
Computer vision: models, 
learning and inference 

Chapter 9  

Classification Models 



Structure 
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Models for machine vision 
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Example application:   
Gender Classification 
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Type 1:  Model Pr(w|x)  - 
Discriminative 

How to model Pr(w|x)? 

– Choose an appropriate form for Pr(w) 

– Make parameters a function of x 

– Function takes parameters q that define its shape 

 

Learning algorithm:  learn parameters q from training data x,w 

Inference algorithm:  just evaluate Pr(w|x)  
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Logistic Regression 
Consider two class problem.   

• Choose Bernoulli distribution over world.   
• Make parameter l a function of x 

Model activation with a linear function 
 
 
 
creates number between                       .  Maps to               with 
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Two parameters 
 
Learning by standard methods (ML,MAP, Bayesian) 
Inference:  Just evaluate Pr(w|x) 
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Neater Notation 

To make notation easier to handle, we 
• Attach a 1 to the start of every data vector 

 
 

• Attach the offset to the start of the gradient vector f 

New model: 
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Logistic regression 
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Maximum Likelihood 
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Take logarithm 

Take derivative: 



Derivatives 

Unfortunately, there is no closed form solution– we cannot  
get an expression for f in terms of x and w 
 
Have to use a general purpose technique:   

 

“iterative non-linear optimization” 
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Optimization 

Goal: 

How can we find the minimum?  
 
Basic idea: 

• Start with estimate  
• Take a series of small steps to 
• Make sure that each step decreases cost 
• When can’t improve, then must be at minimum 

 

Cost function or 
Objective function 
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Local Minima 
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Convexity 

If a function is convex, then it has only a single minimum. 
Can tell if a function is convex by looking at 2nd derivatives 
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Gradient Based Optimization 

• Choose a search direction s based on the local properties 
of the function 
 

• Perform an intensive search along the chosen direction.  
This is called line search 
 
 
 

• Then set 
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Gradient Descent 

Consider standing on a hillside 
 
Look at gradient where you are 
standing 
 
Find the steepest direction 
downhill 
 
Walk in that direction for some 
distance (line search) 
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Finite differences 

What if we can’t compute the gradient? 

 

Compute finite difference approximation: 

 

 

 

 

where ej is the unit vector in the jth direction  
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Steepest Descent Problems 

Close up 
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Second Derivatives 

In higher dimensions, 2nd derivatives change how much we should move 
 in the different directions:  changes best direction to move in. 
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Newton’s Method 
Approximate function with Taylor expansion 

Take derivative 

Re-arrange 
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Adding line search 

(derivatives 
taken at time t) 



Newton’s Method 

Matrix of second derivatives is 
called the Hessian. 
 
Expensive to compute via finite 
differences. 
 
If positive definite, then convex 
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Newton vs. Steepest Descent 
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Line Search 

Gradually narrow down range 
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Optimization for Logistic Regression 

Derivatives of log likelihood: 

Positive definite! 
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Maximum likelihood fits 
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Structure 
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Bayesian Logistic Regression 

Likelihood: 

Apply Bayes’ rule: 

Prior (no conjugate): 

(no closed form solution for posterior) 
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Laplace Approximation 

Approximate posterior distribution with normal 
• Set mean to MAP estimate 
• Set covariance to match that at MAP estimate 

(actually: get 2nd derivatives to agree) 
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Laplace Approximation 

Find MAP solution by optimizing 

Approximate with normal 

where 
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Laplace Approximation 

Actual posterior Approximated 
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Prior 



Inference 

Using transformation properties of normal distributions 

Can re-express in terms of activation 
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Approximation of Integral 
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(Or perform numerical integration on a – which is 1D) 



Bayesian Solution 
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Structure 
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Non-linear logistic regression 

Same idea as for regression. 
 

• Apply non-linear transformation 

 
 

• Build model as usual 
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Non-linear logistic regression 
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Example transformations: 

Fit using optimization (also transformation parameters α): 



Non-linear logistic regression in 1D 
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Weights after applying ML  

Final activation sig[Final activation] 



Non-linear logistic regression in 2D 
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Structure 
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Dual Logistic Regression 

KEY IDEA: 
 
Gradient F is just a vector in 
the data space 
 
Can represent as a weighted 
sum of the data points 
 
 
 
Now solve for Y.  One 
parameter per training 
example. 
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Maximum Likelihood 

Likelihood 

Derivatives 

Depend only depend on inner products! 
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Kernel Logistic Regression 
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ML vs. Bayesian 
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Bayesian case is known as Gaussian process classification 



Relevance vector classification 

Apply sparse prior to dual variables: 
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As before, write as marginalization of dual variables: 



Relevance vector classification 

Apply sparse prior to dual variables: 
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Gives likelihood: 



Relevance vector classification 
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Use Laplace approximation result: 

giving: 



Relevance vector classification 

Previous result: 
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Second approximation: 

To solve, alternately update hidden variables in H and mean and 
variance of Laplace approximation. 



