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Randomized Decision Forests

e Veryfasttools for

— classification
— clustering
— regression

 Good generalization throughandomized training

* Inherently multi-class
— automatic feature sharing [Torralbaet al.07]

e Simpletraining / testing algorithms

[“Randomi zed Deci sl on ForestsF’oreS:tSM”]




Randomized Forests in Vision
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Outline

« Randomized Forests
— motivation
— training & testing
— Implementation

— regression, clustering, marargin, boosting

* Applications to Vision
— keypointrecognition
— object segmentation
— human pose estimation
— organ detection

[Lepetitet al.,, 06]
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The Basicds The Grass Wet?

world state

IS It raining?

IS the sprinkler on?

P(wet)
= 0.95

P(wet) P(wet)
= 0.1 =0.9



The BasicBinary Decision Trees

« feature vector v € RV ”O leaf d )
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Decision Tre®seudeCode

double[]] ClassifyDT (node, V)
If node. IsSplitNode  then
if node.f(v)>= node.t then

else
return ClassifyDT (node. left
end
else
return node. P

end
end

return ClassifyDT (node.right , v)




Toy Learning Example
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Randomized Learning

e Recursively split examples at node
— setl , indexedlabeledtraining examplesw, |.):

left split .
T TRe | el
right(s—pTi; ARG qunction{):‘hresmld
examplel’ s

feature vector

* At noden, P,(c) is histogram of example labels



More Randomized Learning

leftsplit I, = {iel,| f(v;) <t}
rightsplit I, = I, \ I

e Featuresf (v) chosen at random from
feature poolf 2 F

» Thresholdg chosen in range e (min; f(v;), max; f(v;))

 Choosd andt to maximize gain in information

A Be—\e —SE () =

[ EntropyE calculated from histogram of labelslin }




Implementation Detalils

« How many features and thresholds to try?
—jJ ust one = “extr e me[Gaurtsetal. 06 o
— few -> fast training, may und€tt, maybe too deep
— many-> slower training, may ovdit

 When to stop growing the tree?
— maximum depth
— minimum entropy gain
— delta class distribution
— pruning



Randomized Learnirgseudo Code

-
TreeNode LearnDT(1)

repeat featureTests times
let f RndFeature ()
let r EvaluateFeatureResponses (I, f)

repeat threshTests times
let t = RndThreshold (r)

let( LI, ILr)y= Split (I, r, t)

let gain = InfoGain (I I, |.r)

If gain Is best then remember f, t, LI, Lr
end

end

If best gain s sufficient
return SplitNode (f, t, LearnDT(I1 | ), LearnDT(Il _r))
else
return LeafNode( HistogramExamples (1))
end
end




Training Strategies
depth first breadth first

] \ ) 3 \ " \
* Recursive algorithm e One pass through data per tree level
— partitions all training examples — can load images on-the-fly
« Store all images in memory e Maintain 4D histogram of size
— can be memory hungry 2966 FMSRT Y X €
A 7 N N
no. no. no. no.
nodes features thresholds classes
e Good for
e Good for

— smaller data sets

— deeper trees — very large data sets

— shallower trees



GPU Acceleration [Sharp 08]

 GPUs can dramatically accelerate

— training — 10xspeedup - breadth first
— testing — 100x speeeup

e Tree Is encoded as GPU texture

Feature Parameters g
Node O -2 =
. (2] =]
Feature Parameters 'c O o o o o
O oz 2 2 = =
< e - o~ c c ] fres)
< 4 © © © b 7]
R [TRO] 9 3 2 2 = =
False True =] o o O O = [a]
Node Q)1 -1 XXX X[X XX X[XXXX|XXXX|XX
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Feature Parameters Feature Parameters Node 2|5 -1 X X X XIx x x xIx x x xIx x x xIx x
False True False True NOde 3 10 XX XX
’—| — 7 Node 4[-1 1 X X X X
-~ - Node 5[-1 2 X X X X
Node 3 Node 4 Node 5 Node 6
Leaf O Distribution || Leaf 1 Distribution Leaf 2 Distribution || Leaf 3 Distribution NodeG £1 83 X X X X

e Caveats

— some limitations on image features
— Implementation requires considerable GPU krloaw



Binary Decision Trees Summary

« Fast greedy training algorithms
— can search infinite pool of features
— heterogeneous pool of features

» Fast testing algorithm

* Needs careful choice dfyper-parameters

— maximum depth
— number of features and thresholds to try

* Prone to oveffitting



A Forest of Trees

e Forest is ensemble of O leaf nodes
several decision trees (O split nodes
\'/ \'/

treet, tree t;

PT(C)
Pl(C) ' ‘ \

categoryc
categoryc
é . )
[Amit & Geman97]
— classification ig°(c|v) = ZPt (c|v) [Breiman01]
\[Lepetitet al.06] )




