make notation easier to handle, we

• Attach a 1 to the start of every data vector

$$\mathbf{x}_i \leftarrow \begin{bmatrix} 1 & \mathbf{x}_i^T \end{bmatrix}^T$$

- Attach the offset to the start of the gradient vector $\pmb{\varphi}$

$$\boldsymbol{\phi} \leftarrow [\phi_0 \quad \boldsymbol{\phi}^T]^T$$

New model:

$$Pr(w|\boldsymbol{\phi}, \mathbf{x}) = \operatorname{Bern}_{w} \left[\frac{1}{1 + \exp[-\boldsymbol{\phi}^{T}\mathbf{x}]} \right]$$

Logistic regression

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

Maximum Likelihood

$$Pr(\mathbf{w}|\mathbf{X}, \boldsymbol{\phi}) = \prod_{i=1}^{I} \lambda^{w_i} (1-\lambda)^{1-w_i}$$
$$= \prod_{i=1}^{I} \left(\frac{1}{1+\exp[-\boldsymbol{\phi}^T \mathbf{x}_i]} \right)^{w_i} \left(\frac{\exp[-\boldsymbol{\phi}^T \mathbf{x}_i]}{1+\exp[-\boldsymbol{\phi}^T \mathbf{x}_i]} \right)^{1-w_i}$$

Take logarithm

$$L = \sum_{i=1}^{I} w_i \log \left[\frac{1}{1 + \exp[-\boldsymbol{\phi}^T \mathbf{x}_i]} \right] + \sum_{i=1}^{I} (1 - w_i) \log \left[\frac{\exp[-\boldsymbol{\phi}^T \mathbf{x}_i]}{1 + \exp[-\boldsymbol{\phi}^T \mathbf{x}_i]} \right]$$

Take derivative:

$$\frac{\partial L}{\partial \boldsymbol{\phi}} = -\sum_{i=1}^{I} \left(\frac{1}{1 + \exp[-\boldsymbol{\phi}^T \mathbf{x}_i]} - w_i \right) \mathbf{x}_i = -\sum_{i=1}^{I} \left(\operatorname{sig}[a_i] - w_i \right) \mathbf{x}_i$$

Derivatives

$$\frac{\partial L}{\partial \boldsymbol{\phi}} = -\sum_{i=1}^{I} \left(\frac{1}{1 + \exp[-\boldsymbol{\phi}^T \mathbf{x}_i]} - w_i \right) \mathbf{x}_i = -\sum_{i=1}^{I} \left(\operatorname{sig}[a_i] - w_i \right) \mathbf{x}_i$$

Unfortunately, there is no closed form solution– we cannot get an expression for ϕ in terms of x and w

Have to use a general purpose technique:

"iterative non-linear optimization"

Optimization

How can we find the minimum?

Cost function or Objective function

Basic idea:

- Start with estimate $oldsymbol{ heta}^{[0]}$
- Take a series of small steps to $oldsymbol{ heta}^{[1]},oldsymbol{ heta}^{[2]}\dotsoldsymbol{ heta}^{[\infty]}$
- Make sure that each step decreases cost
- When can't improve, then must be at minimum

Local Minima

Convexity

If a function is convex, then it has only a single minimum. Can tell if a function is convex by looking at 2nd derivatives

$$Pr(\mathbf{w}|\mathbf{X}, \boldsymbol{\phi}) = \prod_{i=1}^{I} \left(\frac{1}{1 + \exp[-\boldsymbol{\phi}^{T}\mathbf{x}_{i}]} \right)^{w_{i}} \left(\frac{\exp[-\boldsymbol{\phi}^{T}\mathbf{x}_{i}]}{1 + \exp[-\boldsymbol{\phi}^{T}\mathbf{x}_{i}]} \right)^{1-w_{i}}$$

$$a) Pr(\boldsymbol{\phi}|x_{1...I}, w_{1...I}) \quad b) \log[Pr(\boldsymbol{\phi}|x_{1...I}, w_{1...I})] \quad c)$$

