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Exercise 1. Starting from the sum-of-squares error function

ED(w) =
1

2

N∑
n=1

{tn −wTφ(xn)}2

derive the maximum likelihood solution for the parameters

wML = (ΦTΦ)−1ΦT t

where

Φ =


φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) · · · φM−1(xN)

 ,

is the design matrix with basis functions φj(xi), X = {x1, . . . ,xn} the vectors
of input training data and t = {t1, . . . , tn} corresponding output training
values.
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Exercise 2. Consider a data set in which each data point (xn, tn) is associ-
ated with a weighting factor rn > 0, so that the sum-of-squares error function
becomes

ED(w) =
1

2

∑
n

rn(tn −wTφ(xn))2

Find an expression for the solution w∗ that minimizes this error function.
Give two alternative interpretations of the weighted sum-of-squares error
function in terms of (i) data dependent noise variance and (ii) replicated
data points.
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Exercise 3. Generate own data sets, e.g. using t = f(x) + 0.2ε with f(x) =
sin(2πx) and ε ∼ N (0, 1), and illustrate the bias-variance decomposition by
fitting a polynomial model y(x;w) =

∑r
i=0wix

r to many different data sets
D1, . . . , DL, each of length N .
Let w∗,D denote the parameters minimizing the mean squared error on data
set D. Then,

bias2 ≈ 1

L

∑
l

1

N

∑
n

(ȳ(x)− f(x))2

variance ≈ 1

L

∑
l

1

N

∑
n

(y(x;w∗,Dl)− ȳ(x))2

where ȳ(x) = 1
L

∑
l y(x;w∗,Dl).

5 points


