
http://mi.eng.cam.ac.uk/~tkk22/iccv09_tutorial

Part I:
Random Forests

Jamie Shotton

water

boat
air

road

Part III:
Online Learning

Björn Stenger

http://mi.eng.cam.ac.uk/~tkk22/iccv09_tutorial

Part II:
Boosting

Tae-Kyun Kim

Randomized Decision Forests

• Very fast tools for

– classification

– clustering

– regression

• Good generalization through randomized training

• Inherently multi-class

– automatic feature sharing [Torralba et al. 07]

• Simple training / testing algorithms

“Randomized Decision Forests” = “Randomized Forests” = “Random ForestsTM”

(Among many others...)

Randomized Forests in Vision

[Lepetit et al., 06]
keypoint recognition

[Amit & Geman, 97]
digit recognition

[Moosmann et al., 06]
visual word clustering

[Shotton et al., 08]
object segmentation

water

boat
chair

tree

road

[Criminisi et al., 09]
organ detection

[Rogez et al., 08]
pose estimation

Outline

• Randomized Forests
– motivation

– training & testing

– implementation

– regression, clustering, max-margin, boosting

• Applications to Vision
– keypoint recognition

– object segmentation

– human pose estimation

– organ detection

[Lepetit et al., 06]
keypoint recognition

[Shotton et al., 08]
object segmentation

water

boat
chair

tree

road

[Criminisi et al., 09]
organ detection

[Rogez et al., 08]
pose estimation

The Basics: Is The Grass Wet?

world state

is it raining?

is the sprinkler on?
P(wet)
= 0.95

P(wet)
= 0.9

yesno

yesno

P(wet)
= 0.1

The Basics: Binary Decision Trees

1

2 3

6 74

9

5

8

category c

split nodes

leaf nodes
v

10 11 12 13

14 15 16 17

≥

<

<

≥

Decision Tree Pseudo-Code

double[] ClassifyDT(node, v)
if node.IsSplitNode then

if node.f(v) >= node.t then
return ClassifyDT(node.right, v)

else
return ClassifyDT(node.left, v)

end
else

return node.P
end

end

Toy Learning Example

x

y

• feature vectors are x, y coordinates: v = [x, y]T

• split functions are lines with parameters a, b: fn(v) = ax + by

• threshold determines intercepts: tn
• four classes: purple, blue, red, green

• Try several lines,
chosen at random

• Keep line that best
separates data

– information gain

• Recurse

Toy Learning Example

x

y

• feature vectors are x, y coordinates: v = [x, y]T

• split functions are lines with parameters a, b: fn(v) = ax + by

• threshold determines intercepts: tn
• four classes: purple, blue, red, green

• Try several lines,
chosen at random

• Keep line that best
separates data

– information gain

• Recurse

Toy Learning Example

x

y

• feature vectors are x, y coordinates: v = [x, y]T

• split functions are lines with parameters a, b: fn(v) = ax + by

• threshold determines intercepts: tn
• four classes: purple, blue, red, green

• Try several lines,
chosen at random

• Keep line that best
separates data

– information gain

• Recurse

Toy Learning Example

x

y

• feature vectors are x, y coordinates: v = [x, y]T

• split functions are lines with parameters a, b: fn(v) = ax + by

• threshold determines intercepts: tn
• four classes: purple, blue, red, green

• Try several lines,
chosen at random

• Keep line that best
separates data

– information gain

• Recurse

• Recursively split examples at node n

– set In indexes labeled training examples (vi, li):

• At node n, Pn(c) is histogram of example labels li

Randomized Learning

left split

right split threshold
function of
example i’s

feature vector

• Features f(v) chosen at random from
feature pool f 2 F

• Thresholds t chosen in range

• Choose f and t to maximize gain in information

More Randomized Learning

left split

right split

Entropy E calculated from histogram of labels in I

Implementation Details

• How many features and thresholds to try?

– just one = “extremely randomized” [Geurts et al. 06]

– few -> fast training, may under-fit, maybe too deep

– many -> slower training, may over-fit

• When to stop growing the tree?