$$\phi_{0} \qquad \phi_{0} \qquad \phi_{0} \qquad \phi_{0} \qquad \phi_{0} \qquad \phi_{0} \qquad \phi_{0} \qquad f(\boldsymbol{\phi}|x_{1...I}, w_{1...I})] \quad c)$$

$$L = \sum_{i=1}^{I} w_{i} \log\left[\frac{1}{1 + \exp[-\boldsymbol{\phi}^{T}\mathbf{x}_{i}]}\right] + \sum_{i=1}^{I} (1 - w_{i}) \log\left[\frac{\exp[-\boldsymbol{\phi}^{T}\mathbf{x}_{i}]}{1 + \exp[-\boldsymbol{\phi}^{T}\mathbf{x}_{i}]}\right]$$

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

Gradient Based Optimization

- Choose a search direction s based on the local properties of the function
- Perform an intensive search along the chosen direction.
 This is called *line search*

$$\hat{\lambda} = \underset{\lambda}{\operatorname{argmin}} \left[f[\boldsymbol{\theta}^{[t]} + \lambda \mathbf{s}] \right]$$

• Then set

$$\boldsymbol{\theta}^{[t+1]} = \boldsymbol{\theta}^{[t]} + \hat{\lambda} \mathbf{s}$$

Gradient Descent

Consider standing on a hillside

Look at gradient where you are standing

Find the steepest direction downhill

Walk in that direction for some distance (line search)

Steepest Descent

Finite differences

What if we can't compute the gradient?

Compute finite difference approximation:

$$\frac{\partial f}{\partial \theta_j} \approx \frac{f \left[\boldsymbol{\theta} + a \mathbf{e}_j \right] - f \left[\boldsymbol{\theta} \right]}{a}$$

where **e**_i is the unit vector in the jth direction

Steepest Descent Problems

Close up

Second Derivatives

In higher dimensions, 2nd derivatives change how much we should move in the different directions: changes best direction to move in.

Newton's Method

Approximate function with Taylor expansion

$$f[\boldsymbol{\theta}] \approx f[\boldsymbol{\theta}^{[t]}] + (\boldsymbol{\theta} - \boldsymbol{\theta}^{[t]})^T \left. \frac{\partial f}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}^{[t]}} + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}^{[t]})^T \left. \frac{\partial^2 f}{\partial \boldsymbol{\theta}^2} \right|_{\boldsymbol{\theta}^{[t]}} (\boldsymbol{\theta} - \boldsymbol{\theta}^{[t]})$$

Take derivative

$$\frac{\partial f}{\partial \boldsymbol{\theta}} \approx \left. \frac{\partial f}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}^{[t]}} + \left. \frac{\partial^2 f}{\partial \boldsymbol{\theta}^2} \right|_{\boldsymbol{\theta}^{[t]}} \left(\boldsymbol{\theta} - \boldsymbol{\theta}^{[t]} \right) = 0$$

Re-arrange

$$\hat{\boldsymbol{\theta}} = \boldsymbol{\theta}^{[t]} - \left(\frac{\partial^2 f}{\partial \boldsymbol{\theta}^2}\right)^{-1} \frac{\partial f}{\partial \boldsymbol{\theta}}$$
 (derivatives taken at time t)

Adding line search

$$\boldsymbol{\theta}^{[t+1]} = \boldsymbol{\theta}^{[t]} - \lambda \left(\frac{\partial^2 f}{\partial \boldsymbol{\theta}^2}\right)^{-1} \frac{\partial f}{\partial \boldsymbol{\theta}}$$

Newton's Method

$$\boldsymbol{\theta}^{[t+1]} = \boldsymbol{\theta}^{[t]} - \lambda \left(\frac{\partial^2 f}{\partial \boldsymbol{\theta}^2}\right)^{-1} \frac{\partial f}{\partial \boldsymbol{\theta}}$$

Matrix of second derivatives is called the Hessian.

Expensive to compute via finite differences.

