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 When and why is linear algebra useful? 
 Vectors and their operations 
 Matrices and their operations 
 Special  matrices 
 Determinants 
 Eigenvalues and eigenvectors

Overview
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Why linear algebra?
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Matrix addition and subtraction
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Matrix addition and subtraction

subtract the mean:

fe
at
ur
e 2

feature 1



Matrix addition and subtraction

subtract the mean:

fe
at
ur
e 2

feature 1



fe
at
ur
e 2

Scalar times vector

feature 1



Scalar times vector
fe
at
ur
e 2

feature 1



Product of two vectors

•   Element-by-element 
•   Inner product 
•   Outer product



Element-by-element  product 
 (Hadamard product)



Element-by-element  product 
 (Hadamard product)
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       [162, 162, 162, ..., 170, 155, 128], 
       [162, 162, 162, ..., 170, 155, 128], 
       [162, 162, 162, ..., 170, 155, 128], 
       ...,  
       [ 43,  43,  50, ..., 104, 100,  98], 
       [ 44,  44,  55, ..., 104, 105, 108], 
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    + 1000.25
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Example

   (IMG - MIN)*255/MAX



Product of two vectors

•   Element-by-element 
•   Inner product 
•   Outer product
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Dot product geometric intuition: 
 “Overlap” of 2 vectors
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Norm:

Dot product geometric intuition: 
 “Overlap” of 2 vectors



Dot product geometric intuition: 
 “Overlap” of 2 vectors

0

Orthogonal vectors:



  Multiplication: 
Dot product (inner product) Example 1 
 weighted average
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For each patient, you also measure their Asperger’s disorder quotient
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  Multiplication: 
Dot product (inner product) Example 2 
 linear regression 

   patient

For each patient, you also measure their Asperger’s disorder quotient

https://psychology-tools.com/autism-spectrum-quotient/
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Product of two vectors

•   Element-by-element 
•   Inner product 
•   Outer product



Multiplication:  Outer product

N X 1 1 X M



Multiplication:  Outer product

N X 1 1 X M N X M
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Multiplication:  Outer product



Multiplication:  Outer product

•   Note: each column or each row is a multiple of the 
 others



Multiplication:  Outer product 
 Example: Covariance Matrices 



Matrix times vector



Matrix times vector

M X 1 M X N N X 1



 Matrix times vector: 
inner product interpretation

•   Rule: the ith element of y is the dot product of 
 the ith row of W with x



 Matrix times vector: 
inner product interpretation

•   Rule: the ith element of y is the dot product of 
 the ith row of W with x



 Matrix times vector: 
inner product interpretation

•   Rule: the ith element of y is the dot product of 
 the ith row of W with x



 Matrix times vector: 
inner product interpretation

•   Rule: the ith element of y is the dot product of 
 the ith row of W with x



 Matrix times vector: 
outer product interpretation

•   The product is a weighted sum of the columns 
 of W, weighted by the entries of x
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 Matrix times vector: 
outer product interpretation

•   The product is a weighted sum of the columns 
 of W, weighted by the entries of x



Example of the outer product method



Example of the outer product method

(3,1)
(0,2)



Example of the outer product method

(3,1)

(0,4)



Example of the outer product method

(3,5)
•   Note: different 
  combinations of 
  the columns of M 
  can give you any 
  vector in the 
  plane 
 (we say the columns of M 
 “span” the plane)



Vector space
• A set of “vectors" with rules for vector addition and multiplication by real numbers 
• Conditions: VS includes an identity vector and zero vector, closed under addition and 

multiplication etc. etc.

Subset of a vector space, closed under addition and multiplication (should contain zero)

Vector subspace

Vector subspace  
«spanned» by a matrix 



Rank of a Matrix

•   Are there special matrices whose columns don’t
span the full plane?



  Rank of a Matrix 

•   Are there special matrices whose columns don’t 
 span the full plane? 