Relevance vector classification 

Results: 
 
Most hidden variables 
increase to larger values 
 

This means prior over dual 
variable is very tight around 
zero 
 

The final solution only 
depends on a very small 
number of examples – 
efficient  
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Structure 
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Incremental Fitting 
Previously wrote: 

Now write: 
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Incremental Fitting 

KEY IDEA:   Greedily add terms one at a time.   

STAGE 1:   Fit  f0,  f1,  x1 

STAGE K:   Fit  f0,  fk,  xk 

STAGE 2:   Fit  f0,  f2,  x2 
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Incremental Fitting 
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Derivative 

It is worth considering the form of the derivative in the 
context of the incremental fitting procedure 

Actual label Predicted Label 

Points contribute to derivative more if they are still 
misclassified:  the later classifiers become increasingly 
specialized to the difficult examples. 
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Boosting 

Incremental fitting with step functions 

Each step function is called a ``weak classifier``  
 
Can’t take derivative w.r.t a so have to just use 
exhaustive search 
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Boosting 
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Branching Logistic Regression 

New activation 

The term                   is a gating function.   
 
• Returns a number between 0 and 1 
• If 0, then we get one logistic regression model 
• If 1, then get a different logistic regression model 

A different way to make non-linear classifiers 
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Branching Logistic Regression 
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Logistic Classification Trees 

64 Computer vision: models, learning and inference.  ©2011 Simon J.D. Prince 



Structure 
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Multiclass Logistic Regression 
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For multiclass recognition, choose distribution over w and 
make the parameters of this a function of x.  

Softmax function maps real activations {an} to numbers 
between zero and one that sum to one  

Parameters are vectors {fn}  



Multiclass Logistic Regression 
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Softmax function maps activations which can take any value to 
parameters of categorical distribution between 0 and 1 



Multiclass Logistic Regression 
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To learn model, maximize log likelihood 

No closed from solution, learn with non-linear optimization 

where 



Structure 
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Random classification tree 
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Key idea: 
• Binary tree 
• Randomly chosen function at each split 
• Choose threshold t to maximize log probability 

 

For given threshold, can compute parameters in closed form 
 



Random classification tree 
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Related models: 
 
Fern:   

• A tree where all of the functions at a level are the same 
• Thresholds per level may be same or different 
• Very efficient to implement 

 
Forest 

• Collection of trees 
• Average results to get more robust answer 
• Similar to `Bayesian’ approach – average of models with 

different parameters 



Structure 
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Non-probabilistic classifiers 
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Most people use non-probabilistic classification methods such 
as neural networks,  adaboost, support vector machines.  This is 
largely for historical reasons 
 
Probabilistic approaches:   

• No serious disadvantages 
• Naturally produce estimates of uncertainty 
• Easily extensible to multi-class case 
• Easily related to each other 



Non-probabilistic classifiers 
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Multi-layer perceptron (neural network) 
• Non-linear logistic regression with sigmoid functions 
• Learning known as back propagation 
• Transformed variable z is hidden layer 

 

Adaboost 
• Very closely related to logitboost 
• Performance very similar 

 

Support vector machines  
• Similar to relevance vector classification but objective fn is convex 
• No certainty 
• Not easily extended to multi-class 
• Produces solutions that are less sparse 
• More restrictions on kernel function 



Structure 
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Gender Classification 
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Incremental logistic regression 
 

300 arc tan basis functions: 
 

Results: 87.5% (humans=95%) 
 



Fast Face Detection  
(Viola and Jones 2001) 
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Computing Haar Features 

78 Computer vision: models, learning and inference.  ©2011 Simon J.D. Prince 

(See “Integral Images” or summed-area tables) 
 



Pedestrian Detection 
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Semantic segmentation 
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Recovering surface layout 
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Recovering body pose 
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