If positive definite, then convex

Newton vs. Steepest Descent

Line Search

Gradually narrow down range

Optimization for Logistic Regression

$$\boldsymbol{\phi}^{[t]} = \boldsymbol{\phi}^{[t-1]} + \alpha \left(\frac{\partial^2 L}{\partial \boldsymbol{\phi}^2}\right)^{-1} \frac{\partial L}{\partial \boldsymbol{\phi}}$$

Derivatives of log likelihood:

$$\frac{\partial L}{\partial \phi} = -\sum_{i=1}^{I} (\operatorname{sig}[a_i] - w_i) \mathbf{x}_i$$
$$\frac{\partial^2 L}{\partial \phi^2} = -\sum_{i=1}^{I} \operatorname{sig}[a_i] (1 - \operatorname{sig}[a_i]) \mathbf{x}_i \mathbf{x}_i^T$$
Positive definite!

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

25

$$Pr(\mathbf{w}|\mathbf{X}, \boldsymbol{\phi}) = \prod_{i=1}^{I} \left(\frac{1}{1 + \exp[-\boldsymbol{\phi}^{T}\mathbf{x}_{i}]} \right)^{w_{i}} \left(\frac{\exp[-\boldsymbol{\phi}^{T}\mathbf{x}_{i}]}{1 + \exp[-\boldsymbol{\phi}^{T}\mathbf{x}_{i}]} \right)^{1-w_{i}}$$

$$a) Pr(\boldsymbol{\phi}|x_{1...I}, w_{1...I}) \quad b) \log[Pr(\boldsymbol{\phi}|x_{1...I}, w_{1...I})] \quad c)$$

$$\phi_{1} \qquad \phi_{1} \qquad \phi_{2} \qquad \phi_{3} \qquad \phi_{4} \qquad \phi_{5} \qquad \phi_{6} \qquad \phi_{7} \qquad \phi_{$$

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

Maximum likelihood fits

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

Structure

- Logistic regression
- Bayesian logistic regression
- Non-linear logistic regression
- Kernelization and Gaussian process classification
- Incremental fitting, boosting and trees
- Multi-class classification
- Random classification trees
- Non-probabilistic classification
- Applications

Bayesian Logistic Regression

Likelihood:

$$Pr(\mathbf{w}|\mathbf{X}, \boldsymbol{\phi}) = \prod_{i=1}^{I} \left(\frac{1}{1 + \exp[-\boldsymbol{\phi}^{T} \mathbf{x}_{i}]} \right)^{w_{i}} \left(\frac{\exp[-\boldsymbol{\phi}^{T} \mathbf{x}_{i}]}{1 + \exp[-\boldsymbol{\phi}^{T} \mathbf{x}_{i}]} \right)^{1-w_{i}}$$

Prior (no conjugate):

$$Pr(\boldsymbol{\phi}) = \operatorname{Norm}_{\boldsymbol{\phi}}[\mathbf{0}, \sigma_p^2 \mathbf{I}]$$

Apply Bayes' rule:

$$Pr(\boldsymbol{\phi}|\mathbf{X}, \mathbf{w}) = \frac{Pr(\mathbf{w}|\mathbf{X}, \boldsymbol{\phi})Pr(\boldsymbol{\phi})}{Pr(\mathbf{w}|\mathbf{X})}$$

(no closed form solution for posterior)

Laplace Approximation

Approximate posterior distribution with normal

- Set mean to MAP estimate
- Set covariance to match that at MAP estimate (actually: get 2nd derivatives to agree) Computer Vision: models, learning and inference. ©2011 Simon J.D. Prince

Laplace Approximation

Find MAP solution by optimizing

$$L = \sum_{i=1}^{I} \log[Pr(w_i | \mathbf{x}_i, \boldsymbol{\phi})] + \log[Pr(\boldsymbol{\phi})]$$