– maximum depth

– minimum entropy gain

– delta class distribution

– pruning

Randomized Learning Pseudo Code

TreeNode LearnDT(I)

repeat featureTests times
let f = RndFeature()
let r = EvaluateFeatureResponses(I, f)

repeat threshTests times
let t = RndThreshold(r)
let (I_l, I_r) = Split(I, r, t)
let gain = InfoGain(I_l, I_r)
if gain is best then remember f, t, I_l, I_r

end
end

if best gain is sufficient
return SplitNode(f, t, LearnDT(I_l), LearnDT(I_r))

else
return LeafNode(HistogramExamples(I))

end
end

Training Strategies

breadth firstdepth first

• Recursive algorithm

– partitions all training examples

• Store all images in memory

– can be memory hungry

• Good for

– smaller data sets

– deeper trees

no.

nodes

no.

features

no.

thresholds

no.

classes

GPU Acceleration [Sharp 08]

• GPUs can dramatically accelerate

– training – 10x speed-up – breadth first

– testing – 100x speed-up

• Tree is encoded as GPU texture

• Caveats

– some limitations on image features

– implementation requires considerable GPU know-how

Binary Decision Trees Summary

• Fast greedy training algorithms

– can search infinite pool of features

– heterogeneous pool of features

• Fast testing algorithm

• Needs careful choice of hyper-parameters

– maximum depth

– number of features and thresholds to try

• Prone to over-fitting

• Forest is ensemble of
several decision trees

– classification is

A Forest of Trees

……
tree t1 tree tT

category c

category c

split nodes

leaf nodes

[Amit & Geman 97]
[Breiman 01]
[Lepetit et al. 06]

v v

Decision Forests Pseudo-Code

double[] ClassifyDF(forest, v)
// allocate memory
let P = double[forest.CountClasses]

// loop over trees in forest
for t = 1 to forest.CountTrees

let P’ = ClassifyDT(forest.Tree[t], v)
P = P + P’ // sum distributions

end

// normalise
P = P / forest.CountTrees

end

Learning a Forest

• Divide training examples into T subsets Itµ I

– improves generalization

– reduces memory requirements & training time

• Train each decision tree t on subset It
– same decision tree learning as before

• Multi-core friendly

• Subsets can be chosen at random or hand-picked
• Subsets can have overlap (and usually do)
• Can enforce subsets of images (not just examples)
• Could also divide the feature pool into subsets

Learning a Forest Pseudo Code

Forest LearnDF(countTrees, I)
// allocate memory
let forest = Forest(countTrees)

// loop over trees in forest
for t = 1 to countTrees

let I_t = RandomSplit(I)
forest[t] = LearnDT(I_t)

end

// return forest object
return forest

end

Toy Forest Classification Demo

6 classes in a 2 dimensional feature space.
Split functions are lines in this space.

Toy Forest Classification Demo

With a depth 2 tree, you cannot separate all six classes.

Toy Forest Classification Demo

With a depth 3 tree, you are doing better, but still cannot separate all six classes.

Toy Forest Classification Demo

With a depth 4 tree, you now have at least as many leaf nodes as classes,
and so are able to classify most examples correctly.

Toy Forest Classification Demo

Different trees within a forest can give rise to very different decision boundaries,
none of which is particularly good on its own.

Toy Forest Classification Demo

But averaging together many trees in a forest can result in decision boundaries
that look very sensible, and are even quite close to the max margin classifier.
(Shading represents entropy – darker is higher entropy).

data classification tree

class

class

class

class

class

S

S1 S2

Tree outputs and objective functions

• Trees can be trained for

– classification, regression, or clustering

• Change the object function

– information gain for classification: measure of distribution purity

Regression trees

- Real-valued output y
- Object function: maximize

measure of fit of model

e.g. linear model y = ax+b,
Or just constant model

data
x

y

S

S1 S2

regression tree

Clustering trees

- Output is cluster membership

- Option 1 – minimize imbalance:

- Option 2 – maximize Gaussian likelihood: measure of cluster tightness

(maximizing a function of info gain

for Gaussian distributions)

clustering tree

S

S1 S2

[Moosmann et al. 06]

Clustering example [Moosmann et al. 06]

• Visual words good for e.g. matching, recognition

but k-means clustering very slow

• Randomized forests for clustering descriptors

– e.g. SIFT, texton filter-banks, etc.