Decision ForestBseudeCode

g double[]] ClassifyDF (forest , v) A
let P =double[ forest .CountClasses ]
for t =1to forest .CountTrees
let 0 R= ClassifyDT (forest . Tree[t], V)
P=P+0R
end
P =P/ forest .CountTrees
L end )




Learning a Forest

 Divide training examples intd subsets|, 1 |

— Improves generalization
— reducesmemory requirements& training time

» Train each decision treeon subsetl ,
— same decision tree learning as before

* Multi-core friendly

(ASubsetS can be chosen at random or hgnked
ASubsets can have overlap (and usually do)
ACan enforce subsets hages(not just examples)
C&Could also divide the feature pool into subsets




Learning a Forestseudo Code

Forest LearnDF(countTrees , |)

let forest = Forest (countTrees )

for t =1to countTrees
let | t = RandomSplit (1)
forest [t]= LearnDT(I t )
end

return forest
end




Toy Forest Classification Demo

Generate New Examples ]

g
L - Max Depth (2-10)
° 9;
L ]
$o0
T Mumber of Trees (1-100)

6 classes in a 2 dimensional feature space.

Split functions are lines in this space.

U

’ Leam Forest ]

@ Tree Classification

() Forest Classification




Toy Forest Classification Demo
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© Tree Classffication

Forest Classification

With a depth 2 tree, you cannot separate all six classes.



Toy Forest Classification Demo
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@ Tree Classfication

) Forest Classification

With a depth 3 tree, you are doing better, but still cannot separate all six classes.



Toy Forest Classification Demo

» s
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U

[ Leam Forest ]

@ Tree Classffication

() Forest Classffication

With a depth 4 tree, you now have at least as many leaf nodes as classes,
and so are able to classify most examples correctly.



Toy Forest Classification Demo
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) Forest Classification
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® Tree Classiication

) Forest Classification

Number of Categories (2- 20

Generste New Exampies

Max Depth (2-10)

Number of Trees (1-100)

@ Tree Classfication

Forest Classfication

Different trees within

none of which is particularly good on its own.

a forest can give rise to very different decision boundaries,




Toy Forest Classification Demo

o DM P Y -
Number of Categories (2- 20)

U

[ Generate New Examples ]

Max Depth (2-10)
U

Number of Trees (1-100)

U

[ Leam Forest J

Tree Classffication

@ Forest Classffication

But averaging together many trees in a forest can result in decision boundaries
that look very sensible, and are even quite close to the max margin classifier.
(Shading represents entropydarker is higher entropy).



Tree outputs and objective functions

e Trees can be trained for
— classification, regression, or clustering

e Change the object function
|Si

_ . A 2 - 2
— Information gain for classification: = m(s) - ¥ g H(s)  measure of distribution purity
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data classification tree



Regression trees
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2E regression tree
- Realvalued outputy measure of fit of model

- Object function: maximizegrr(s) — Z' il Bre(sy) Err(S) =) (yj—z,r(\:r:j))2
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e.g. linear model y =ax+h
Or just constant model



Clustering trees
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clustering tree
(d)
- Output is cluster membership
- Option 17 minimize imbalance: B =|log|S;| — log|S,| | [Moosmann et al. 06]

- Option 2T maximize Gaussian likelihood: b olie o cl s TRatihin ess

g r 194l (maximizing a function of info gain
1= el Z:l S| s for Gaussian distributions)



Clustering example [Moosmannet al.06]

 Visual words good for e.g. matching, recognition [Sivicet al. 03]
but k-means clustering very slow [Csurkeet al. 04]

 Randomized forests for clustering descriptors
— e.g. SIFT, texton filtdvanks, etc.

* |Leaf nodes in forest are clusters
— concatenate histograms from trees in forest




Clustering example [Moosmannet al.06]
treet; treet;

treet, treet;
A A

>\A{ ( \
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node index



Relation to other parts of this tutorial

* Boosting(Part 1))
— decision trees as weak learners
— boosted classifiers as split functions [Tu05]

e Online learning (Part II)
—trees can be updat edYehaval0/] n

A distributions of leaves
A structure of tree



Relation to Cascades [Viola & Jones 04]

» Boosted Cascades

— very unbalanced tree

— good for unbalanced binary problems
e.g. sliding window object detection

« Randomized forests
— less deep, fairly balanced
— ensemble of trees gives robustness
— good for multiclass problems



Relation to MaxMargin Classifiers

« Max-marginsplit functions [Wuet al, 00]
— split functions have buiin generalization

 Treeof maxmargin classifiers (SVMs)  [Tibshirani& Hastie, 0T
— recursively partition set of classes down the tree

Margin tree




Random Ferns

* NalveBayesclassifier over random sets of features

PO %, - 5 v s Noc s P, i CHREINS B aye SUSSEIN iz
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Individual features

Q
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v
set of features

e Can be good alternative [Ozuysakt al.07]
to randomized forests [Boschet al.07]




Outline

« Randomized Forests
— motivation
— training & testing
— Implementation

— regression, clustering, marargin, boosting

e Applications to Vision
— keypointrecognition
— object segmentation
— human pose estimation
— organ detection

[Lepetitet al.,, 06]

‘ > { S PEE
=2 e \ )
\ ’!g/; \ ..,/,;

keypointrecognition

[Shottonet al., 08]
ject tati
\objec segmental |on/

\

[Rogezt al., 08]
pose estimation

/L

[Criminisiet al., 09]
organ detection )




FastKeypointRecognition [Lepetitet al. 06]

e Wide-baseline matching
as classification problem

e Extract prominent keypoints in training images

* Forest classifies &
.lll
— patches->keypoints I(m) < 1(m,) ‘ Im) > I
m .ml m
e Features t..l e

— pixel comparisons

Augmented training set
— gives robustness to patch scaling, translation, rotation



FastKeypointRecognition [Lepetitet al.06]

 Example videos
— from http://cvlab.epfl.ch/research/augm/detect.php
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http://cvlab.epfl.ch/research/augm/detect.php

RealTime Object Segmentation [Shottonet al.2008]

e Segment image and label segments in réiahe

This is the demo interface.

ut -
il 4

G { i [l & =]

Live Video Input Real-Time Segmentation

Pause Video 9.2 fps

CVPR 2008 Best Demo Award!



Object Recognition Pipeline

extract features clustering assignment
SIFTiilter bank k-means nearest neighbour
SN~——-— \/
hand-crafted unsupervised

classification algorithm
supervised
SVM, decision foreshoosting



Object Recognition Pipeline

Semantic Texton ForessTF)

A decision forest for
clustering& classification

A tree nodes have learned
object category associations

classification algorithm

SVM, decision foreshoosting




Example Semantic Texton Forest
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Leaf Node Visualization

« Average of all training patches at each leaf node




Semantic Textons & Local Classification

test image semantic textons local classification
(colore leaf node index) (colore most likely category)

< ..........................
comparable

ground truth
(for reference)



Segmentation Forest

e Object segmentation

YR o
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building

bicycle

o Adapt TextonBoost [Shottoret al. 07]
— boosted classifielh

textons

D

randomized decision forest
semantic textons



MSRC Dataset Results

building  grass tree cow sheep Sky airplane  water face
bicycle = flower Sign bird book chair road




3D PointCloud Features

test image ground truth result

» [Brostowet al. 08]
— structurefrom-motion cuesfor object segmentation



Human Pose Estimation

|[Rogezt al.08]

 Torus defined on

— dimension lrcyclicalaction (e.g. walking)

— dimension 2: camera view point (360 degrees)

 Discretebins on the torusused as classes in random forest
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Organ Recognition [Criminisiet al.09]

e Quickly localize bodily organs in 3D CT scans

Decision Forests with Long-Range Spatial
Context for Organ Localization in CT Volumes

A. Criminisi, J. Shotton and S. Bucciarelli
Microsoft Research Ltd, Cambridge, UK

In Proc. MICCAI workshop on Probabilistic Models for
Medical Image Analysis (PMMIA), London, 2009.




Brain Segmentation [Yiet al. MICCAI 09]

ground truth result
Method CSF GM WM
Adaptive MAP 0.069 0.564 0.567
Biased MAP 0.071 0.558 0.562
Fuzzy c-means 0.048 0.473 0.567
Maximum-a-posteriori (MAP) 0.071 0.550 (.554
Maximum-likelihood 0.062 0.535 0.551
Tree-Structure k-means 0.049 0.477 0.57
MPM-MAP [11] 0.227 0.662 0.683
MAP with histograms 0.549 + 0.017|0.814 £+ 0.004| 0.710 = 0.005
Decision Forest Classifier ((0.614 + 0.015(0.838 + 0.006(0.731 = 0.007




Take Home Message from Part |

e Randomized decision forests
—very fast

—accuracy comparable with other classifiers

—simple to implement

—extremely flexible tools for computer vision
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Web Resources on Random Forests

e Tutorial Webpage
- http://mi.eng.cam.ac.uk/~tkk22/iccv09_tutorial

e Leo. NB A YWebpspe

- http://www.stat.berkeley.edu/~breiman/RandomForests

 Regression Trees
- http://www.stat.cmu.edu/~cshalizi/350-2006/lecture-10.pdf
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End of Part |
Thank You
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