Approximate with normal

$$Pr(\boldsymbol{\phi}|\mathbf{X}, \mathbf{w}) \approx q(\boldsymbol{\phi}) = \operatorname{Norm}_{\boldsymbol{\phi}}[\boldsymbol{\mu}, \boldsymbol{\Sigma}]$$

where

$$oldsymbol{\mu} = \hat{oldsymbol{\phi}}$$
 $oldsymbol{\Sigma} = -\left(rac{\partial^2 L}{\partial \phi^2}
ight)^{-1}\Big|_{oldsymbol{\phi}=\hat{oldsymbol{\phi}}}$

Laplace Approximation

Inference

$$Pr(w^*|\mathbf{x}^*, \mathbf{X}, \mathbf{w}) = \int Pr(w^*|\mathbf{x}^*, \boldsymbol{\phi}) Pr(\boldsymbol{\phi}|\mathbf{X}, \mathbf{w}) d\boldsymbol{\phi}$$
$$\approx \int Pr(w^*|\mathbf{x}^*, \boldsymbol{\phi}) q(\boldsymbol{\phi}) d\boldsymbol{\phi}.$$

Can re-express in terms of activation

$$Pr(w^*|\mathbf{x}^*, \mathbf{X}, \mathbf{w}) \approx \int Pr(w^*|a) Pr(a) da$$

Using transformation properties of normal distributions

$$Pr(a) = Pr(\boldsymbol{\phi}^T \mathbf{x}^*) = \operatorname{Norm}_a[\boldsymbol{\mu}^T \mathbf{x}^*, \mathbf{x}^*^T \boldsymbol{\Sigma} \mathbf{x}] \\ = \operatorname{Norm}_a[\mu_a, \sigma_a^2],$$

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

Bayesian Solution

Structure

- Logistic regression
- Bayesian logistic regression
- Non-linear logistic regression
- Kernelization and Gaussian process classification
- Incremental fitting, boosting and trees
- Multi-class classification
- Random classification trees
- Non-probabilistic classification
- Applications

Non-linear logistic regression

Same idea as for regression.

• Apply non-linear transformation

$$\mathbf{z} = \mathbf{f}[\mathbf{x}]$$

• Build model as usual

$$Pr(w = 1 | \mathbf{x}, \boldsymbol{\phi}) = \operatorname{Bern}_{w} \left[\operatorname{sig}[\boldsymbol{\phi}^{T} \mathbf{z}] \right]$$
$$= \operatorname{Bern}_{w} \left[\operatorname{sig}[\boldsymbol{\phi}^{T} \mathbf{f}[\mathbf{x}]] \right]$$

Non-linear logistic regression

Example transformations:

- Heaviside Step functions of projections: $z_k = \text{Heaviside}[\boldsymbol{\alpha}_k^T \mathbf{x}]$
- Arc tan functions of projections: $z_k = \arctan[\boldsymbol{\alpha}_k^T \mathbf{x}]$
- Radial basis functions: $z_k = \exp\left[-\frac{1}{\lambda_0}(\mathbf{x} \boldsymbol{\alpha}_k)^T(\mathbf{x} \boldsymbol{\alpha}_k)\right]$

Fit using optimization (also transformation parameters α):

$$\frac{\partial L}{\partial \theta} = -\sum_{i=1}^{I} (w_i - \operatorname{sig}[a_i]) \frac{\partial a_i}{\partial \theta}$$

$$\frac{\partial^2 L}{\partial \theta^2} = -\sum_{i=1}^{I} \operatorname{sig}[a_i] (\operatorname{sig}[a_i] - 1) \frac{\partial a_i}{\partial \theta} \frac{\partial a_i}{\partial \theta}^T - (w_i - \operatorname{sig}[a_i]) \frac{\partial^2 a_i}{\partial \theta^2}$$

Non-linear logistic regression in 2D

Structure

- Logistic regression
- Bayesian logistic regression
- Non-linear logistic regression
- Kernelization and Gaussian process classification
- Incremental fitting, boosting and trees
- Multi-class classification
- Random classification trees
- Non-probabilistic classification
- Applications

Dual Logistic Regression

KEY IDEA:

Gradient Φ is just a vector in the data space

Can represent as a weighted sum of the data points

$$\phi = \mathbf{X}\psi$$

Now solve for Ψ . One parameter per training example.