• Leaf nodes in forest are clusters

– concatenate histograms from trees in forest

543

1

2

8 96 7

42 61 3

98

……

tree t1 tree tT

75

[Sivic et al. 03]
[Csurka et al. 04]

543

1

2

8 96 7

42 61 3

98

……

tree t1 tree tT

75
fr

eq
u

e
n

cy

tree t1 tree tT

node index

“bag of
words”

Clustering example [Moosmann et al. 06]

Relation to other parts of this tutorial

• Boosting (Part II)

– decision trees as weak learners

– boosted classifiers as split functions [Tu 05]

• Online learning (Part III)

– trees can be updated ‘online’ [Yeh et al. 07]

• distributions of leaves

• structure of tree

Relation to Cascades [Viola & Jones 04]

• Boosted Cascades

– very unbalanced tree

– good for unbalanced binary problems
e.g. sliding window object detection

• Randomized forests

– less deep, fairly balanced

– ensemble of trees gives robustness

– good for multi-class problems

Relation to Max-Margin Classifiers

• Max-margin split functions [Wu et al., 00]

– split functions have built-in generalization

• Tree of max-margin classifiers (SVMs) [Tibshirani & Hastie, 07]

– recursively partition set of classes down the tree

Random Ferns

• Naïve Bayes classifier over random sets of features

• Can be good alternative
to randomized forests

[Özuysal et al. 07]
[Bosch et al. 07]

set of features

“random ferns”

individual features

“naïve Bayes”

Bayes’ rule

Outline

• Randomized Forests
– motivation

– training & testing

– implementation

– regression, clustering, max-margin, boosting

• Applications to Vision
– keypoint recognition

– object segmentation

– human pose estimation

– organ detection

[Lepetit et al., 06]
keypoint recognition

[Shotton et al., 08]
object segmentation

water

boat
chair

tree

road

[Criminisi et al., 09]
organ detection

[Rogez et al., 08]
pose estimation

Fast Keypoint Recognition [Lepetit et al. 06]

• Wide-baseline matching
as classification problem

• Extract prominent key-points in training images

• Forest classifies

– patches -> keypoints

• Features

– pixel comparisons

• Augmented training set

– gives robustness to patch scaling, translation, rotation

Fast Keypoint Recognition [Lepetit et al. 06]

• Example videos

– from http://cvlab.epfl.ch/research/augm/detect.php

http://cvlab.epfl.ch/research/augm/detect.php

Real-Time Object Segmentation [Shotton et al. 2008]

• Segment image and label segments in real-time

CVPR 2008 Best Demo Award!

Object Recognition Pipeline

extract features

SIFT, filter bank

clustering

k-means

unsupervisedhand-crafted

classification algorithm

SVM, decision forest, boosting

supervised

assignment

nearest neighbour

Object Recognition Pipeline

STF

clustering into
‘semantic textons’

Semantic Texton Forest (STF)

• decision forest for
clustering & classification

• tree nodes have learned
object category associations

classification algorithm

SVM, decision forest, boosting

Example Semantic Texton Forest

Input Image Ground Truth

A[r] + B[r] > 363A[b] > 98

A[g] - B[b] > 28

A[g] - B[b] > 13A[b] + B[b] > 284

|A[r] - B[b]| > 21|A[b] - B[g]| > 37

Ex
am

p
le

Pa
tc

h
e

s

Leaf Node Visualization

• Average of all training patches at each leaf node

tree 1

tree 2

tree 3

tree 4

tree 5

Semantic Textons & Local Classification

test image

ground truth
(for reference)

semantic textons
(color leaf node index)

local classification
(colormost likely category)

comparable

Segmentation Forest

• Object segmentation

• Adapt TextonBoost [Shotton et al. 07]

– boosted classifier → randomized decision forest
textons → semantic textons

bicycle

road

building

MSRC Dataset Results

bicycle flower sign bird book chair road cat dog body

building grass tree cow sheep sky airplane water face car

b
o
at

3D Point-Cloud Features

• [Brostow et al. 08]

– structure-from-motion cues for object segmentation

test image ground truth result

Human Pose Estimation [Rogez et al. 08]

• Torus defined on

– dimension 1: cyclical action (e.g. walking)

– dimension 2: camera view point (360 degrees)

• Discrete bins on the torus used as classes in random forest

Organ Recognition [Criminisi et al. 09]

• Quickly localize bodily organs in 3D CT scans

Brain Segmentation [Yi et al. MICCAI 09]

ground truth result

Take Home Message from Part I

• Randomized decision forests

– very fast

– accuracy comparable with other classifiers

– simple to implement

– extremely flexible tools for computer vision

References (red = most relevant)
• Amit & Geman

– Shape Quantization and Recognition with Randomized Trees.