   (1,2)

  (-2, -4) 

    You can only get vectors along the (1,2) direction  
 (i.e. outputs live in 1 dimension, so we call the  
 matrix rank 1)



  Example: Development  of cell types 

genes 

   cell types 

 x2

y3    •   W32 is the influence of gene 2 
 on developing cell type 3

W32



 Example: Development of cell types 
  inner product point of view 

•   How many cells of type 3 will be created?

  

•   The response is the dot 
 product of the 3rd row of W 
 with the vector x (gene 
 expressions)



Example: Development of cell types:
outer product point of view

•   How does gene 2 contribute to the distribution of
cell types?

Contribution 
of xj to 

cell types

1stcolumn 
of W



Product of 2 Matrices

•    inner matrix dimensions must agree 
•    Note: Matrix multiplication  doesn’t (generally) commute, AB ≠ BA

N X P P X M N X M



Matrix times Matrix: 
 by inner products

•   Cij is the inner product of the ith row of A with the jth column 
 of B



Matrix times Matrix: 
 by inner products

•   Cij is the inner product of the ith row of A with the jth column 
 of B



Matrix times Matrix: 
 by outer products



Matrix times Matrix: 
 by outer products



Matrix times Matrix: 
 by outer products



Matrix times Matrix: 
 by outer products

•C is a sum of outer products of the columns of A with the rows 
 of B



• (A few) special matrices 
• The determinant 
• Eigenvalues and eigenvectors

Matrix Properties



•   This acts like scalar multiplication

Special matrices: diagonal matrix



Special matrices: identity matrix

=



Does the inverse always exist?

Special matrices: inverse matrix

If a matrix does not have an inverse, it is called singular 



Special matrices: transpose matrix

• write the rows of A as the columns

Special matrices: symmetric matrix



• (A few) special matrices 
• The determinant 
• Eigenvalues and eigenvectors

Matrix Properties



How does a matrix transform a square?

(1,0)

(0,1)



How does a matrix transform a square?

(1,0)

(0,1)

Mx?



What do matrices do to vectors?

(3,1)
(0,2) (2,1)



Recall

(3,5)

(2,1)



What do matrices do to vectors?

(3,5)

•   The new vector is: 
 1) rotated

2) scaled(2,1)



What do matrices do to vectors?

https://en.wikipedia.org/wiki/Matrix_(mathematics)



How does a matrix transform a square?

(3,1)
(0,2)

(1,0)

(0,1)

Mx?



Geometric definition of the determinant: How 
 does a matrix transform a square?

(1,0)

(0,1) (b,d)
(a,c)



Geometric definition of the determinant: How 
 does a matrix transform a square?

(1,0)

(0,1)

what about ?



Geometric definition of the determinant: How 
 does a matrix transform a square?

(1,0)

(0,1)

what about

(-1,-2)

(1,2) no area!

this means the 
determinant is
zero



Determinant rules: 



Trace of the matrix: sum of diagonal values

Diagonal matrix: det(A) = tr[A]

Identity matrix: det(I) = tr[I] = 1



• (A few) special matrices 
• The determinant 
• Eigenvalues and eigenvectors

Matrix Properties



Eigenvalues and eigenvectors

Let A be a squared matrix 
    is an eigenvalue of A  
if there exists a nonzero vector x such that

eigenvalue eigenvector



Eigenvalues and eigenvectors

Let A be a squared matrix 
    is an eigenvalue of A  
if there exists a nonzero vector x such that

eigenvalue eigenvector



Eigenvalues and eigenvectors

Let A be a squared matrix 
    is an eigenvalue of A  
if there exists a nonzero vector x such that

eigenvalue eigenvector

Geometrical interpretation
A defines linear transformation,  
x defines a direction  
in which deformation is simple stretching / compression



Vectors and their operations 
 Element-by-element product 
 Inner product 
 Outer product 

Matrices and their operations 
 Inner product interpretation 
 Outer product interpretation 

Special  matrices 
Determinants 
 Eigenvalues and eigenvectors 

Recall