 \mathbf{X}_2 \mathbf{X}_1 $\psi_1 \mathbf{X}_1$ x_1

Maximum Likelihood

Likelihood

$$Pr(\mathbf{w}|\mathbf{X}, \boldsymbol{\psi}) = \prod_{i=1}^{I} \operatorname{Bern}_{w_i} \left[\operatorname{sig}[a_i] \right] = \prod_{i=1}^{I} \operatorname{Bern}_{w_i} \left[\operatorname{sig}[\boldsymbol{\psi}^T \mathbf{X}^T \mathbf{x}_i] \right]$$

Derivatives

$$\frac{\partial L}{\partial \psi} = -\sum_{i=1}^{I} \left(\operatorname{sig}[a_i] - w_i \right) \mathbf{X}^T \mathbf{x}_i$$
$$\frac{\partial^2 L}{\partial \psi^2} = -\sum_{i=1}^{I} \operatorname{sig}[a_i] \left(1 - \operatorname{sig}[a_i] \right) \mathbf{X}^T \mathbf{x}_i \mathbf{x}_i^T \mathbf{X}_i$$

Depend only depend on inner products!

Kernel Logistic Regression

$$k[\mathbf{x}_i, \mathbf{x}_j] = \exp\left[-0.5\left(\frac{(\mathbf{x}_i - \mathbf{x}_j)^T(\mathbf{x}_i - \mathbf{x}_j)}{\lambda_0^2}\right)\right]$$

Bayesian case is known as Gaussian process classification

Apply sparse prior to dual variables:

$$Pr(\boldsymbol{\psi}) = \prod_{i=1}^{I} \operatorname{Stud}_{\boldsymbol{\psi}_{i}} [0, 1, \nu]$$

As before, write as marginalization of dual variables:

$$Pr(\boldsymbol{\psi}) = \prod_{i=1}^{I} \int \operatorname{Norm}_{\psi_i} \left[0, \frac{1}{h_i} \right] \operatorname{Gam}_{h_i} \left[\frac{\nu}{2}, \frac{\nu}{2} \right] dh_i$$
$$= \int \operatorname{Norm}_{\boldsymbol{\psi}} [0, \mathbf{H}^{-1}] \prod_{d=1}^{D} \operatorname{Gam}_{h_d} [\nu/2, \nu/2] d\mathbf{H}$$

Apply sparse prior to dual variables:

$$Pr(\boldsymbol{\psi}) = \int \operatorname{Norm}_{\boldsymbol{\psi}}[0, \mathbf{H}^{-1}] \prod_{d=1}^{D} \operatorname{Gam}_{h_d}[\nu/2, \nu/2] d\mathbf{H}$$

Gives likelihood:

$$\begin{aligned} Pr(\mathbf{w}|\mathbf{X}) \\ &= \int Pr(\mathbf{w}|\mathbf{X}, \boldsymbol{\psi}) Pr(\boldsymbol{\psi}) \, d\boldsymbol{\psi} \\ &= \iint \prod_{i=1}^{I} \operatorname{Bern}_{w_i} \left[\operatorname{sig}[\boldsymbol{\psi}^T \mathbf{K}[\mathbf{X}, \mathbf{x}_i]] \operatorname{Norm}_{\boldsymbol{\psi}}[0, \mathbf{H}^{-1}] \prod_{d=1}^{D} \operatorname{Gam}_{h_d}[\nu/2, \nu/2] \, d\mathbf{H} d\boldsymbol{\psi} \right] \end{aligned}$$