– Neural Computation 1997.

• Bosch et al.

– Image Classification using Random Forests and Ferns.

– ICCV 2007.

• Breiman

– Random Forests.

– Machine Learning Journal 2001.

• Breiman et al.

– Classification and Regression Trees

– Chapman & Hall, 1984.

• Brostow et al.

– Segmentation and Recognition using Structure from Motion Point Clouds.

– ECCV 2008.

• Csurka et al.

– Visual Categorization with Bags of Keypoints.

– ECCV Workshop on Statistical Learning in Computer Vision, 2004.

• Fuchs & Buhmann

– Inter-Active Learning of Randomized Tree Ensembles for Object Detection.

– ICCV Workshop on On-line Learning for Computer Vision, 2009.

• Geurts et al.

– Extremely Randomized Trees.

– Machine Learning 2006.

• Grauman & Darrel

– The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features.

– ICCV 2005.

• Hua et al.

– Discriminant Embedding for Local Image Descriptors.

– ICCV 2007.

• Jurie & Triggs

– Creating Efficient Codebooks for Visual Recognition.

– ICCV 2005.

• Lazebnik et al.

– Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories.

– CVPR 2006.

• Lepetit et al.

– Keypoint Recognition using Randomized Trees.

– PAMI 2006.

• Lowe

– Distinctive image features from scale-invariant keypoints.

– IJCV 2004.

• Malik et al.

– Contour and Texture Analysis for Image Segmentation.

– IJCV 2001.

• Mikolajczyk & Schmid

– Scale and Affine invariant interest point detectors.

– IJCV 2004.

• Moosmann et al.

– Fast Discriminative Visual Codebooks using Randomized Clustering Forests.

– NIPS 2006.

• Nister & Stewenius

– Scalable Recognition with a Vocabulary Tree.

– CVPR 2006.

• Özuysal et al.

– Fast Keypoint Recognition in Ten Lines of Code.

– CVPR 2007.

– Rogez et al.

– Randomized Trees for Human Pose Detection.

– CVPR 2008.

• Sharp

– Implementing Decision Trees and Forests on a GPU.

– ECCV 2008.

• Shotton et al.

– Semantic Texton Forests for Image Categorization and Segmentation.

– CVPR 2008.

• Shotton et al.

– TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture,
Layout, and Context.

– IJCV 2007.

• Sivic & Zisserman

– Video Google: A Text Retrieval Approach to Object Matching in Videos.

– ICCV 2003.

– Tibshirani & Hastie

– Margin trees for high-dimensional classification.

– JMLR 2007.

• Torralba et al.

– Sharing visual features for multiclass and multiview object detection.

– PAMI 2007.

– Tu

– Probabilistic Boosting-Tree: Learning Discriminative Models for Classification, Recognition, and Clustering.

– ICCV 2005.

• Tu

– Auto-context and Its application to High-level Vision Tasks.

– CVPR 2008.

• Tuytelaars & Schmid

– Vector Quantizing Feature Space with a Regular Lattice.

– ICCV 2007.

• Varma & Zisserman

– A statistical approach to texture classification from single images.

– IJCV 2005.

• Verbeek & Triggs

– Region Classification with Markov Field Aspect Models.

– CVPR 2007.

• Viola & Jones

– Robust Real-time Object Detection.

– IJCV 2004.

• Winn et al.

– Object Categorization by Learned Universal Visual Dictionary.

– ICCV 2005.

– Wu et al.

– Enlarging the Margins in Perceptron Decision Trees.

– Machine Learning 2000.

– Yeh et al.

– Adaptive Vocabulary Forests for Dynamic Indexing and Categry Learning.

– ICCV 2007.

Web Resources on Random Forests

• Tutorial Webpage

– http://mi.eng.cam.ac.uk/~tkk22/iccv09_tutorial

• Leo Breiman’s Webpage

– http://www.stat.berkeley.edu/~breiman/RandomForests

• Regression Trees

– http://www.stat.cmu.edu/~cshalizi/350-2006/lecture-10.pdf

End of Part I

Thank You
jamie@shotton.org

http://mi.eng.cam.ac.uk/~tkk22/iccv09_tutorial

Internships at Microsoft Research Cambridge
available for next spring/summer. Talk to me or see:

http://research.microsoft.com/en-us/jobs/intern/about_uk.aspx