 $Pr(\mathbf{w}|\mathbf{X})$

$$= \iint \prod_{i=1}^{I} \operatorname{Bern}_{w_i} \left[\operatorname{sig}[\boldsymbol{\psi}^T \mathbf{K}[\mathbf{X}, \mathbf{x}_i]] \operatorname{Norm}_{\boldsymbol{\psi}}[0, \mathbf{H}^{-1}] \prod_{d=1}^{D} \operatorname{Gam}_{h_d}[\nu/2, \nu/2] d\mathbf{H} d\boldsymbol{\psi} \right]$$

Use Laplace approximation result:

$$\int q(\boldsymbol{\psi}) d\boldsymbol{\psi} \approx q(\boldsymbol{\mu}) \int \exp\left[-\frac{1}{2}(\boldsymbol{\psi} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{\psi} - \boldsymbol{\mu})\right] d\boldsymbol{\psi}$$
$$= q(\boldsymbol{\mu})(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}.$$

giving:

$$Pr(\mathbf{w}|\mathbf{X}) \approx \int \prod_{i=1}^{I} (2\pi)^{I/2} |\mathbf{\Sigma}|^{0.5} \operatorname{Bern}_{w_i} [\operatorname{sig}[\boldsymbol{\mu}^T \mathbf{K}[\mathbf{X}, \mathbf{x}_i]] \operatorname{Norm}_{\boldsymbol{\mu}} [0, \mathbf{H}^{-1}] \operatorname{Gam}_{h_i} [\frac{\nu}{2}, \frac{\nu}{2}] d\mathbf{H}$$

Previous result:

$$Pr(\mathbf{w}|\mathbf{X}) \approx \int \prod_{i=1}^{I} (2\pi)^{I/2} |\mathbf{\Sigma}|^{0.5} \operatorname{Bern}_{w_i} [\operatorname{sig}[\boldsymbol{\mu}^T \mathbf{K}[\mathbf{X}, \mathbf{x}_i]] \operatorname{Norm}_{\boldsymbol{\mu}} [0, \mathbf{H}^{-1}] \operatorname{Gam}_{h_i} [\frac{\nu}{2}, \frac{\nu}{2}] d\mathbf{H}$$

Second approximation:

$$Pr(\mathbf{w}|\mathbf{X}) \approx \max_{\mathbf{H}} \left[\prod_{i=1}^{I} (2\pi)^{I/2} |\mathbf{\Sigma}|^{0.5} \operatorname{Bern}_{w_i} [\operatorname{sig}[\boldsymbol{\mu}^T \mathbf{K}[\mathbf{X}, \mathbf{x}_i]] \operatorname{Norm}_{\boldsymbol{\mu}} [0, \mathbf{H}^{-1}] \operatorname{Gam}_{h_i} [\frac{\nu}{2}, \frac{\nu}{2}] \right]$$

To solve, alternately update hidden variables in **H** and mean and variance of Laplace approximation.

 $Pr(w=1|\mathbf{x})$

Results:

Most hidden variables increase to larger values

This means prior over dual variable is very tight around zero

The final solution only depends on a very small number of examples – efficient

Structure

- Logistic regression
- Bayesian logistic regression
- Non-linear logistic regression
- Kernelization and Gaussian process classification
- Incremental fitting & boosting
- Multi-class classification
- Random classification trees
- Non-probabilistic classification
- Applications

Incremental Fitting

Previously wrote:

$$a_i = \boldsymbol{\phi}^T \mathbf{z}_i = \boldsymbol{\phi}^T \mathbf{f}[\mathbf{x}_i]$$

Now write:

$$a_i = \phi_0 + \sum_{k=1}^{\kappa} \phi_k f[\mathbf{x}_i, \boldsymbol{\xi}_k]$$

T/

• Arc tan functions, $\boldsymbol{\xi} = \{\boldsymbol{\alpha}\}$

$$f[\mathbf{x}, \boldsymbol{\xi}] = \arctan[\boldsymbol{\alpha}^T \mathbf{x}]$$

• Radial basis functions, $\boldsymbol{\xi} = \{ \boldsymbol{\alpha}, \lambda_0 \}$

$$f[\mathbf{x}, \boldsymbol{\xi}] = \exp\left[-\frac{(\mathbf{x} - \boldsymbol{\alpha})^T(\mathbf{x} - \boldsymbol{\alpha})}{\lambda_0^2}\right]$$

Incremental Fitting

KEY IDEA: Greedily add terms one at a time.

STAGE 1: Fit ϕ_0 , ϕ_1 , ξ_1

$$a_i = \phi_0 + \phi_1 f[\mathbf{x}_i, \boldsymbol{\xi}_1]$$

STAGE 2: Fit ϕ_0 , ϕ_2 , ξ_2 $a_i = \phi_0 + \phi_1 f[\mathbf{x}_i, \boldsymbol{\xi}_2] + \phi_2 f[\mathbf{x}_i, \boldsymbol{\xi}_2]$ STAGE K: Fit ϕ_0 , ϕ_k , ξ_k $a_i = \phi_0 + \sum_{k=1}^{K} \phi_k f[\mathbf{x}_i, \boldsymbol{\xi}_k]$

Incremental Fitting

Derivative

It is worth considering the form of the derivative in the context of the incremental fitting procedure

Points contribute to derivative more if they are still misclassified: the later classifiers become increasingly specialized to the difficult examples.

Boosting

Incremental fitting with step functions

$$a_i = \phi_0 + \sum_{k=1}^{K} \phi_k \text{Heaviside}[\boldsymbol{\alpha}_k^T \mathbf{x}]$$

Each step function is called a ``weak classifier``

Can't take derivative w.r.t $\boldsymbol{\alpha}$ so have to just use exhaustive search

Branching Logistic Regression

A different way to make non-linear classifiers

New activation

$$a_i = (1 - g[\mathbf{x}_i, \boldsymbol{\omega}])\boldsymbol{\phi}_0^T \mathbf{x}_i + g[\mathbf{x}_i, \boldsymbol{\omega}]\boldsymbol{\phi}_1^T \mathbf{x}_i$$

The term $g[\bullet, \bullet]$ is a gating function.

- Returns a number between 0 and 1
- If 0, then we get one logistic regression model
- If 1, then get a different logistic regression model

Branching Logistic Regression

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

Logistic Classification Trees

Structure

- Logistic regression
- Bayesian logistic regression
- Non-linear logistic regression
- Kernelization and Gaussian process classification
- Incremental fitting, boosting and trees
- Multi-class classification
- Random classification trees
- Non-probabilistic classification
- Applications

Multiclass Logistic Regression

For multiclass recognition, choose distribution over w and make the parameters of this a function of **x**.

$$Pr(w|\mathbf{x}) = \operatorname{Cat}_w[\boldsymbol{\lambda}[\mathbf{x}]]$$

Softmax function maps real activations $\{a_n\}$ to numbers between zero and one that sum to one

$$\lambda_n = \operatorname{softmax}_n[a_1, a_2 \dots a_N] = \frac{\exp[a_n]}{\sum_{m=1}^N \exp[a_m]}$$

Parameters are vectors $\{\phi_n\}$

$$a_n = \boldsymbol{\phi}_n^T \mathbf{x}$$

Multiclass Logistic Regression

Softmax function maps activations which can take any value to parameters of categorical distribution between 0 and 1

Multiclass Logistic Regression

To learn model, maximize log likelihood

$$L = \sum_{i=1}^{I} \log \left[Pr(w_i | \mathbf{x}_i) \right]$$

No closed from solution, learn with non-linear optimization

$$\frac{\partial L}{\partial \phi_n} = -\sum_{i=1}^{I} (y_{in} - \delta[w_i - n]) \mathbf{x}_i$$
$$\frac{\partial^2 L}{\partial \phi_m \phi_n} = -\sum_{i=1}^{I} y_{im} (\delta[m - n] - y_{in}) \mathbf{x}_i \mathbf{x}_i^T$$

where

$$y_{in} = Pr(w_i = n | \mathbf{x}_i) = \operatorname{softmax}_n[a_{i1}, a_{i2} \dots a_{iN}]$$

Structure

- Logistic regression
- Bayesian logistic regression
- Non-linear logistic regression
- Kernelization and Gaussian process classification
- Incremental fitting, boosting and trees
- Multi-class classification
- Random classification trees
- Non-probabilistic classification
- Applications

Random classification tree

Key idea:

- Binary tree
- Randomly chosen function at each split
- Choose threshold t to maximize log probability $L = \sum_{i=1}^{I} (1 - \text{heaviside}[q[\mathbf{x}_i] - \tau]) \log \left[\text{Cat}_{w_i} \left[\boldsymbol{\lambda}^{[l]} \right] \right]$ $+ \text{heaviside}[q[\mathbf{x}_i] - \tau] \log \left[\text{Cat}_{w_i} \left[\boldsymbol{\lambda}^{[r]} \right] \right]$

For given threshold, can compute parameters in closed form

$$\lambda_{k}^{[l]} = \frac{\sum_{i=1}^{I} \delta[w_{i} - k](1 - \text{heaviside}[q[\mathbf{x}_{i}] - \tau])}{\sum_{i=1}^{I} (1 - \text{heaviside}[q[\mathbf{x}_{i}] - \tau])}$$
$$\lambda_{k}^{[r]} = \frac{\sum_{i=1}^{I} \delta[w_{i} - k](\text{heaviside}[q[\mathbf{x}_{i}] - \tau])}{\sum_{i=1}^{I} (\text{heaviside}[q[\mathbf{x}_{i}] - \tau])}.$$

Random classification tree

Related models:

Fern:

- A tree where all of the functions at a level are the same
- Thresholds per level may be same or different
- Very efficient to implement

Forest

- Collection of trees
- Average results to get more robust answer
- Similar to `Bayesian' approach average of models with different parameters

Structure

- Logistic regression
- Bayesian logistic regression
- Non-linear logistic regression
- Kernelization and Gaussian process classification
- Incremental fitting, boosting and trees
- Multi-class classification
- Random classification trees
- Non-probabilistic classification
- Applications
Non-probabilistic classifiers

Most people use non-probabilistic classification methods such as neural networks, adaboost, support vector machines. This is largely for historical reasons

Probabilistic approaches:

- No serious disadvantages
- Naturally produce estimates of uncertainty
- Easily extensible to multi-class case
- Easily related to each other

Non-probabilistic classifiers

Multi-layer perceptron (neural network)

- Non-linear logistic regression with sigmoid functions
- Learning known as back propagation
- Transformed variable z is hidden layer

Adaboost

- Very closely related to logitboost
- Performance very similar

Support vector machines

- Similar to relevance vector classification but objective fn is convex
- No certainty
- Not easily extended to multi-class
- Produces solutions that are less sparse
- More restrictions on kernel function

Structure

- Logistic regression
- Bayesian logistic regression
- Non-linear logistic regression
- Kernelization and Gaussian process classification
- Incremental fitting, boosting and trees
- Multi-class classification
- Random classification trees
- Non-probabilistic classification
- Applications

Gender Classification

Incremental logistic regression

$$Pr(w_i|\mathbf{x}_i) = \operatorname{Bern}_{w_i} \left[\frac{1}{1 + \exp[-\phi_0 + \sum_{k=1}^{K} \phi_k f[\mathbf{x}_i, \boldsymbol{\xi}_k]]} \right]$$

300 arc tan basis functions: $f[\mathbf{x}_i, \boldsymbol{\xi}_k] = \arctan[\boldsymbol{\xi}_k^T \mathbf{x}_i]$

Results: 87.5% (humans=95%)

Fast Face Detection (Viola and Jones 2001)

Computing Haar Features

(See "Integral Images" or summed-area tables)

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

Pedestrian Detection

Adapted from Viola et al. (2005)

Semantic segmentation

Shotton et al. (2009)

Recovering surface layout

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

Recovering body pose

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince