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Abstrakt

Rascher Fortschritt in Rechenleistung, Verfügbarkeit günstiger Sensoren und flexibler Al-

gorithmen fördern die Entwicklung von Echtzeit-Videoüberwachungs-Systemen. In gewis-

sen Anwendungsbereichen kann die Nutzung von intelligenten Videosystemen nur erfol-

gen, wenn erforderliche Qualitätsmerkmale in Hinblick auf die System-Leistung garaniert

werden können. Die vorliegende Arbeit beschäftigt sich mit der Frage, wie ein solches

System designt werden sollte, das vom Anwender vorgegebene Anforderungen erfüllt. Es

wird gezeigt, dass es unter Zuhilfenahme statistischer Methoden möglich ist, Kontroll-

Parameter des Systems automatisch zu bestimmen/optimiern und quantitativ den Ein-

satzbereich des Systems zu bestimmen. Voraussetzung ist die vernünftiger Wahl der

System-Module und eine gezielter Untersuchung, wie die verschidenen Parameter das

Systemverhalten beeinflussen.

Die vorliegende Arbeit konzentriert sich auf das Entwerfen und Bilden eines Zwei-

Kamera Systems, das Personen im Raum detektiert und ein gezoomtes Bild ihrer Köpfe

liefert und vordefinerte anwendungsspezifische Anforderungen erfüllt. Ziel des Systems

ist einerseits die kontinuierliche Bereitstellung eines Überblick-Bildes der Szene und an-

dererseits die gleichzeitige Bereitstellung eines hochauflösenden herangezoomten Bildes

vom Kopf einer Person, die sich irgendwo in dem zu überwachenden Bereich befindet.

Hierzu wird ein omni-direktionals Video verarbeitet. Nach Lokalisierung der Person im

omni-direktionalen Bild erfolgt eine Koordinaten-Transformation mithilfe der der Senk-

und Neigewinkel sowie der Zoom einer aktive Kamera präzise kontrolliert werden. Wir

werden feststellen, dass sowohl die Schätzwerte als auch die zugehörige Datenunsicherheit

einen Fuktion der zugrunde liegenden Geometrie, Lichtbedingungen, des Hintergrund-

Kontrastes, der relativen Position zwischen der Person und beiden Kameras sowie der

Kalibierungs-Fehler und des Sensor-Rauschens sind. Die Unsischheit in den Schatzwerten

wird benutzt, um den Zoom-Parameter adaptiv einzustellen, so dass mit einer vom An-

wender vorgegebenen Wahrschinlichkeit αZ der komplette Kopf einer Person im Bild der

aktiven Kamera abgebildet wird. Je grösser die Wahrschinlichkeit αZ gewählt wird, desto

weniger weit zoomt das System. In unserem System haben wir αZ auf 95% gesetzt.

Im zweten Teil der Arbeit wird erläutert, wie mit nur minimalem Aufwand an Re-

Design und Analyse, der Einsatzbereich das existiernede System erweitert werden kann,

wenn bereits in der Design-Phase systemeatischen Entwicklungs-Prinzipien gefolgt wurde.

Die Schlussfolgerung wird sein, dass wenn geeignete Module und statistische Represen-

tationen gewählt werden, es möglich ist, das bereits existierende System-Design und

Analyse-Ergebnisse zu übernehemen. Während das original System für Innenanwendun-

gen mit statischer Beleuchtung konzipiert wurde, wird das endgültige System dahinge-

hend erweitert, dass es auch in Bereichen eingesetzt werden kann, die unter sich dy-

namisch ändernden natürlichen Beleuchtungseinflüssen stehen. Es wird gezeigt, dass



nach Erweiterung fast sämtliche Module und fast die gesammte Leistungsanalyse des

alten Systems übernommen werden können. Das System ist im Eingagnsbereich eines

Bürogebäudes tags und nachts zuverlässig im Einsatz.

Schlüsselworte: System Entwickklung, Statistische Modellierung, Fehler Analyse, Leis-

tungs Charakterisierung, Echtzeit, Video Überwachung.
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Abstract

Rapid improvement in computing power, cheap sensing and more flexible algorithms

are facilitating increased development of real-time video surveillance and monitoring sys-

tems. The deployment of video understanding systems in certain critical applications in

the real world can be done only if performance guarantees can be provided for these sys-

tems. This work emphasizes on how to systematically design such a system, which matches

user defined requirements. It will be illustrated that by judiciously choosing the system

modules and by performing a careful analysis of the influence of various tuning parameters

on the system it is possible to perform proper statistical inference, to automatically set

control parameters and to quantify performance limits.

This work focuses on engineering a dual-camera real-time people detection and zoom-

ing system that meets given application requirements. The goal of the system is to contin-

uously provide an image of the entire scene as well as a high resolution zoomed-in image

of a person’s head at any location of the monitored area. An omni-directional camera

video is processed to detect people and to precisely control a high-resolution foveal cam-

era, which has pan, tilt and zoom capabilities. The pan and tilt parameters of the foveal

camera and its uncertainties are shown to be functions of the underlying geometry, light-

ing conditions, background color/contrast, relative position of the person with respect to

both cameras as well as of sensor noise and calibration errors. The uncertainty in the

estimates is used to adaptively estimate the zoom parameter that guarantees with a user

specified probability, αZ , that the detected person’s face/head is contained and zoomed

within the image. The higher the probability αZ the more conservative the zoom factor

would be. We set αZ to 0.95 in our current system.

In the second part it will be shown how the existing system designed and analyzed by

following rigorous systematic engineering principles can be extended to relax the system

operating conditions with minimal re-design and analysis efforts. The key conclusion is

that by choosing appropriate modules and suitable statistical representations, we are

able to re-use existing system design and performance analysis results. While the original

system was designed for indoor (static illumination) settings the final system is extended

to deal with dynamic illumination changes in a quasi outdoor setting. It is shown that

extensive re-use of the original system and its performance characterization results can

be achieved. The system operates reliably during days and night conditions in an office

building lobby.

Keywords: System Engineering, Statistical Modeling, Error Analysis, Performance Char-

acterization, Real-Time, Video Surveillance, Monitoring.
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Chapter 1

Introduction

The combination of drop in price of visual sensors along with increasing availability of

cheap computational power is making feasible real-time systems for video processing [65].

In the commercial sector, there is a growing need for video surveillance monitoring, for ex-

ample to improve public safety and security. There is an increased use of video surveillance

systems in urban areas, public transportation systems, etc. This growth is accelerated by

facts that the sensors are getting advanced and cheaper (e.g. novel sensing methods such as

the omni-directional video camera, omni-directional stereo sensor, real-time stereo sensors,

are now products) and processing is getting cheaper. Visual surveillance and monitoring

(VSAM) systems are increasingly becoming strongest factors in prevention and reduc-

tion of crime, and in the improvement of effective management of resources (e.g. traffic

management, subway monitoring). The engineering of such systems to meet application

specific computational and accuracy requirements is crucial to the rapid deployment of

these systems.

This thesis focuses on three main aspects:

• It illustrates the use of systematic engineering methodology outlined in [97] to design

and validate a real-time system with given computational and accuracy constraints.

• It shows that by judicious choice of the intermediate transforms (components of the

system) along with a careful analysis of the influence of various parameters in the

system, it is possible to perform proper statistical inference, to automatically set the

control parameters and to quantify and predict the limits of a real-time dual-camera

video surveillance system.

• It investigates how it is possible to extend the system by taking it from constraint

indoor settings to quasi-outdoor.

1
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1.1 Problem Statement

This section briefly states the problems being addressed in this thesis. On the abstract

level the problem of translating requirements to system design is investigated before the

insights gained are then applied to designing a real-time dual-camera people detection

and zooming system. Finally, we address the challenge of how to relax constraints and

add requirements to a given system without changing the architecture, existing modules

and analysis.

1.1.1 Translating Requirements to System Design:

The typical scenario in an industrial research and development unit developing vision sys-

tems is that a customer defines a system specification and its requirements. The engineer

then translates these requirements to a system design and validates that the system de-

sign meets the user-specified requirements. The system requirements in the video analysis

setting often involves the specification of the operating conditions, the types of sensors,

the accuracy requirements, and the computational requirements to be met by the system.

The operating conditions essentially restrict the space of possible inputs by restricting the

type of scene geometry, the physical properties such as object material types, and illumi-

nation conditions, and object dynamics. The accuracy requirements are usually defined in

terms of detection and false alarm rates for objects, while the computational requirement

is specified typically by the system response time to an object’s presence (e.g. real-time or

delayed?). The objective of the vision systems engineer is to then exploit these restrictions

(i.e. constraints) and design a system that is optimal in the sense that it meets customer

requirements in terms of speed, accuracy and cost.

The main problem, however, is that there is no known systematic way for vision

systems engineers to go about doing this translation of the system requirements to a

detailed design. It is still an art to engineer systems that meet given application specific

requirements. There are two fundamental steps in the design process: The choice of the

system architecture and modules for accomplishing the task, and the statistical analysis

and validation of the system to check if it meets user requirements. In real-life, the system

design and analysis phases typically follow each other in a cycle until the engineer obtains a

design and an appropriate analysis that meets the user specifications. Figure 1.1 illustrates

the design and analysis process.

Automation of the design process is a research area with many open issues, although

there have been some studies in the context of image analysis (e.g. automatic program-

ming); please see: [39], [118], [64]. The systems analysis (performance characterization)

phase in the context of video processing systems is an active area of research in the last

few years. Performance evaluation of image and video analysis components or systems is
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Figure 1.1: System Design and Analysis Phases for Vision Systems

an active research topic in the vision community ( [17], [35], [47], [53], [54], [97], [102],

[134]). In chapter 2 the literature in performance characterization and other related work

in computer vision is reviewed.

1.1.2 Dual-Camera Surveillance System Design & Analysis:

Given that background, this work focuses on how to engineer an actual visual surveillance

system that

• constantly monitors wide regions of interest (ROI)

• automatically detects people in the ROI

• simultaneously provides high resolution images of a person’s head if within the ROI

• meets precision requirements

• provides quantitative performance measures at any given time

• provides a framework that is extendable and promotes re-use of modules

The use of the methodology above will be illustrated in the context of video surveil-

lance. The analysis (Greiffenhagen et al [40, 41]) involves statistical modelling and perfor-

mance characterization of a real-time dual-camera surveillance system. The design of the

system has to be chosen such that application specific priors in the 3D geometry, camera

geometry, the illumination model parameters, and object interaction/motion parameters

are taken into account while designing the object detection and zooming system. It will

be described how it is possible to meet the real-time constraints while satisfying accuracy

constraints (under certain restrictive assumptions).
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1.1.3 Relaxing Constraints, System Extension:

In general, systems are designed for a certain scenario. Nevertheless, often the same system

is to be taken to perform in a different environment with requirements that do not cor-

respond to the original system requirements and constraints at the time the system was

designed. One part of this work deals with the question how to adapt an existing system,

that was design by following the methodology mentioned above, to new, relaxed con-

straints and added requirements without changing the architecture, existing modules or

analysis.

1.2 Contribution of the Thesis

There are two main contributions of this thesis:

• One contribution is the demonstration of a systematic design methodology for build-

ing a complete real-time video surveillance system.

• The other contribution deals with the adaptation of the existing system to show how

one can incrementally evolve the current system design to meet added requirements.

First, this thesis demonstrates how one can design a complete vision system that takes

application specific priors into account and propagates them through each transform of

the system. It will be shown that tuning constants can be derived automatically and

adaptively, given certain performance constraints such as real-time operation, adaptive

zooming, and the need to adapt automatically to different settings. It will be demon-

strated how quantitative performance measures can be defined in respect to the system’s

task and application requirements to boost performance and predict consistent and re-

liable system behavior. While [97] does propagate probability density functions (pdfs)

and uncertainties through the entire chain of transforms and tunes system parameters in

respect to the final task, it does not address real-time issues and the choice of the architec-

ture itself. In this thesis, a complete real-time dual-camera people detection and zooming

system is built and analyzed. The system tracks a person in an omnidirectional image

and controls pan tilt and zoom of a second (active) camera. By following the proposed

design methodology we were able to design the system such that the control parame-

ters are automatically set based on the underlying geometry, current lighting conditions,

current background/contrast, relative position of the person with respect to both cam-

eras and sensor noise and calibration errors. The analysis conducted helps to obtain the

performance limits of the system.

Secondly, a new approach based on the framework and module design chosen is pro-

posed to extend the system such that new, user-defined requirements can be added, and
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operating constraints be relaxed while maintaining the previously conducted statistical

analysis valid and untouched. For that, re-use of existing modules is proposed as well

as incorporation of augmented third party modules. This allows fast improvements of a

given system without redesigning modules from scratch and adapting them to new feature

spaces. The theoretical results are demonstrated on the illumination module. It is demon-

strated how to migrate a system originally designed for indoor and static background to

a system, which runs stable and predictable under varying light conditions (influenced by

artificial and natural light sources) and changing background. It is shown how to augment

a third party module in order to meet the application requirements and how to statisti-

cally correctly fuse the existing with the augmented module. The final system combines

advantages of both modules and operates during day and night conditions in an office

building entrance lobby, which is lit by daylight and artificial light during day and lit

by artificial light only during the night. For each system module, model assumptions are

validated. Finally, the system modules are validated to ensure that the modules model

the real world correctly.

1.3 Organisationtion of the Thesis

Chapter 2 reviews work on performance characterization and system analysis methodol-

ogy. In the second section, we review work on visual surveillance and monitoring systems.

Since in our application precise segmentation greatly influences the performance, the re-

view also addresses illumination invariant background adaptation.

Chapter 3 provides background information and motivation for why the proposed

approach is chosen. Since this work draws on ideas outlined in [97] a detailed review of

this work is provided. The section also motivates the choice to use a catadioptric imaging

system as proposed in [84] and reviews alternative approaches to wide field of view image

processing systems.

Chapter 4 explains how the application specific priors and requirements influence the

choice of the system architecture. It illustrates how perturbations can be propagated

through the chosen surveillance system configuration involving change detection, people

detection, people location determination and camera parameter estimation, and points

out how this approach differs from the work outlined in [97]. The first part involves

the design issues (choice of the system configuration given application requirements and

priors), and emphasizes on statistical modelling, uncertainty propagation and on how to

consider prior information. The second part describes in detail the chosen algorithm and

explains the transforms module-wise. The third section involves the systems analysis of

the system configuration chosen. The final section provides an experimental validation of

the theoretical results in the analysis. Finally, it demonstrates the system’s performance
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under a variety of settings. The system is therefore installed at different locations to show

automatic adaptation and reliability.

Chapter 5 describes how for the given system user-defined requirements can be added

to the existing system and how constraints can be relaxed while re-using existing mod-

ules, and maintaining the previously conducted statistical analysis valid and untouched. It

demonstrates yet another loop in the design phase of a vision system. The approach is illus-

trated on the illumination module, which was primarily designed for constant background

in indoor environments, and is extended to cope with changing background influenced by

natural light. The chapter emphasizes on adding and augmenting a third party module to

the existing system, such that the system operates stable during day and night conditions.

Under the new conditions, long-term experiments similar to the ones with the original

system configuration are conducted. It is shown that the experimental results match the

theoretically expected results. Finally it is demonstrated that the analysis conducted for

the old system remains valid.

Chapter 6 presents results and insights gained using the proposed methodology for

system engineering and design in respect to the application of our real-time dual-camera

people detection and zooming system.

Chapters 7 summarizes this thesis; chapter 8 closes with an outlook on future work.



Chapter 2

Literature Review

This work focuses on both, the theoretical as well as the design aspects of an actual

video surveillance and monitoring (VSAM) system. Therefore, this chapter reviews liter-

ature on both, A) on system engineering methodology, which aims to build robust and

predictable vision systems that work under a variety of predefined conditions, and B)

on existing VSAM systems. The second part particularly focuses on available segmenta-

tion and background adaptation techniques, since precise segmentation is crucial in our

application.

2.1 System Methodology

This section reviews past work on performance characterization and system analysis

methodology.

2.1.1 Performance Characterization Literature Review

The need for rigorous performance evaluation of vision algorithms have been stressed in

the 80’s and in the early 90’s (for example: Haralick [53], [45], Jain and Binford [63],

Petkovic [91], Price [93]). Early work in performance characterization was aimed at the

identification of the methodology for characterizing limits of vision systems. For example,

Haralick [54] outlines the necessity for a well planned experimental protocol to evaluate

the performance of vision systems and provides details of the recipe for constructing a

typical experimental plan. Ramesh et al [97] summarize a systems engineering methodol-

ogy for building vision systems and illustrate performance characterization of a system for

building parameter estimation. In this methodology there are two main steps: statistical

modeling or performance characterization of component algorithms (component identifi-

cation) and application domain characterization. Component identification (see figure 2.1)

involves the derivation of the deterministic and stochastic behavior of each module. This

7
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Figure 2.1: Component Identification or Performance Characterization

entails the specification of the ideal model and an error model in the input and relating

their parameters to the output ideal model and error model parameters. The essence of

the methodology is that each sub-step used in a vision system is treated as an estimator

and therefore the estimator’s behavior has to be characterized in terms of its distribution.

The distribution of each estimator is a function of the input samples and error distribu-

tion parameters. When a system is composed of multiple estimation steps concatenated

together then performance characterization is a daunting task. Some of the issues related

to this step will be described in the next section. Application domain characterization (see

Figure 2.2) is a learning or estimation step wherein the restrictions on the application data

relevant to the task at hand are specified in terms of prior distributions of parameters

relevant to the algorithm/system representation chosen. These prior distributions can be

viewed as specifying the range of possible images for the given application. The average

or worst case performance of the system can be determined by combining the Component

Identification steps and the Application domain modelling steps. In [97] optimal control

parameter settings are chosen to select the parameters that provide the best expected

performance over the distribution input images. A detailed review of the methodology

will be given in section 3.1.2. The use of the methodology for the design and analysis of

a dual-camera monitoring system will be illustrated in chapter 4.

A special issue on performance evaluation contains a number of related references on

vision algorithm evaluation (Please see: Forstner [35]). More recently there have been

several workshops dedicated to empirical evaluation of vision algorithms (for instance, see

[17], [102] and [134]). Most of the papers in the empirical evaluation workshops aim at ad-

dressing black box evaluation methodologies for vision algorithms. A black box approach

essentially involves empirical evaluation without knowledge of the system transform func-

tions. This is in contrast to Ramesh and Haralick [94], [95] and Ramesh et al [97] that

address white box evaluation. The above methodology essentially can be seen as a white
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Figure 2.2: Application Domain Characterization

box analysis of a given system. Courtney et al [23] describe an empirical approach to

systems evaluation. Cho and Meer [21] were the first to use re-sampling techniques (e.g.

Bootstrap) as a tool for studying the performance of edge detection techniques. Papers

have also appeared in the literature on boundary-segmentation performance evaluation.

Some of the early papers include Ramesh and Haralick [94], [96], [98], Heath et al [58],

and Wang and Binford [121]. The first set of papers evaluates edge-parameter estimation

errors in terms of the probability of false alarm and miss-detection as a function of the

gradient threshold. In addition, the edge location uncertainty and the orientation estimate

distribution is derived to illustrate that at low signal-to-noise ratios the orientation esti-

mate has large uncertainty. The paper by Heath et al visually compares the outputs from

various edge detectors. More recently, Shin et al [104] studies object recognition system

performance as a function of the edge operator chosen at the first step of the recognition

system. The conclusion is that the Canny edge detector is superior to the others com-

pared. Most of the papers described above use simulations or hand drawn groundtruth to

compare algorithm results with groundtruth results. Baker and Nayar’s [7] work is unique

in that it does not require groundtruth. The evaluation is made by examining statistics

that measure global coherence of edge points detected (e.g. collinearity etc.). Konishi et

al [68] address edge detector evaluation by using information theoretic principals. Papers

have also been published on performance evaluation in the context of document analysis

systems, other feature extraction methods (e.g. corner extraction [97] ), etc. Early papers

on sensitivity analysis in the context of geometric hashing and Hough transform for object

recognition should also be mentioned in this context (Please see Grimson and Hutten-

locher for example [44],[43]). They study the false alarm characteristics of the recognition

technique when a spatially random clutter model is assumed with a given density and

a bounded error model is assumed for the object feature points that are detected. The
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analysis provides the mechanism to automatically set up the recognition threshold so that

a given false alarm rate can be met by the system. Recent work on performance evaluation

in the context of object recognition was done by Boshra and Bhanu [12].

2.1.2 Systems Analysis Methodology Review

The systems analysis methodology is described in [97]. The methodology essentially ad-

dresses the problem of analyzing and setting up tuning constants for a vision system with a

chosen architecture. However, the methodology proposed does not address computational

issues and the choice of the architecture itself, which is part of this work. Since this work

draws on core ideas presented in [97] a detailed discussion is presented in ”Background

and Motivation”, section 3.1.2.

2.2 Video Surveillance and Monitoring

An excellent review of surveillance systems is provided by Boult et al. [16]. In the follow-

ing, we summarize some of the references. Also, the August 2000 special issue on video

surveillance of the IEEE Transactions on ”Pattern Analysis and Machine Intelligence”

provides a good overview on many state of the art systems.

Tracking techniques based on features, edges or boundaries are presented in e.g. [60],

[127], [110], [67], [28]. However, for our application, the variable and at places small object-

size limit the applicability of feature-based approaches.

Optic flow is another class of techniques used. E.g. [125] uses correlation or sum-of-

squared-differences (SSD) over windows. These will not work well with small objects, large

amounts of occlusion or non-rigid objects. Others use feature-based optic flow, e.g. [110]

computes and tracks features over time.

Using features to initialize a stronger model is a tracking technique which has been

used frequently, e.g. with strong models for vehicles in [67], [110] and weak models for peo-

ple in [100], [128], [92], [56], [27]. Models restrict the search area for likely features while

increasing sensitivity without significantly increasing the chance of false alarms. Neverthe-

less, these systems require a large number of object pixels as well as model initialization.

Required initialization limits trackers that use deformable models, e.g. [101], [60], [127],

where the initialization is required to be quite close to the objects outline. Furthermore,

often deformable models are too expensive for real-time tracking, e.g. [127] or [101] which

could not deal with changing illumination. For some domains color is used to simplify

the initialization (and even model tracking), e.g. in [123] and in numerous face tracking

systems e.g. [22], skin color is critical to both detection and tracking, .

A large number of papers investigates into tracking and analyzing human motion, e.g.
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[100], [128], [92], [56], [27]’ [57]. For example, [73] uses motion parameters as the primary

method to distinguish between human and vehicle. However, it is presumed that objects

consist of many pixels in the range of hundreds or thousands), and are not occluded (. A

system that uses both motion parameters and target size/shape information to classify

targets as human, bird, rabbit, fox or squirrel is presented in [100]. E.g. [11], [6], [26],

and [99] worked on developing target motion estimators. Color and intensity histograms

combined with motion parameters are used for tracking in [61],and [22]. However, for

the general case, initialization is an open issue. Furthermore, both algorithms require a

sufficiently large number of target pixels.

In some application domains, a wide field of view is required. This is usually accom-

plished by using either multiple passive cameras or a single active pan-tilt-zoom-camera.

Nayar [83] proposed an omni-directional camera which combines a standard standard

camera with a parabolic mirror to capture a full viewing hemisphere. As the result, the

system generates an image that sees in all directions, with some apparent distortions.

Since the system proposed in this work is built using this kind of sensor – Shree Nayar’s

omni-camera – a detailed discussion is given in the chapter on background and motivation

(see chapter 2.2.1).

Although there has been much work on frame-to-frame matching, feature-based tech-

niques, and motion estimation, most systems focused on aspects other than change de-

tection. Therefore, segmentation techniques used, may work well for indoor, but are not

likely to be sensitive and robust enough to handle objects of varying size in areas illumi-

nated by sun light during day and artificial light during the night. For our application,

the detection phase is crucial; undetected people can not be zoomed on.

2.2.1 Change Detection Review

One of the most common types of change detection algorithms is based on subtracting

a background model (or models) from the current image followed by thresholding. These

techniques involve for each pixel the modelling of an expected value. In the following,

such techniques are discussed.

Many background-modelling approaches assume a single Gaussian to model a pixel

value. Since lighting can change and over time, different objects may project onto the

same pixel, more recent systems assume multiple (usually 2 to 5) models, e.g. a Mixture of

Gaussians (MOG), per pixel, e.g. [101], [111]. For computational reasons, the covariance

matrix is often assumed diagonal (i.e. uncorrelated). Obviously, the special case K =

1 is the traditional Gaussian model. Please note that a MOG can also approximate a

single pixel’s unimodal intensity distribution if this can not be modelled well by a single

Gaussian.

To use a MOG model, one needs to assume that the underlying data satisfy a quasi-
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stationary criterion: A change in the pixel intensity value is slow compared to the update

rate of the model. For dynamic MOG models, a high-level labelling process is presumed

to correctly indicate which part of the mixture is to be updated. In the following, previous

work on background modelling and the standard approaches are reviewed.

A multi-class statistical model for the tracked objects is used by the P-finder

system [128] uses, but it the background a single Gaussian per pixel. A single Gaussian

per pixel, used in many systems, is easy to estimate. Thresholding based on the standard

deviation is statistically well justified, if the model is appropriate. Some systems simply

track the mean or some other models of central tendency and use an ad-hoc thresholding

process while ignoring the formal modelling of standard deviation.

Other systems support multi-background models per pixel to improve robustness, es-

pecially with outdoor scenes containing significant clutter, see [14], [101], [111], [56]. [101],

and [111] fit a MOG to the given input samples. The parametric from of the MOG dis-

tributions can then be used to classify pixels. [14] uses a simpler form that tracks only

the central values of the two primary distributions for a pixel. These papers draw mostly

on intuition and insight, and do not present experimental justification for their multi-

background model assumption and parameter settings.

Maintaining or updating the background model can be achieved through multi-sample

or per-frame processing. E.g. [32], and [101] gather many samples per pixel to compute

statistical models such as Gaussian, MOG, or non-parametric respectively. These methods

require considerably more memory and processing and are more complex.

For the single Gaussian model, only the mean and variance need to be computed. In

order to adapt to changing backgrounds, mean and variance need to be computed over

a window of time. While cheaper than other multi-sample techniques, computation of a

running mean and standard deviation requires storage of 2KW images (when W is the

temporal window size and K the number of MOG-components). If the input data matches

the model assumption (i.e. Gaussian), setting the thresholds via the variance estimates

is well statistically well motivated. Nevertheless, for this type of systems, N remains a

critical ”blending” parameter. It determines how fast the system adapts to changes and

how sensitive it is to random fluctuations.

In per-frame processing approaches, an updated background model for each new frame

is computed. These approaches require much less storage and much less computation.

The background model is updated via temporal blending. [62] combines temporal differ-

ence and background subtraction techniques in the change detection phase and adapts to

changes in the background by temporal blending.

To determine which of the many backgrounds is to be updated, systems with multiple

backgrounds have implemented a separate higher-level process. Main components of these

systems include background modelling and thresholding.
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2.2.2 Illumination Invariance Review

During the segmentation phase many natural factors like shadows, illumination conditions

(e.g. changing illumination color or illumination direction), cause problems. Details and

further references on color image understanding are given in [66].

In terms of requirements concerning illumination-invariance, there is no significant

difference if the application domain is tracking objects in a video scene, or image retrieval

in a database. In both cases, one wishes to find methods to segment objects from the

background. This should be possible independently of the current illumination conditions

under which the image is taken (E.g. lights being switched on/off, changes in the camera

gain, clouds covering the sun, different object location).

In the past, some work was done on illumination invariant image retrieval. In most of

the presented experiments, the illumination itself and the change of illumination condi-

tions have been well controlled.

Recent work regarding illumination invariance can split into two groups. One group

deals with global color distribution analysis of a single image, the other with a set of the

same image taken under various illumination conditions, and in local color distribution

and structure analysis of a single image. There exist also methods combining these cues

for indexing purpose.

Calculation of illumination invariants from global color distribution of a single image

were proposed in [49, 115, 33, 107, 48, 51, 50]. Healey et al. use a linear illumination

model and approximate the surface spectral reflectance function by linear combination of

fixed basis functions. They find illumination invariant features by computing eigenvalues

of moment matrixes of histograms of the image itself [107, 48], or eigenvectors of a matrix

of correlation functions within and between sensor bands [51, 50]. Due to their finite-

dimensional linear surface reflectance model, a change in illumination color results in

a linear transformation of their feature representation. Also [115] follows a histogram

approach. Instead of using a 3D RGB color histogram they use three 1D histograms

along the principal components of the image data. Based on these histograms they derive

energy, entropy, variance, and covariance features, and use these features as illumination-

invariant color features. [33] represents an RGB image by three vectors corresponding

to each color band. He than calculates the three angles between the different bands of

both, the original image and the corresponding edge-image. Assuming a diagonal model

of illumination change, these six angles are used as an illumination independent invariant.

[72, 124] follow another approach using global color distribution features. Their ap-

proach is characterized by analyzing a set of the same image taken under different illu-

mination conditions. [72] distinguishes between illumination change due to varying illu-

mination pose of objects in the scene (shading effects) and varying illumination color.

To get a handle on varying illumination color they use a set of normalized images of the
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same scene taken under different illumination conditions. Each image is represented in a

vector. From this object-database, a corresponding eigenspace based on N eigenvectors

is calculated. Objects projected in this eigenspace are considered being the same object;

depending on their position in the eigenspace they were illuminated under specific illu-

mination conditions. To find illumination invariant spectra, [124] filters out the two most

dominant eigenvectors of a set of sensor outputs taken under different illuminations of

the same surface (same reflectance model). Calculating an orthogonal projection from

these eigenvectors, projects all outputs of the same reflectance spectrum onto the same

illumination invariant spectrum, independent if generated under different illuminations.

Global normalization schemes are proposed by [78]. If illumination changes simultane-

ously over the entire scene, they propose a normalization scheme based on a nearly white

area, which is always present in the image. This way, they get a handle on short-term

illumination changes due to flickering light or automatic gain control in background sub-

traction algorithms. In the [24] the scene is assumed to be a ”gray-world” scene, such that

the main principle component of all RGB color pixels in an image contiguously fall onto

the gray axis in the color cube.

Calculation of illumination invariants from local color distribution of a single image

are proposed in [106, 108]. Healey et al. use the same linear illumination model as de-

scribed above, and again, a change in illumination color results in a linear transformation

of their local feature representation. [106] calculate a feature matrix based on radial inte-

gration of sensor values. Its eigenvectors are used to test for illumination-invariant image

retrieval. [108] calculates a moment matrix based on local histograms. Its eigenvalues

are used for illumination invariants. [2] present the generalized color ratio (GCR) model.

Neighborhood-based color ratios are proposed for illumination (spectral and intensity)

invariant indexing. They assume that the variation in the illuminance color, spectral en-

ergy distribution function, and the surface reflectance function, can each be captured buy

a small set of linearly independent basis functions. They also assume that neighboring

points on a surface will receive equal amounts of illumination at the same time instant.

[36] tries to classify each pixel in an image as part of a moving object, shadow, or back-

ground. Since each pixel can change its class over time, its value is modelled as a Gaussian

mixture over time. The parameters of the distribution are unknown and are learned by

an unsupervised technique: an incremental version of the expectation maximization (EM)

algorithm.

Local normalization schemes are proposed by [87, 9, 10, 72]. [87] shows that if the

light source can be expected to be almost white and a saturation value of object color is

sufficiently large enough, the hue band of a color image is invariant against illumination

change. [9, 10] normalize each pixel value by its region mean-value. As mentioned earlier,

[72] distinguishes between illumination change due to varying illumination pose of objects
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in the scene (shading effects) and varying illumination color. To handle shading effects

they normalize R and G values by the intensity (sum of R, G, B).

Based on the same linear surface reflectance model, Healey et al. present in [52]

illumination-invariant recognition of local image structure by using spatial filters. In

[120, 105, 117, 119] they incorporate both color and spatial information. [117, 119] follow

an approach, based on symmetries in textures. Both apply spatial filter banks to an image

and calculate energy matrixes [119], or opponent features [117], which compute cross-band

correlation from the filter output. Finally, [109] combines several of these methods. In all

their work, a change in illumination color results in a linear transformation of their feature

representation.



Chapter 3

Background and Motivation

This chapter provides background information on and motivation for why it is benefi-

cial to follow systematic system engineering methodology to build vision systems. In the

second part, the system hardware-configuration choice is motivated, given application

requirements.

3.1 System Engineering for Vision

This section illustrates why it is beneficial for the system’s performance to apply perfor-

mance characterization techniques to VSAM systems. Furthermore, this chapter describes

in detail the underlying theory and ideas outlined in [97], and provides arguments why

this approach is chosen. It finally summarizes various tools used to build the actual vision

system which will be described later in chapter 4.

3.1.1 Classification of Performance Characterization Work

Papers referred in 2.1 can be categorized into two major classifications. Those that deal

with evaluation of system performance and study the impact of a given module on over-

all system performance, and those that deal with the evaluation of components. In this

work, both types of evaluations are pursued. It primarily follows the performance char-

acterization methodology that is outlined in Ramesh et al [97] as it allows for individual

component improvements and provides an understanding of the impact of a given com-

ponent’s use in the context of the total system. In general, performance characterization

techniques can be used for the following purposes:

• To optimize control parameters of an algorithm that is being incorporated into a

product

• To compare alternative components and identify the suitability of a given system for

16
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a customer application. Results of the evaluation are feed back to refine the design

of the product.

• To identify limits of algorithm performance for a given application. Performance

curves derived are provided to the customer (in some cases to identify scenarios in

which the system is unavailable).

The goal is to illustrate the use of the methodology for systems analysis of a video

surveillance system. In the following, systems analysis methodology is reviewed, and it

is described how the methodology applies to a problem involving people detection and

zooming. Subtle differences between the methodology described in [97] and the one fol-

lowed in practice will be pointed out. Black box evaluation of video analysis systems is by

itself an area of active research. Open questions include the choices of: the criterion func-

tions useful to evaluate a given system output against groundtruth, experimental design

and sampling methods for obtaining reasonable estimates of performance measures with

minimal data, etc. In this work black-box evaluation will not be addressed.

The following subsection reviews the methodology and draws on material from [97].

It addresses the problem of analyzing the system and its modules, while automatically

set-up tuning constants for a vision system with a chosen architecture. Although the

methodology proposed does not address computational aspects and the choice of the

system architecture, we will base our approach on insights gained from it.

3.1.2 Systems Analysis Given Chosen Algorithm Sequence

Let A denote an algorithm. At the abstract level, the algorithm takes in as input, a set of

observations, call them input units UIn, and produces a set of output units UOut. Associ-

ated with the algorithm is a vector of tuning parameters T. The algorithm can be thought

of as a mapping A : (UIn,T) → UOut. Under ideal circumstances, if the input data is ideal

(perfect), the algorithm will produce the ideal output. In this situation, doing performance

characterization is meaningless. In reality, the input data is perturbed, perhaps due to

sensor noise or perhaps because the implicit model assumed in the algorithm is violated.

Hence, the output data is also perturbed. Under this case the inputs to (and the outputs

from) an algorithm are observations of random variables. Therefore, the algorithm can be

viewed as a mapping: A : (ÛIn,T) → ÛOut, where theˆ symbol is used to indicate that

the data values are observations of random variables. This leads to the verbal definition

of performance characterization with respect to an algorithm:

“Performance characterization or Component Identification for an algorithm has to

do with establishing the correspondence between the random variations and imperfections

on the output data and the random variations and imperfections on the input data.”
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More specifically, the essential steps for performance characterization of an algorithm

include:

1. the specification of a model (with parameter D) for the ideal input data.

2. the specification of a model for the ideal output data.

3. the specification of an appropriate perturbation model (with parameter PIn) for the

input data.

4. the derivation of the appropriate perturbation model (with parameter POut) for the

output data (for the given input perturbation model and algorithm ).

5. the specification and the evaluation of an appropriate criterion function (denoted

by QOut) relative to the final calculation that the algorithm makes to characterize

the performance of the algorithm.

The main challenge is in the derivation of appropriate perturbation models for the

output data and relating the parameters of the output perturbation model to the input

perturbation, the algorithm tuning constants, and the ideal input data model parameters.

This is because the specification of the perturbation model must be natural and suitable

for characterization of the performance of the subsequent higher level process. Once an

output perturbation model is specified, estimation schemes for obtaining the model pa-

rameters have to be devised. In addition, the model has to be validated, as theoretical

derivations may often involve approximations.

The ideal input data is often specified by a model parameter vector D, and the al-

gorithm is often an estimator of these parameters. Please note that the ideal input data

is nothing but a sample from a population of ideal inputs. The characteristics of this

population, i.e. the exact nature of the probability distributions for D, is dependent on

the problem domain. The process of generation of a given ideal input can be visualized

as the random sampling of a value of D according to a given probability distribution FD.

Let PIn denote the vector of parameters for the input perturbation model. Let

QOut(T,PIn,D) denote the criterion function that is to be optimized 1. Then the problem

is to select T so as to optimize the performance measure Q, over the entire population,

that is given by:

Q(T,PIn) =
∫

QOut(T,PIn,D)dFD (3.1)

In the situation where the perturbation model parameters, PIn, are not fixed, but have

a specific prior distribution then one can evaluate the overall performance measure by

1Note that the input data ÛIn is not one of the parameters in the criterion function. This is correct
if no input-data violate any of the assumptions about the distribution(s) of D and PIn.
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integrating out PIn. That is:

Q(T) =
∫

Q(T,PIn)dFPIn
(3.2)

Having discussed the meaning of performance characterization with respect to a single

algorithm, we now turn to the situation where simple algorithms are cascaded to form

complex systems.

Let Φ denote the collection of all algorithms. Let A(i) ∈ Φ, then A(i) : U
(i)
In → U

(i)
Out is

the mapping of the input data U
(i)
In to the output U

(i)
Out. Note that the unit for U

(i)
In may

not be the same as the unit for U
(i)
Out and perturbations in the input unit type causes

perturbations in the output unit type. A performance measure, Q(i), is associated with

Ai. Associated with each algorithm is the set of input parameters T(i). The performance

measure is a function of the parameters T(i) as well.

An algorithm sequence, S, is an ordered tuple:

S : (A(1), A(2), . . . , A(n))

where n is the number of algorithms utilized in the sequence. Associated with an algorithm

sequence is a parameter vector sequence

T : (T(1),T(2), . . . ,T(n))

and a ideal input data model parameter sequence:

D : (D(1),D(2), . . . ,D(n))

The performance at one step of the sequence is dependent on the tuning parameters, and

the perturbation model parameters at all previous stages. So

Qi = fi(T
(i),T(i−1), . . . ,T(1),PIn

(i−1), . . . ,PIn
(1)).

The overall performance of the sequence is given by:

Qn(T,PIn) = fn(T
(n),T(n−1), . . . ,T(1),

PIn
(n−1), . . . ,PIn

(1)).

The free parameter selection problem can now be stated as follows: Given an algorithm

sequence S along with the parameter vector sequence T and performance measure Qn,

select the parameter vector T that maximizes Qn . Note that Qn is actually the integral:

Qn(T,PIn) =∫
. . .

∫
fn(T

(n−1), . . . ,T(1),PIn
(n−1), . . . ,

PIn
(1),D(n−1), . . . ,D(1))dFD(n−1) . . . dFD(1) .
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Note that at each stage a different set of prior distributions FD(i) comes into play. Also,

the perturbation model parameters PIn
(i) is a function gi(T

(i−1),PIn
(i−1),D(i−1), A(i−1)).

In other words, the perturbation model parameters at the output of stage i are a function

of the tuning parameters at stage i− 1, the input perturbation model parameters in the

stage i − 1, the ideal input data model parameters, and the algorithm employed in the

stage i − 1. It is important to note that the functions gi depend on the algorithm used.

No assumption is made about the form of the function gi.

The derivation of the optimal parameters T that maximize Qn(T,PIn) is rather te-

dious and involved. Therefore in practice the thresholds T are selected in each individual

stage relative to the final task. For example, in [96], thresholds for a sequence of operations

involving boundary extraction and linking were chosen relative to the global classification

task of extracting building features to satisfy a given miss-detection rate for building fea-

ture detection and a given false alarm rate for clutter boundary pixels. In the following

work that focuses on video surveillance a similar strategy is adopted: Pruning thresholds

will be set up by defining probability of missing valid hypotheses and probability of false

hypotheses as criteria. Please note that these criterion functions are essentially functions

of the ideal parameters D’s and one has to integrate over the prior distribution of the

D’s.

3.1.3 Tools Used for Systems Analysis

To facilitate the propagation of models, tools defined in [97] are used along with other

numerical methods (e.g. bootstrap ([31])) to perform the characterization with analytical

statistical models. The tools/steps used include:

• Distribution propagation: The input to an algorithm (i.e. an estimator) is charac-

terized by one or more random variables specifying the ideal model, its parameters,

and by a noise model with a given probability density function (pdf) [89]. The out-

put distribution is derived as a function of the tuning constants, the input model

parameters, and the noise model parameters.

• Covariance propagation: The algorithm output is thought of as a non-linear function

of the input data and noise model parameters. Liberalization is used to propagate

the uncertainty in the input to the output uncertainty. Care should be taken while

using this tool since the approximation may be only good when the liberalization

and first order error approximations are valid. For details please see [55].

• Empirical methods: Statistical re-sampling techniques (e.g. bootstrap) are used to

characterize the behavior of the estimator. For example, the bias and uncertainty

can be calculated numerically (Please see Cho and Meer [21] for a description of edge
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detection performance characterization using bootstrap.). Monte-Carlo methods are

used for the verification of theoretical results derived in the previous two steps.

• Statistical modeling: Modeling at the level of sensor errors (Gaussian perturbations

in input), Prior models for 3D geometry, spatial distribution of objects, and modeling

of physical properties (e.g. constraints on the types of light sources in the scene),

etc. The related literature is rather vast and encompasses methods from fields such

as Bayesian statistics, Spatial statistics, and Computer Vision.

3.2 Dual-Camera Video Surveillance System

As outlined in 1.1.2 the main goal of the application presented in this work is to monitor a

wide area, localize people and provide a high resolution image of their faces/heads for fur-

ther processing, no matter how far they are apart from the camera locations. Furthermore,

we are interested to provide location estimates of any person in the scene and be able to

switch attention from one to the other. To achieve this goal it is important to continuously

monitor the wide region of interest while simultaneously providing high-resolution images

of a person in the scene.

Obviously, two kind of cameras are needed: one processing the activities in the moni-

tored area to detect and localize all people, and another class of active cameras which in

parallel focuses on the people detected in the scene [25]. Depending on the requirements in

terms of how many people should simultaneously be monitored closely such that a camera

zooms onto its face the number of active cameras providing pan, tilt, zoom features is

determined. Nevertheless, this work does not focus on control issues and strategies.

This work rather focuses on how to acquire data from the region of interest, which

help to control active cameras as laid out in the requirements. E.g. in a way that it can

capture the face respectively head of any person in the scene such that it is contained in

the frame to a maximal extent.

The question is what kind of camera system to use in order to fulfill the task best in

terms of coverage, real-time and precision. For reasons explained later, we decided for the

omni-directional camera2 as proposed by Nayar in [84] and [83]. The system is comprised

of an orthographic lens attached to a standard camera and a parabolic mirror. In a concept

study, an first version of our system [25] uses a spherical mirror

2Commercially available under the name ParaCamera
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3.2.1 Omni-Directional Camera

Before discussing the omni-directional camera, imaging systems that seek to cover wide

fields of view are reviewed. A detailed review of omni-directional viewers can be found in

[81]. The following review is in parts adapted from [84].

Most imaging systems in use today have a lens attached to a video camera. For most

camera lenses, the image projection model is perspective with a single center of projec-

tion. Since the imaging devices like CCD arrays are of finite size and the camera lens

occludes itself while receiving incoming rays, lenses typically have a small field of view.

This field of view does not correspond to a hemisphere but rather to only a small cone. To

simultaneously sense a wide field of view, one could think of arranging a number of cam-

eras accordingly, each one pointing in a different direction. However, such a configuration

proves infeasible, since the centers of projection reside inside each lens.

Another solution is to rotate the entire system comprised of camera and lens about

its center of projection. To obtain a single panoramic view of the scene, the sequence of

images acquired by rotation are put together (see [20], [77], [69], [132]). Unfortunately,

rotating imaging systems require the use of moving parts and precise positioning. If loca-

tion information in 3D is to be derived from these images, precise registration becomes an

issue. Another drawback lies in the total time required to obtain such a panoramic image.

The domain for rotating systems is therefore restricted to static scenes and non-real-time

applications.

Using a fish-eye lens ( [126],[79]) instead of a conventional camera lens is another

approach to wide-angle imaging. Such a lens has a very short focal length such that

objects within as much as a hemisphere can be viewed. Use of fish-eye lenses for wide-

angle imaging is proposed in [88] and [70], among others.

Unfortunately, it is difficult to design a fish-eye lens that ensures that all incoming

principal rays intersect at a single point to yield a fixed viewpoint (see [81] for details). This

has dramatic drawbacks in calibrating such a system and in performing real time mapping

between image coordinates and real world coordinates for precise location estimation. In

addition, to capture a hemispherical view, the fish-eye lens must be quite complex and

large, and hence expensive.

A catadioptric imaging system uses a reflecting surface to enhance the field of view

(like the rear-view mirror in a car). However, the viewpoint and field of view is a rather

complex function of the shape, position, and orientation of the reflecting surface. It is

easy to construct a configuration that uses one ore multiple mirrors to dramatically in-

crease the field of view of the imaging system, but is hard to keep the effective viewpoint

fixed in space. See [130],[59],[131], and [81] for examples on catadioptric image sensors.

[82]) presents the complete class of catadioptric imaging systems that satisfy the single

viewpoint constraint.
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While all of the above approaches use mirrors placed in the view of perspective lenses,

the omni-directional camera used here and proposed by Shree Nayar [83] uses an or-

thographic lens. For orthographic rather than perspective projection, the geometrical

mappings between the image, the mirror and the world are invariant to translations of

the mirror with respect to the imaging system. This greatly simplifies calibration and

mapping between image and real world coordinates.

Figure 3.1 shows the underlying geometric relations. In [84] a surface function for a

mirror is derived by solving a first-order differential equation such that

z(r) =
r2
m − r2

2rm
(3.3)

The corresponding shape of the surface ensures that each ray, which virtually projects

into the omni-directional viewpoint, is reflected parallel to the optical axis. The image is

then captured by an orthographic imaging lens.

Figure 3.1: Underlying geometry, which is used to derive the surface of the parabolic mir-
ror. Please note, that each ray, which virtually projects into the omni-directional viewpoint
is reflected parallel to the optical axis. The image is then captured by an orthographic
imaging lens.

3.2.2 Active Pan-Tilt-Zoom Camera

To follow and zoom onto a person’s heads, we use an active camera that allows to control

pan, tilt and zoom independently. Currently, control functions are implemented for a

Sony EVI D30. However, this work does not focus on control issues, but on the analysis

necessary to optimally set pan, tilt and zoom parameter to capture a persons head given

a location estimate and corresponding uncertainties. For details on how to calibrate the

zoom unit in a medical application that uses Sony EVI D30, please refer to [38].



Chapter 4

The System: Architecture, Design &

Analysis

This chapter explains how the application specific priors and requirements such as real-

time operation and adaptive zooming influence the choice of the system architecture. It

illustrates how perturbations can be propagated through the chosen surveillance system

configuration involving change detection, people detection, people location determination

and camera parameter estimation, and points out how this approach differs from the

work outlined in [97]. The first part involves the design issues (choice of the system

configuration given application requirements and priors), and emphasizes on statistical

modeling, uncertainty propagation and on how to consider prior information. The second

part describes in detail the chosen algorithm and explains the transforms module-wise.

Furthermore, it involves the systems analysis of a chosen system configuration.

4.1 Systems Architecture Choice, Priors & Require-

ments

We have seen that in the computer vision literature there has been a significant amount

of work in evaluation of modules/components. However, there has been limited work on

making systems design choices from user requirements. The more recent trend in the

community is to emphasize statistical learning methods, more appropriately Bayesian

methods for solving computer vision problems (See for example [80]). However, there still

exists the problem of choosing the right statistical likelihood model and right priors that

suit an application. Even if this were possible, it is still computationally infeasible to

satisfy real-time application needs. In the context of video analysis systems, real-time

considerations play a big role in the design of video processing systems.

Sequential decomposition of the total task into manageable sub-tasks (with reasonable

24
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computational complexity) and the introduction of pruning thresholds, is the common way

to tackle the problem. This introduces problems because of the difficulty in approximat-

ing the probability distributions of observables at the final step of the system so that

Bayesian inference is plausible. This approach to perceptual Bayesian inference has been

attempted, (see for example [97], [74]). [97]’s work places more emphasis on performance

characterization of a system, while [74] attempted Bayesian inference (using Bayesian

networks) for visual recognition. The idea of gradual pruning of candidate hypotheses

to tame the computational complexity of the estimation/classification problem has been

presented in [5]. Learning decision trees to perform object detection (by gradually re-

ducing the uncertainty in a step-wise fashion, wherein each pruning step has probability

of miss-detection approximately zero while the probability of false alarm is reduced after

each application of a decision rule) is discussed in [4] and [34]. Note that none of the works

identifies how the sub-tasks (e.g. feature extraction steps) can be chosen automatically

given an application context. The approach proposed in this work, involves the following

key-steps:

System Configuration choice: The first step is to choose the modules for the system.

This is done by use of context (in other words: application specific prior-distributions for

object geometry, camera geometry, and error models, illumination models). Real-time con-

straints are satisfied by choosing pruning methods or indexing functions that restrict the

search space for hypotheses. The choice of the pruning functions is derived from the appli-

cation context and prior knowledge. The choice of the indexing function is not necessarily

critical, except that the following criterion is met. The indexing function has to be of a

form, which simplifies the computation of the probability of generating a false hypothesis

or the probability of missing a true hypothesis as a function of the tuning constants. To

satisfy the accuracy constraint hypothesis verification and 3D-parameter estimation steps

are employed. Bayesian estimation is used to evaluate candidate hypotheses and estimate

object parameters by using a likelihood model, P (measurements|hypothesis), that takes

into account the effects of the pre-processing steps and tuning parameters. Note that this

likelihood model is actually derived from the statistical characterization step that is de-

scribed below. The indexing step provides computational efficiency, while the hypothesis

verification and estimation step addresses accuracy.

Statistical Model Derivations, Performance Characterization and Model Val-

idation: The second step involves the application of the methodology described above

to derive statistical models for errors at various stages in the chosen vision-system con-

figuration. That allows for quantifying the indexing step and tuning the parameters to

achieve a given probability of miss-detection and false alarm rate. In addition, a validation
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of theoretical models for correctness (through Monte-Carlo simulations) and closeness to

reality (through real experiments) is performed. For the given system configuration choice,

a statistical analysis is conducted to setup the tuning constants at the indexing steps, to

derive likelihood models for feature measurements that are used in the hypothesis verifi-

cation and in the estimation step, and to obtain the uncertainty of the estimate provided

by the hypothesis verification step.

4.1.1 Application Requirements

The task of the dual-camera surveillance system is to continuously detect locations of

people in the scene and provide zoomed-in high resolution images of the head of a person

present in the room. The current implementation, which uses only one foveal camera,

tracks the first person entering the scene. Nevertheless, the system is extendable for inte-

gration of multiple foveal cameras that could follow simultaneously multiple people being

tracked in the omni-view. The foveal images could represent the input to higher-level

vision modules, e.g. face recognition, compaction and event logging. However, that is not

part of this work.

The application requirements are as follows: 1) Real-time performance on a low-cost

PC 1, 2) Person miss-detection rate equal to or less than αm, 3) Person false-alarm rate

equal to or less than αf , 4) Adaptive zooming of a person irrespective of the background

scene structure (with maximal possible zoom based on uncertainty of person attributes

estimated (e.g. location in 3D, height, etc). The performance of the result is characterized

by the face resolution attainable in terms of the area of face pixel region in the foveal view

(as a function of distance, contrast between background and object, sensor noise variance,

and resolution). It is also characterized by the bias in the centering of the face. In addition

to these requirements, the following assumptions can be made about scene structure: A)

The scene illuminant consists of light sources with similar spectrum (e.g. identical light

sources in an office area), B) the number of people to be detected and tracked is bounded,

and the probability of occlusion of persons (due to other persons in the Omni-view) is

small, and C) people are standing upright.

4.1.2 System Hardware Configuration

To continuously monitor the entire scene we use a passive catadioptric sensor (Omni-

Cam [84]) mounted below the ceiling. To obtain high-resolution images of an object of

interest (in our case the face of a detected person in the region of interest) we use a ac-

tive pan-tilt-zoom camera (foveal camera). Both sensors work together in a collaborative

1Not all system resources in the PC are allocated for visual processing.
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fashion to achieve these two goals simultaneously. The catadioptric sensor consists of two

parts: A parabolic mirror and a standard CCD camera looking into it. The image ob-

tained through the system provides an omni-directional view of a wide area as seen from

the ceiling. Omni-images are used to detect and estimate the precise location of a given

person’s foot in the room. This information is used to identify the pan, tilt and zoom-

settings for a high-resolution foveal camera, which is then directed towards the person’s

head. Figure 4.1 shows the system’s interface: the overview image, and the high resolution

zoomed image of the detected person’s face.

Figure 4.1: Top: Omni-directional overview image. Red sector: Region of interest. Radial
lines (green and red) show detected persons. Crosses denote estimated foot/head position.
Insert: Foveal camera view.

The omni-directional camera projection-geometry satisfies the single-view point con-

straint and it simplifies calibration. It also simplifies the relation between the world coor-

dinates of a given point on the ground plane and the corresponding image point [85],[84].

Figures 4.2, and 4.3 illustrate in detail the geometric relations between the two cameras,

and how the output of the omni-image-processing module (location estimation of the per-

son in the scene) can be used to estimate the pan, tilt and zoom parameters of the foveal

camera.

We denote the geometric model parameters as shown in table 4.1

During the calibration step (combination of real world and image measurements)

Ho, Hf , Dc, rm and (xc, yc) are initialized.

Let α, and β be the foveal camera control parameters for the tilt respectively pan

angle, and Dp the projected real world distance between the foveal camera and the person.

Assuming, the person’s head is approximately located over his/her feet, and using basic

trigonometry, it can easily be seen that Dp, α (see Figure 4.2), and β (see Figure 4.3) are
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Table 4.1: Geometric model parameters (see also Figure 4.2, 4.3). Capital variables are
variables in 3D, and small variables are given in image coordinates.ˆ(hat) indicates data
values being observation of a random variable.

Ĥo height of OmniCam above floor (meters)

Ĥf height of foveal camera above floor (meters)

Ĥp person’s height (meters)

R̂h person’s head radius (meters)

R̂p person’s foot position in world coordinates (meters)

Ŝp person’s size (meters)

D̂c on floor projected distance between cameras (meters)

D̂p on floor projected distance between foveal camera and person (meters)

D̂′
p direct distance between foveal camera and person’s center of face (meters)

(x̂c, ŷc) position of OmniCam center, (in omni-image, pixel coordinates, Cartesian)
(x̂, ŷ) position in omni space, (in omni-image, pixel coordinates, Cartesian)
r̂m radius of parabolic mirror (in omni-image) (pixels)
r̂h distance person’s head – (in omni-image) (pixels)
r̂f distance person’s foot – (in omni-image) (pixels)
ŝ projected size of person – (in omni-image) (pixels)

k̂ number of pixels a person projects onto omni image plane

ϑ̂ angle between the person and the foveal camera relative to
the OmniCam image center (please see Figure 4.3)

θ̂l angle between the left side of person and the foveal camera relative to
the OmniCam image center.

θ̂r angle between the right side of person and the foveal camera relative to
the OmniCam image center.

θ̂ angle between the radial line corresponding to the person and the zero
reference line (please see Figure 4.3)

σ2
(.) Denotes variance of the variable used in the subscript

α̂ Tilt angle

β̂ Pan angle
Z Zoom factor
q′ Number of pixels summed within sector of interest in radial direction

to generate feature M̂theta.
s′ Number of pixels summed in direction orthogonal to radial direction

to generate feature M̂�
r,θ.

r′i Number of pixels summed in ith sub-sector along radial line in direction

M̂θ Sum of d2 along radial line
iM̂θ Sum of d2 along radial line within sub-sector

M̂�
r,θf

Sum in orthogonal direction bounded by θl and θr
bi(θ) Binary sub-sector profile
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Figure 4.2: Geometry (viewed from the side) in real world and omni-image coordinates.
OmniCam is looking into the parabolic mirror at the ceiling.

equal to:

Dp =
√
D2

c +R2
p − 2DcRp cos(ϑ) (4.1)

tan(α) =
Hp −Rh −Hf

Dp

(4.2)

sin(β) =
Rp

Dp

sin(ϑ) (4.3)

where ϑ is the angle between the person and the foveal camera relative to the OmniCam

position.
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Figure 4.3: 3D geometry, viewed from atop.

As illustrated in Figure 4.2 the relationship between the person location in world
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coordinates can be related to the measurements for the foot and head coordinates in the

image plane assuming that the person is standing upright.

Figure 4.4: Optics at parabolic mirror.

In Nayar’s work on the omnidirectional-camera [84] the equation for the mirror surface

satisfying the single viewpoint constraint (please see also Figure 4.4) is derived as

z(r) =
r2
m − r2

2rm
(4.4)

such that with

Rp

Ho

=
rp
z(r)

(4.5)

we can derive

Rp = 2aHo with a =
rmrf

r2
m − r2

f

(4.6)

Rp = 2b(Ho −Hp) with b =
rmrh

r2
m − r2

h

(4.7)

Therefor, the ultimate goal is to estimate the radial distance rp of the foot from the

omni-camera projection in the omni-image and map it to 3D real world distance Rp. Of

course, ϑ needs to be estimated as well; it is invariant to the transformation, though.

In the following we describe the design phase as illustrated in the left block in Fig-

ure 1.1. In the system engineering process, the developer might loop through this phase

multiple times until the analysis and verification steps following the design phase prove

that the system requirements are satisfied.
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Before describing the details of how the application requirements translate to the de-

sign of individual modules, let’s discuss the prior distributions (of the 3D scene) reasonable

for the given application and identify how these priors induce image priors. The choices

of the various estimation steps in the system are motivated from these image priors and

real-time requirements. The camera control parameters (pan and tilt) are selected based

on the location estimate and its uncertainty (that is derived from statistical analysis of

the estimation steps) to center the person’s head in the foveal image frame. The zoom

parameter is set to maximum value possible so that the camera view still encloses the

person’s head within the image.

4.1.3 Priors, Camera Models, Illumination Models

The general Bayesian formulation of the person detection and location estimation problem

is as follows: Given the Omni-image data Io, mean of the reference image corresponding

to the static scene Bo, and its covariance ΣBo , the objective is to estimate the parameter

vector Θ that maximize the aposteriori probability P (Θ|Io, Bo,ΣBo). Here, vector Θ

represents: Np the number of persons in the scene and their attributes, e.g. for the i.

person in the scene: foot position in a reference coordinate system specified by (Rp,i, θi)),

height Hp,i and size Sp,i. That is:

Θ̂ =
argmax

Θ
P (Θ|Io, Bo,ΣBo) (4.8)

Typically, one uses Bayes rule to convert this posterior probability to a product of

likelihood term and prior probability and uses independence conditions to factor the joint

density into a product of simpler terms. In this context, the prior probabilities are over

Θi’s that decompose further into a product of terms defining the prior probability of a

person at a given location specified by Rp(i), θi and with height and size of Hp(i), Sp(i)

in 3D. It is possible to define a spatial Markov model for the priors in 3D (indicating a

marked point process where points repel (See for example [112])) and define likelihood

term describing the image observations and estimate the Bayes optimal number of people

and their locations in the image. The general Bayesian formulation of the person detection

and location estimation problem does not suit the real-time constraints imposed by the

application. This approach is to use this formulation only after a pruning step that rules

out a majority of false alarms. This is done by designing an indexing step motivated by

the 2D image priors (region size, shape, and intensity characteristics) induced by the prior

distribution in the 3D scene. The prior distributions for person shape parameters: size,

height, and his/her 3D location are reasonably simple. These priors on the person model

parameters induce 2D spatially variant prior distributions in the projections (e.g., the

region parameters for a given person in the image depend on the position in the image).
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Its form depends on the camera projection model and the 3D-object shape2. In addition

to shape priors, the image intensity/color priors are of importance in this application.

Typically, assumptions are made about the object intensity (e.g. homogeneity of object

since people can wear variety of clothing and the color spectrum of the light source is

not necessarily constrained). However, in this surveillance application, the background is

typically assumed to be a static scene (or a slowly time varying scene) with known back-

ground statistics (Gaussian mixtures are typically used to approximate these densities).

In chapter 5 it will be shown how to relax these constraints while maintaining analysis

and remaining modules. To handle shadowing and illumination changes, these distribu-

tions are computed after calculating an illumination invariant measure from a local region

in an image. The prior distributions of the spectral components of the illuminant in our

application are assumed to have the same but unknown spectral distribution. Finally, the

noise model for the CCD sensor noise is to be specified. This is typically chosen to be

i.i.d. zero mean Gaussian noise in each color band. Figure 4.5 illustrates the dependencies

of the priors.

Figure 4.5: Block diagram: Prior dependencies. Distributions of bolt parameters are mod-
eled.

2For this application we found that modeling the person as an upright cylinder is a reasonable
approximation.
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4.2 Design & System Software Configuration

The software is composed seven functional modules, which contain eight major transforms

T1–T8:

• Calibration

• Illumination-invariant measure computation at each pixel (T1)

• Distance measure between current image and a background model at each pixel

(T2)

• Indexing functions to select sectors of interest (T3)

• Feature generation (T4)

• Statistical estimation of person parameters (e.g. foot location estimation) (T5)

• Mapping between image space and real world (T6)

• Foveal camera control parameter estimation (T7)

• Zoom parameter estimation T8)

Figure 4.6 illustrates the step by step transformations applied to the input. Before

we explain the transforms in detail in the following subsection, we briefly summarize the

chain of transforms and illustrate how the priors influence these transforms.

The input color image, Îo(x, y) = {R̂(x, y), Ĝ(x, y), B̂(x, y)}, is transformed (T1 :

R3 → R2) to compute an illumination invariant measure r̂c(x, y), ĝc(x, y). The statistical

model for the distribution of the invariant measure is influenced by the sensor noise model

and the transformation T1(.). The invariant measure mean b̂o(x, y) = (r̂b(x, y), ĝb(x, y))

and covariance matrix Σr̂b,ĝb
(x, y) , is computed off-line at each pixel (x, y) from several

samples of R̂(x, y), Ĝ(x, y), B̂(x, y) for the reference image of the static scene.

A change detection measure d̂2(x, y) image is obtained by computing the Maha-

lanobis distance (denoted by transform T2(.)) between the current image data values

r̂c(x, y), ĝc(x, y) and the reference image data bo(x, y). This distance image is used as in-

put to the indexing functions T3(.) which discards the radial lines parameterized by their

angle θ by choosing Canny’s [18] hysteresis-thresholding parameters that satisfy a given

combination of probability of false alarm and miss-detection values. T4(.) generates fea-

tures. The result is a set of regions with high probability of significant change along with

features (i.e. change detection measures) in the sectors of interest.

At this point, we employ a Bayesian estimation technique for person localization that

uses the 3D-model information, camera geometry information, and priors on objects, and
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Figure 4.6: Block diagram: Boxes with rounded corners represent transformations while
boxes represent data objects.

3D location to estimate the number of objects and their positions. The optimum position

of the person foot location along a hypotheses radial line is estimated by minimizing a

Bayesian error criterion. In essence, the best hypothesis out of multiple possible location

hypotheses is estimated. The cost function used is nonlinear because the projection ge-

ometry implies that the projected length of the person height varies spatially with radial

position. For illustrations of the Bayes error as a function of the radial index parame-
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ter please see Figure 4.9. It also illustrates the typical profile for the projected person

height as a function of index. We will see that it is possible to derive the uncertainty

of the estimated index by using numerical techniques in the following section on system

analysis.

The last step is to estimate the control parameters for the foveal camera based on the

location estimates and uncertainties. Equations 4.2 and 4.3 give the expressions used to

compute the pan and tilt angles from given values for the 3D world coordinates of the

foot position of the person, the height of the person, and the calibration parameters. The

3D-world coordinates for the foot position is derived from the image coordinate of the

projected foot position (computed via the Bayesian location estimator). Transform T8

will demonstrate how the analysis results will influence the optimal zoom setting given

application requirements

The following sections illustrate in detail the system design and configuration phase

as shown in the left part of Figure 1.1. For each module, it is explained how requirements

and prior assumptions influence and motivate the transforms chosen.



CHAPTER 4. THE SYSTEM: ARCHITECTURE, DESIGN & ANALYSIS 36

4.2.1 T1: Illumination Invariant Measure Estimation

The first module transforms the sensor output such that it can later be compared with a

corresponding background model for segmentation purpose.

Since the camera used is equipped with an automatic gain control, and since the

application requires to precisely segment people from background including shadow, an

illumination intensity invariant representation has to be found to meaningfully compare

the current image with a background representation.

The illumination prior assumption is that the scene contains multiple light sources

with no constraint on individual intensities but with the same spectral distribution such

that the sensor model can be modelled as follows: The amplitude for the ith channel

sensor response can be written as (e.g. see [106])

Ci(x, y, t) =
N∑
j=1

aj

∫
λ
cj(t)lj(t)s(x, y, λ)fi(λ)dλ (4.9)

Please note, that intensity Ci(x, y, t) of the ith band at position (x, y) at time t is a

function of the spectral density lj(λ) of the jth light source, the spectral surface reflection

s(x, y, λ), the spectral sensitivity fi(λ) of the ith sensor band, the mixture parameter

0 ≤ aj ≤ 1 for the jth light source, and the cut-off factor 0 ≤ cj ≤ 1 for the jth light

source.

To compensate for shift in the gain control and shadows which are often present in

the image a shadow invariant representation of the color data ([129], pp.347) is employed.

The illumination normalizing transform T1 : R3 → R2 appropriate to our assumption is:

r =
R

R +G+B
, g =

G

R +G+B
(4.10)

For redundancy reasons, normalization of the B channel can be omitted. Since summation

and integration are linear operations, it is obvious that cj cancels out in the normalized

space, if lj(λ) = l(λ)∀j, and the normalized color representation becomes invariant to

shadow, intensity and camera gain variations, if linear change in the camera gain is as-

sumed.

4.2.2 T2: Probability of Background (at Pixel Level)

Since the goal is to establish quantitative performance measures, the segmentation module

should provide a probability that a pixel is background (which still encodes contrast

information) rather than just a binary classification result. Since the covariance matrices

that are spatially varying in the normalized space are intensity-dependent we calculate

the test statistic, i.e. the Mahalanobis distance d2, that provides a normalized distance

measure of a current pixel being background.
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The underlying model assumes a stationary background3 with known mean and known

covariance. Let µ̂b be the vector of mean rb, and mean gb at a certain background position

(mean bb is redundant, due to normalization;ˆindicates estimates of the true parameter),

and µ̂c be the corresponding vector of the current image pixel4 such that

µ̂b =


 r̂b

ĝb


 ∼ N





 rb

gb


 ,Σr̂b,ĝb


 (4.11)

µ̂c =


 r̂c

ĝc


 ∼ N





 rc

gc


 ,Σr̂c,ĝc


 (4.12)

Subscript c indicates current values subscript b corresponds to background values.

For each pixel the metric d2 between its background and current value is defined as:

d̂2 = (µ̂b − µ̂c)
T (Σr̂c,ĝc +Σr̂b,ĝb

)−1 (µ̂b − µ̂c) (4.13)

Since the background statistics are assumed to be stationary, the following it is as-

sumption holds if the current pixel is a background pixel: Σr̂c,ĝc = Σr̂b,ĝb

Under this assumption, equation (4.13) turns into the following, where d2 corresponds

to the probability, that µ̂c is background pixel:

d̂2 = (µ̂b − µ̂c)
T (2Σr̂b,ĝb

)−1 (µ̂b − µ̂c) (4.14)

4.2.3 T3: Indexing for Hypothesis Generation

To address real-time computational requirements of the application it is crucial to identify

sectors in the image that potentially contain people of interest with probabilities of false

alarm αf , and miss-detection αm.

To perform this indexing step in a computational efficient manner an index functions

ψ1() is defined. Essentially, ψ1() is a projection operation. Let d̂2(r, θ) denote the change

detection measure d̂2 at image position (r, θ) in polar coordinates with coordinate system

origin at the omni-image center (xc, yc) (in Cartesian coordinates). Please note, that

’ (prime) denotes the number of projected pixels corresponding to the true length of

projection. The relationship between the number indicated by ’ (prime) and the true

length is a function of θ: e.g a distance of true length l projects onto l′ = floor(l cos(θ)+0.5)

pixels.

ψ1(θ) is chosen to be the projection along a given radial line in direction θ to obtain

M̂θ, the test statistic that is used to identify changes along direction θ. This test statistic

3In Chapter 5 it will be shown how to relax these constraints while re-using the remaining modules.
4Indices for Cartesian or polar coordinates are omitted for simplification reasons.
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is justified by the fact that the object projection is approximated by a line-set (which

itself can be approximated as an ellipse) whose major axis passes through the omni-

image center. The line-set’s length distribution is a function of the radial foot position

coordinates of the person in the omni-image.

For the following transformation, people are modelled as a cylinder and assumed to

standing upright. Given the omni-camera projection model, any line orthogonal to the

ground plane and parallel to the optical axis z is projected along radial lines through the

omni camera center in the omni-image at (xc, yc) (in Cartesian coordinates).

Given the geometric relations induced by the omni-camera model (see equations (4.6),

and (4.7))

k′ = r′h − r′f = r′m


Hp

Rp

+

√√√√(
Ho −Hp

Rp

)2

+ 1−
√√√√(

Ho

Rp

)2

+ 1


 (4.15)

lim
Rp→0

k(Rp) = lim
Rp→∞

k(Rp) = 0.

This can easily be verified as follows: For Rp → 0 the addend 1 is negligible in both

expressions such that the remaining terms cancel out. For Rp → ∞ every term with Rp in

the denominator becomes zero; the remaining terms cancel out as well. For visualization

please see Figure 4.9, center.

To increase discrimination power, we operate on an interleaved set of subsections

(rings), where for the ith ring the inner and outer radii are r′in,i, and r′out,i, respectively.

We define r′in,i, and r′out,i as functions of person height Hp and the omni-camera geometry.

Please see Figure 4.7 for illustration. One sub-sector combines 2 full projection-lengths of

a person to ensure, that a projected person is fully contained in one subsection (maybe

partially in another as well). The number of projected person-pixels for a person of height

Hp at position r′in,i and r′out,i are k′
in,i respectively k′

out,i, such that

k′
in,i = r′out,i−1 − r′in,i

k′
out,i = r′out,i − r′out,i−1 with

r′out,i−1 = r′in,i+1

k′
out,i = k′

in,i+1

(4.16)

We initialize r′in,0 according to the region under investigation, while k′
in,0 and k′

out,0 can

easily be calculated as follows: In equation (4.15) Rp is replaced by Ho2
r′mr′in,0

r′2m−r′2in,0
such that

k′
in,i = r′m


 Hp

Ho2
r′mr′in,0

r′2m−r′2in,0

+

√√√√√√√

 Ho −Hp

Ho2
r′mr′in,0

r′2m−r′2in,0




2

+ 1−

√√√√√√√

 Ho

Ho2
r′mr′in,0

r′2m−r′2in,0




2

+ 1


 (4.17)
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Figure 4.7: Interleaving sub-sectors in omnidirectional view: Width is a function of inner
radius. Width is chosen to ensure a person of height Hp to be entirely projected into
at least one sub-sector. Please note, that the persons depicted are of same height in the
real world, only the projection model projects them onto different length as a function of
location (see equation (4.17) and Figure 4.9.



CHAPTER 4. THE SYSTEM: ARCHITECTURE, DESIGN & ANALYSIS 40

With r′in,1 = r′in,0 + k′
in,0 and k′

out,i = k′
in,i+1 all ring radii can be calculated.

We separately calculate for every sub-sector i a profile iM̂θ, which will later be our test

statistic. Let Lxc,yc

θ = {(x, y)|(xc − x) sin θ − (yc − y) cos θ = 0} be a radial line through

(xc, yc), parameterized by angle θ, then

iM̂θ =

r′out,i∑
r=r′in,i

d̂2(r′, θ) (4.18)

denotes an accumulative measure of d2-values along the radial line in direction θ

between radius rin,i and rout,i+1, which border the sub-sector (ring). The number of values

added in the ith sub-sector corresponds to q′i = r′out,i+1 − rin,i.

Thresholding iM̂θ provides sectors of interest, where significant change is detected.

The sector of significant change is bounded by iθl and iθr, such that values iM̂θ with

θ ∈ [iθl...
iθr] define an interval of significant change in the angle space. The thresholds

can be set automatically, based on a statistical analysis of the data and on the user

defined requirements as miss-detection and false alarm. How to adaptively set thresholds

and do the actual thrsholding will be explained in detail in the analysis section 4.3.3

that corresponds to this transform. It is obvious that the analysis is interwoven with the

algorithm design at this point.

For each sub-sector we generate a binary profile pib(θ).

pib(θ)


 = 1, if iθl < θ <i θr,

= 0, otherwise.
(4.19)

The profile values for all subsectors at the same angular location are added and build

a combined profile pb(θ) for that

pb(θ) =
∑
i

pib(θ) (4.20)

An object is hypothesized, and bordering angles for the region of significant change are

determined as follows:

θl = θi|pb(θi−1) = 0 ∧ pb(θi) > 0 (4.21)

θr = θi|pb(θi) > 0 ∧ pb(θi+1) = 0 (4.22)

While this transformation dealt with change detection and ultimately generated the

region of significant change for each sub-sector, we will later use a similar accumulative

measure M̂θ for the foot position estimation. Since the underlying geometry is the same,

we introduce this measure already at this point and define

M̂θ =
r′out∑
r=r′in

d̂2(r′, θ) (4.23)
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For iM̂θ we summed r′i values along direction θ in the ith sub-sector (ring), while for

calculating M̂θ we sum across the entire region of interest, and define q′ = r′out − r′in as

the number of values summed between the interval borders for the region of significant

change, r′in and r′out.

4.2.4 T4: Feature Generation

The following step is used to generate features for the location estimation. Therefore,

we apply a projection operation orthogonal to the one explained in 4.2.3 followed by

analyzing and evaluating this profile.

Let Lr,θ
θ� be a radial line through point (r cos θ, r sin θ), parameterized by angle θ�:

Lr,θ
θ� = {(x, y)|(r cos θ − x) sin θ� − (r sin θ − y) cos θ� = 0} (4.24)

Similar to transformation T3, an accumulative measure M̂�
r,θ is calculated by summa-

tion of the values d̂2 along line Lr,θ
θ� (which is orthogonal to line Lxc,yc

θ in T3):

M̂�
r,θ =

∑
(x,y)

d̂2(x, y)∀(x, y)|(xc − x) sin θ� − (yc − y) cos θ� = r

with r ∈ [r′in, r
′
out], θ� = θ +

π

2

We threshold M̂�
r,θ similarly as proposed in section 4.2.3. The remaining region of

significant change can be approximated by an ellipse, of which the major axis is oriented

with angle θ and the minor axis with θ�. The prior distribution of the object’s two main-

axis length is a function of the person’s location Rp in world coordinates, or equivalently,

a function of the corresponding pixel location rp.

4.2.5 T5: Person Foot Location Estimation in 2D (image coor-

dinates)

We have derived the distributions of the d̂2 image measurements, and have narrowed

our hypotheses for people location and attributes. The next step is to perform the

Bayesian estimation of person locations and attributes. This step uses the likelihood mod-

els L(d̂2|background) and L(d̂2|object) along with 2D prior models for person attributes

induced by 3D object priors P (Hp), P (Rp)andP (θ). In our current application, we make

use of the fact that the probability of occlusion by persons is small to assert that the

probability of a sector containing multiple people is rather small.

The center angle θf of a given sector would in this instance give us the estimate of the

major axis of the ellipse corresponding to the person. It is then sufficient to estimate the

foot location of person along the radial line corresponding to θf . The center angle θf of

the sector defines the estimate for the angular component of the foot position:
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Figure 4.8: Area of significant change (Left and right lines correspond to θl and θr; Center
line denotes the angular position θ̂f .) Inserts show corresponding radial profile Mθ.

θf =
θl + θr

2
(4.25)

with θl and θr denoting the border angles of the hypothesized sector. See also Fig-

ure 4.8.

Given the line Lxc,yc

θ it is necessary to estimate the foot position of the person along

this radial line. Therefore, the person is assumed to stand upright such that it is projected

along radial lines in the omni-image. To find this estimate and variance of the radial foot

position rf we choose the best hypothesis for the foot position that minimizes the Bayes

error. The prior distribution of person heights Hp is assumed to be Gaussian. We actually

need to estimate the person’s height on the projection by using the Bayesian formulation.

However, we rather use the assumption that the variance of the height is small, and just

fix Hp as constants. Errors introduced at this point will be analyzed in the analysis process

(see 4.3.5) and accounted for in the final zoom setting. The geometric transformations are

still taken into account to identify 2D projection lengths as a function of radial position

along the radial line. Let P (hi|m) denote the posterior probability to be maximized, where

hi denotes the ith out of multiple foot position hypotheses footnoteEach hypothesis hi

maps directly to a potential radial foot position r and m the measurements M̂�
r,θf

, that

are statistically independent; hyper-script b or o denotes background respectively object.

The radial foot position rf in the image space can then be estimated as follows:

P (hi|m)

= P (hb
i |mb)P (ho

i |mo) = P (hb
i |mb)

(
1− P (h̄o

i |mo)
)

=
p(mb|hb

i)P (hb
i)

p(mb)

p(mo)− p(mo|h̄o
i )P (h̄o

i )

p(mo)
(4.26)
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Figure 4.9: Left: Bayes error as function of hypothesized foot position r′f , here: most
probable foot position at position r′f = 47. Center: Projected person length k as function
of rf . Note: k(r′f = 47) = 43. Right: Profile d̄2(r′, θf ): by minimizing Bayes error, responses
in interval [47...47+43=90] are classified as object responses.

where p denotes the density function. P (hi|m) becomes maximal for maximal p(mb|hb
i)

and minimal p(mo|h̄o
i ), so that

rf = argmin
r′
f

log

(
p(mo|h̄o

i )

p(mb|hb
i)

)
(4.27)

Approximating M̂�
r,θf

by a Gaussian with same variance for background and object re-

sponses at this step, we can approximate

log

(
p(mo|h̄o

i )

p(mb|hb
i)

)
=




r′f−1∑
r=0

M̂�
r,θf

+
rm∑

r=rh(r′
f
)

M̂�
r,θf

−
rh(r′f )−1∑
r=rf

M̂�
r,θf




(4.28)

Bayes error as a function of the radial index parameter please see Figure 4.9. It also

illustrates the typical profile for the projected person-height as a function of index.

4.2.6 T6: Location Estimation in 3D (real-world coordinates)

Given the geometric projection model of the OmniCam [84] we can transform the foot

position (θf , rf ) in the image space into 3D world coordinates.

Knowing the person’s height Hp, the radial distance in 3D Rp between a person and

the omni-camera can be calculated as follows (see Figure 4.2):

Rp = 2
rmrf

r2
m − r2

p

Ho (4.29)

The angle θ is invariant to the projection model.
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4.2.7 T7: Foveal Camera Control Parameter Estimation (Pan,

Tilt)

Once the estimate for the foot position in 3D is known, basic trigonometric transforms

provide the solution for how to set the foveal camera control parameters. From Figure 4.3

it is easy to see that

tan(α) =
Hp −Rh −Hf

Dp

(4.30)

sin(β) =
Rp

Dp

sin(ϑ) with (4.31)

Dp =
√
D2

c +R2
p − 2DcRp cos(ϑ) (4.32)

4.2.8 T8: Zoom Parameter — The Final Estimate

At this point, it is most evident how the analysis needs to go along with the algorithm and

module design. We remember that for optimal zooming it is not enough to know the best

estimate of a person in the scene. We do have to know as well how good this best estimate

is. Otherwise we might end up zooming in to the maximal extent but still missing the

center of the face by a bit, which might be large enough to not have the entire face in the

foveal view. By knowing the uncertainty, we rather zoom in more conservatively to ensure

the face being in the foveal frame in αz% of the cases. To zoom in to the maximal extent

given the just mentioned requirement, we assume that we know the uncertainties in the

estimates already. How to derive these on-line will be shown by in the system analysis

section 4.3.7.

Given the uncertainties in the estimates, we can derive the horizontal and vertical

field of view for the foveal camera, 2γh respectively 2γv, which map directly to the zoom

parameter z. Zoom parameter Z is defined as

z = min(T h
Z(2γh), T

v
Z(2γv)) (4.33)

where the transformation T h
Z(2γh) and T v

Z(2γv) between the horizontal respectively

vertical field of view and the zoom factor Z is foveal camera specific (see appendix A.4

for details on the camera used) .

Figure 4.10 shows the geometric relationship for the horizontal and vertical case. Fol-

lowing equations provide half the vertical, and horizontal field of view, γv, respectively γh

.

γ̂h = arctan


R̂h + fhσsin β̂

√
R̂2

h + D̂′2
p

D̂′
p


 (4.34)

γ̂v = arctan


R̂h + fvσtan α̂D̂

′
p

D̂′
p


 with (4.35)
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tan α

α

v

Dp

H f

Rh

σf

v

H p

pD’
γ

γ
R

D’p

h
h

βsinσhf

Figure 4.10: Geometric relations for vertical (left, γv), and horizontal field of view (right,
γh) calculation. View from the side respectively from atop.

D̂′
p =

D̂p

cosα
(4.36)

where factor f = fh = fv solves for
∫ f
0 N(0, 1)dξ = αZ

2
% given user specified confidence

percentile αz that the head is display in the foveal frame.

For zoom factor Z, one can now calculate the corresponding pair of half the actual hor-

izontal and vertical field of view, γ̃h and γ̃v by applying inverse transformations (T h
Z)

−1(Z)

and (T v
Z)

−1(Z):

2̃γh = (T h
Z)

−1(Z) (4.37)

2̃γv = (T v
Z)

−1(Z) with (4.38)

sin(γ̃h) = ra sin(γ̃v). (4.39)

Due to a fixed aspect ratio of the foveal camera ra=width:height, the ratio of the

tan(.) of vertical and horizontal field of view is fixed as well. Given the radius Rh of the

person’s head and it’s distance D′
p from the foveal camera, we can estimate the percentage

of pixels in the foveal frame being covered by a face. Here, rv describes the ratio in vertical

direction, rh in horizontal direction, and r2D the ratio for the entire pixels of the foveal

frame:

r̂h =
R̂h

sin(γ̃h)D̂′
p

(4.40)

r̂v =
R̂h

sin(γ̃v)D̂′
p

with (4.41)

r̂2D = r̂hr̂v (4.42)

By knowing the best estimate, and the uncertainties in the foot position as well as

the zoom factor one can easily calculate the range of the horizontal and vertical number
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of pixels, which are dominant in the foveal frame. That knowledge can then help to

automatically adapt parameters in higher level image processing algorithms, e.g. kernel

sizes in face recognition engines.

4.2.9 Tracker

To label location estimates and establish correspondences over time, we use a simple

nearest neighborhood tracker, which compares location predictions (x̃i, ỹi) for time t with

the results (x̂j, ŷj) from our location estimation routines at time t. (x̂j, ŷj) denotes the

estimates of the real-world Cartesian coordinates (x, y), which can be derived from the

estimates (Rp, θ) in polar coordinates as follows:

x = Rp cos θ

y = Rp sin θ (4.43)

The predictions (x̃i, ỹi) can be calculated by a Kalman filter at time t − 1. In our

application we use a constant velocity model that allows for white noise acceleration.

Since evaluation and discussion of the Kalman filter is not part of this work, please refer

to [8], page 82 pp. for further details. However, the following term describes which label

Lj we assign for the jth person at estimated location (x̂j, ŷj) and time t (for simplicity

reasons the time index t is omitted):

Lj =
argmin

i
{




 x̃i

ỹi


 −


 x̂j

ŷj





 (

KΣx̃,ỹ,i + Σx̂,ŷ,j

)−1





 x̃i

ỹi


 −


 x̂i

ŷi





} (4.44)

where KΣx̃,ỹ,i indicates the covariance matrix from the Kalman filter, that indicates

for the ith person the uncertainty in the prediction. Σx̂,ŷ,j indicates for the jth person the

covariance matrix that describes the uncertainty in the location estimate in real world

x-y-coordinates.

It is worthwhile noting that even though we do not provide an analysis of the tracker in

this work, the Kalman Filter needs to be initialize to work properly. For the initialization

it is necessary to provide the uncertainty in the estimates Rp and θ. As we outline later,

our online analysis provides estimates for (σ2
Rp

, σ2
θ). That shows how the analysis actually

influences the design. With equations (A.9),(A.8), and (A.5) we use following expressions

to initialize the Kalman filter:

σ2
x̂ = σ2

R̂ cos θ̂
= σ2

θ sin
2 θ

(
R2 + σ2

R

)
+ cos2 θσ2

R (4.45)

σ2
ŷ = σ2

R̂ sin θ̂
= σ2

θ cos
2 θ

(
R2 + σ2

R

)
+ sin2 θσ2

R (4.46)
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σx̂,ŷ = σR̂ cos θ̂,R̂ sin θ̂

= E{
(
R2 sin θ cos θ − (R + ηR)

2 sin (θ + ηθ) cos (θ + ηθ)
)
}

≈ E{
(
R2 sin θ cos θ − (sin θ + cos θηθ) left(cos θ − sin θηθ

)
(R + ηR)

2}
≈ sin θ cos θ

(
R2σ2

θ + σ2
Rσ

2
R − σ2

R

)
(4.47)
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4.3 System Analysis

This section illustrates in detail how the system analysis methodology described in sec-

tions 2.1, and 3.1 is applied to this application. Figure 1.1 (right block) illustrates the

design phase being followed by the analysis. As described above, and seen in Table 4.2, for

analysis purposes the system is thought of as a sequence of transformations T1 through

T8. Table 4.2 summarizes the abstract definition of each transformation step, while Ta-

ble 4.3 illustrates how the statistical analysis proceeds for each transformation step. Please

remember, that the output of a given transformation is the input to the successive trans-

formation (except in the case of T4 and T5 that correspond to the situation where T5 is

not operating on the output of T4). Given that the architecture and the transformations

are fixed, tools outlined in the methodology section were used to derive the theoretical

distributions for the perturbation models at the output of each stage, given the input

perturbation model from previous stage, ideal model parameters and the thresholds em-

ployed (if any). Table 4.3 illustrates the type of analysis method used in each step. Please

note that in most cases covariance propagation works well as long as the perturbation

magnitude is small compared to the signal magnitude (steps: T1, T6, T7, T8 use linear

covariance propagation). Steps T2, T3 and T4, are less involved so that preferred distri-

bution propagation and/or distribution-approximation techniques could be applied. This

is standard random variable algebra from statistics literature (Please see [89]). Step T5

corresponds to a non-linear estimation step that requires numerical computation of the

uncertainty of the estimated value. This is done by parametric bootstrap [31]. Table 4.4

provides an overview of the prior distributions that influence each transformation and

the thresholds related to the global criterion functions (e.g. probability of missing a hy-

pothesis, probability of false hypothesis, and the probability that the zoomed up image

contains the face). In the following sections a module-wise analysis is carried out.
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Table 4.2: Abstract Model for Algorithm

Estimation Trafo Mapping

Illumination Invariance T1


 R̂

Ĝ

B̂


 −→

(
r̂
ĝ

)

Probability of Background T2

((
r̂
ĝ

)
c

×
(

r̂
ĝ

)
b

,Σr̂,ĝ

)
−→ d̂2

Indexing T3
d̂2(r′, θ) −→i M̂θ −→ (θ̂l, θ̂r)

with iM̂θ =
∑′

r d̂2(r′, θ), r′ ∈ [r′in,i, r′out,i]

Feature Estimation T4
d̂2(x, y)× (θl, θr) −→ M̂�

r,θ with M̂�
r,θ =

∑
(x,y) d̂2(x, y)

∀(x, y)|(xc − x) sin(θ + π
2 )− (yc − y) cos(θ + π

/2) = r,

with r′ ∈ [r′in, r′out], θ ∈ {θl, θr}
Location estimation 2D T5

(
M̂θ

M̂�
r,θ

)
−→

(
r̂p
ϑ̂

)

Location estimation 3D T6 r̂p −→ R̂p

Pan/Tilt Estimation T7

(
R̂p

ϑ̂

)
−→

(
tan (α̂)
sin

(
β̂

) )

Zoom Setting T8

(
tan(α̂)
sin(β̂)

)
−→ zoom Z

4.3.1 Analysis of T1: Illumination Invariant Measure Estima-

tion

The ideal sensor output for the three color-channels is the ideal input for the illumination

invariant transformation T1:




R̂

Ĝ

B̂


 (4.48)

The perturbation module chosen assumes Gaussian noise for all bands (ηR, ηG, ηB), while

cross-correlation between bands is assumed to be zero:


ηR

ηG

ηB


 ∼ N







0

0

0


 ,diag




σ2
R̂

σ2
Ĝ

σ2
B̂





 (4.49)

such that the true input can be written as:


R̂

Ĝ

B̂


 ∼ N







R

G

B


 ,diag




σ2
R̂

σ2
Ĝ

σ2
B̂





 (4.50)
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Table 4.3: Statistical Analysis

Trafo I/P distribution O/P distribution Type of Propagation

T1 N





 R

G
B


 ,diag




σ2
R̂

σ2
Ĝ

σ2
B̂





 N

((
r
g

)
,Σr̂,ĝ

)
covariance
propagation

T2 N

((
r
g

)
,Σr̂,ĝ

)
Background pixel: χ2

2(0)
Object pixel: χ2

2(cθ), cθ �= 0
distribution
propagation

T3 χ2
2(cθ), c ∈ [0 . . .∞] (q′ − k′)χ2

2(q′−k′)(0) + kχ2
2k′(cθ)

distribution
propagation

T4 χ2
2(cθ), cθ ∈ [0 . . .∞]

Background pixel: χ2
2s′(0)

Object pixel: χ2
2s′(cθ), cθ �= 0

distribution
propagation

T5
nbχ

2
2nb)

(0) + noχ
2
2no

(c�r,θ),
c�r,θ ∈ [0 . . .∞]

N

((
rp
ϑ

)
,

(
σ2
r̂p

σ2
ϑ̂

))
bootstrap

T6 N
(
rp, σ

2
r̂p

)
N

(
Rp, σ

2
R̂p

)
covariance
propagation

T7 N

((
Rp

ϑ

)
,

(
σ2
R̂p

σ2
ϑ̂

))
N

((
tan(α)
sin(β)

)
,

(
σ2

tan(α̂)

σ2
sin(β̂)

))
covariance
propagation

T8 N

((
tan(α)
sin(β)

)
,

(
σ2

tan(α̂)

σ2
sin(β̂)

))
N

(
Z, σ2

Z

) covariance
propagation

Table 4.4: Criterion Functions and Priors Influencing the Choice of Transforms

Trafo Threshold/Criterion Fct. Priors

T1 n/a P(Illumination)
T2 n/a n/a

T3
P(missing hypothesis),P(false hypothesis)

–on object level–
P(Projection. Geometry)

P(Object Height), P(Object Location)
T4 n/a P(Object Height)
T5 n/a P(Object Radius)
T6 n/a P(Geometry)
T7 n/a P(Object Pose)
T8 P(head in foveal frame) P(Object Head Size)
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The ideal output after the normalization transformation T1 would be

r =
R

R +G+B
, g =

G

R +G+B
(4.51)

At this point, we apply linear covariance propagation techniques to estimate the uncer-

tainty in the output as a function of ideal input parameters and the input noise model

parameters. For the following estimation of variance and covariance entries for the covari-

ance matrix Σr̂,ĝ we apply equations (A.17) and (A.20).


 ηr

ηg


N





 0

0


 ,Σr̂,ĝ


 with (4.52)

Σr̂,ĝ =
σ2
S

S2




σ2
R

σ2
S
(1− 2R

S
) + R2

S2 −σ2
GR+σ2

RG

σ2
SS

+ RG
S2

−σ2
GR+σ2

RG

σ2
SS

+ RG
S2

σ2
G

σ2
S
(1− 2G

S
) + G2

S2


 (4.53)

≈ σ2

S2


 1− 2R

S
+ 3R2

S2 −R+G
S

+ 3RG
S2

−R+G
S

+ 3RG
S2 1− 2G

S
+ 3G2

S2


 for σ2

R̂
= σ2

Ĝ
= σ2

B̂
= σ2 (4.54)

with S = R + G + B, and σ2
S = σ2

R + σ2
G + σ2

B
5. The true output in the normalized

color space becomes


 r̂

ĝ


 =


 R̂

R̂+Ĝ+B̂
Ĝ

R̂+Ĝ+B̂


 ∼ N





 r

g


 ,Σr̂,ĝ




(4.55)

can be approximated as normal distributed with mean (r, g) and pixel-dependent co-

variance matrix Σr̂,ĝ.

Please note, that even though the noise across the input bands could assumed to be

independent, we can not assume noise in the normalized channels to be uncorrelated as

well. The analysis suggests to maintain a full 2× 2 covariance matrix.

To account for discretization noise in the sensor we lower bound the variances for each

channel by σ2
n = 0.09. The values of σ2

r̂ are shown in Figure 4.11 for an entire OmniCam

frame. Note, in the normalized space the covariance matrix for each pixel is different:

Bright regions in the covariance image correspond to regions with high variance in the

normalized image. These regions correspond to dark regions in RGB space. In saturated

areas, where values appear to be stable due to limited dynamic range of the camera, they

are rather uncertain in reality. To account for this effect and treat saturated values similar

5We assume a sufficiently large signal to noise ratios larger 3 in each band.



CHAPTER 4. THE SYSTEM: ARCHITECTURE, DESIGN & ANALYSIS 52

Figure 4.11: Covariance image for σ2
r̂ . Bright regions in the normalized space denote high

variance; these regions correspond to dark areas in the RGB image.

to dark values in terms of uncertainty, sensor responses Ci > 2206 are ”mirrored” on the

center value of the dynamic range and for calculating corresponding entries in Σr̂,ĝ only,

they are replaced by C̃i = 255− Ci.

4.3.2 Analysis of T2: Probability of Background

The transformation T1 provided an illumination-invariant pixel representation in the nor-

malized space. Since the pixel can represent two different classes (background, indicated

by subscript b, or object indicated by subscript o), each pixel value is either distributed

as 
 r̂b

ĝb


 ∼ N





 rb

gb


 ,Σr̂b,ĝb


 (4.56)

or


 r̂o

ĝo


 ∼ N





 ro

go


 ,Σr̂o,ĝo


 (4.57)

Since the transform can be thought of a summation of two squared independent nor-

mal distributed random variables (in the background case with identical mean 0), the

distribution of the output is well known [89]: For background pixels, d̂2 is approximately

6The CCD camera uses 8 bits per channel.
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χ2 distributed with two degrees of freedom under the hypothesis, µ̂b, µ̂c are normal dis-

tributed. For object pixels d̂2 can be approximated by a non-central χ2 distributed with

two degrees of freedom, and non-centrality parameter cθ. d̂
2 is exactly non-central χ2 dis-

tributed with two degrees of freedom if the covariance for background and foreground are

identically.

Background pixel: d̂2 ∼ χ2
2(0)

Object pixel: d̂2 ∼ χ2
2(cθ), cθ �= 0

(4.58)

4.3.3 Analysis of T3: Indexing for Hypothesis Generation

For the indexing the distance image d̂2 serves as input. It represents for each pixel a metric

between background and current image. Depending on the class a pixel belongs to it is

distributed as follows, given the noise introduced in the sensor and propagated through

each previous model:

Background pixel: d̂2 ∼ χ2
2(0)

Object pixel: d̂2 ∼ χ2
2(cθ), cθ �= 0

(4.59)

Since the transform T3 is essentially a summation of k′ χ2 distributed values, where

k′ can be derived from the geometry model as follows: Let q′ be the total number of pixels

along a radial line Lxc,yc

θ onto which the radius of the parabolic mirror is projected, and

k′ be the expected number of object pixels projected onto the same line.

For later analysis one need to know the prior probability density function of

Hp, Rp, Ho, q
′, and c: The prior distribution for non-centrality parameter cθ can be as-

sumed uniformly distributed, while the priors for the other parameters can be assumed

normal distributed.

Given the geometric relations induced by the omni-camera model we derived

k′ = r′h − r′f = r′m


Hp

Rp

+

√√√√(
Ho −Hp

Rp

)2

+ 1−
√√√√(

Ho

Rp

)2

+ 1


 (4.60)

The distribution of the sum is well known. With non-centrality parameter cθ > 0 the

distribution of M̂θ after summing q′ values, out of which k′ were object pixels7, is as

follows:

all background pixels: M̂θ = M̂ b
θ ∼ χ2

2q′(0)

k′ object pixels: M̂θ = M̂ o
θ ∼ (q′ − k′)χ2

2(q′−k′)(0) + k′χ2
2k′(cθ)

(4.61)

7remaining pixels are background pixels
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Having derived these probability density functions, expressions for the probabilities of

false alarm αf , and miss-detection αm in respect to the task of people detection follow: Due

to the way intermediate results were propagated (please note, that output distributions

of the previous transform is input for the following) they are direct functions of the input

distributions for d̂2(r, θ), the prior distribution for the expected fraction of the pixels along

a given radial line belonging to the object, and the non-centrality parameter of d̂2(r, θ) in

object locations.

Applying Canny’s hysteresis-thresholding technique ([18]) on M̂θ, provides the sectors

of significant change bounded by left and right angles θl respectively θr. The hysteresis-

thresholding technique partitions the signal (here profile M̂θ) into two subsets of intervals,

where one subset denotes areas of significant change in the angle space. This interval

[θl...θr] can be defined as follows based on an upper and a lower threshold Tu respectively

Tl: M̂θi
< Tl∀θi ∈ [θl...θr] ∧ M̂θj

> Tu∃θj ∈ [θl...θr]. That means, all values within the

interval are larger than the lower threshold and at least one value is larger than the upper

threshold. Obviously, following restriction applies: Tu > Tl.

Thresholds: Thresholds used for the hysteresis thresholding can be setup by using the

scene and object priors as follows. To guarantee a false-alarm rate for false sectors of equal

or less than αf% (background case) we can set the lower threshold Tl so that∫ Tl

0
p(M̂ b

θ )dM
b
θ =

∫ Tl

0
χ2

2q′(0) = 1− αf% (4.62)

with p(.) denoting the probability function that describes the statistical behavior of the

argument.

To guarantee a miss-detection rate of equal or less than αm%, theoretically, we can

similarly solve for an upper threshold Tu by evaluating the distribution in equation (4.61)

for the object case:∫ Tu
0

∫
cθ

∫
Ho

∫
Rp

∫
Hp

p(M̂ o
θ )p(Hp)p(Rp)p(Ho)p(cθ) dHp dRp dHo dc dξ = αm%

with p(M̂ o
θ ) = (q′ − k′)χ2

2(q′−k′)(0) + kχ2
2k′(cθ)

(4.63)

where k′ indicates the number of object-pixels along a line. Note, that M o
θ is a function

of q′, k′, c, and k′ itself is a function of Rp, Hp, Ho, and r′m (see equation (4.60)). Unfortu-

nately, we cannot make any assumptions about the distribution of non-central parameter

cθ, so we have to resort to the use of a LUT Tu(αm) generated by simulations instead.

4.3.4 Analysis of T4: Hypothesis Generation

The input for this transformation is the same as for the previous module:

Background pixel: d̂2 ∼ χ2
2(0)

Object pixel: d̂2 ∼ χ2
2(c), c �= 0

(4.64)
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In fact, the transform itself is quite similar, too. From previous steps s′ is known: It

denotes the number of pixels summed along line Lr,θ
θ� (see equation (4.24)) between the

hypothesized bordering angles θl and θr.

Background pixels: M̂�
r,θ ∼ χ2

2s′(0)

Object pixels: M̂�
r,θ ∼ χ2

2s′(c
�
r,θ)), c�r,θ �= 0

(4.65)

Of course, s′ is a function of person size S and its location in the scene. Given s′ and M�
r,θ,

and under the assumption that all pixels along the line segment between θl and θr are

object pixels one can numerically calculate the corresponding non-centrality parameter

c�r,θ by solving M̂�
r,θf

=
∫ ∞
0 χ2

2s′(c
�
r,θ, ξ))dξ for c�r,θ.

4.3.5 Analysis of T5: Person Foot Location Estimation in 2D

Finally, we estimate the uncertainty in the foot position coordinates (θf , rf ). As seen above

in section 4.2.5 we neither have a close form to estimate θf from profile M̂θ, nor rf from

the input profile M̂�
r,θf

. Nevertheless, our approach provides us with the corresponding pdfs

up to the previous step in the algorithm. At this point, it is affordable to simulate the

distribution of rf , respectively θf and estimate σ2
r̂f

and σ2
θ̂f

by parametric bootstrap. This

sampling technique is feasible, since the space is small enough, and only few estimates

with known distributions are involved in few operations.

To estimate the angular position we approximate θ̂f to be normal distributed with

unknown θf and variance σ2
θ̂f
. Once rf and the corresponding projection length k′ (see

equation (4.15)) are estimated and M̂θ is calculated, the non-centrality parameter cθ cor-

responding to the cumulative measure M̂θ in radial direction can numerically be estimated

by solving the following integral for cθ

Mθ =
∫ ∞

0
(q′ − k′)χ2

2(q′−k′)(0, ξ)dξ +
∫ ∞

0
k′χ2

2k′,(cθ, ξ)dξ (4.66)

To equally account for the uncertainty in the data as well as for the fact, that the head

may naturally move 8 within the envelope restricted by θl and θr we set the uncertainty

in θ̂f such that

σ2
θ̂f

= max

( |θl − θr|
4

, σ2
θf ,bootstrap

)
(4.67)

This reflects the fact that the zoom factor is not only a function of the uncertainty in

the estimates. It should rather be a function of both, the error introduced by deviating

from the cylindrical model when a person moves her head (reflected by the first term) and

8no matter how certain the foot position estimation is
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of the uncertainty in the foot position estimation (reflected by the second term). Given

the proportions of a human being and given the restricted range of head motion relative

to the main axis of the person, it is reasonable to assume that the head is in 95% of the

cases within the envelope defined by [θl...θr].

Experiments show, that the radial position r̂f can be approximated by a normal

distribution with unknown mean rf , and variance σ2
r̂f
. The variance σ2

r̂f
is estimated by

parametric bootstrap, using 100 samples.

4.3.6 Analysis of T6: Location Estimation in 3D

We have seen that the foot position estimate error can be approximated as a zero mean

Gaussian random variate. For the following error propagation steps we will assume that

r̂m, r̂p, D̂p, and D̂c are Gaussian random variables with true unknown means rm, rp,

Dp, and Dc, and variances σ2
r̂m

, σ2
r̂p
, σ2

D̂p
, and σ2

D̂c
respectively ( σ2

r̂m
and σ2

D̂c
are estimated

during the calibration phase). By applying linearization techniques in the geometric trans-

formations, and by making independence assumptions on variables where applicable, it

is easy to show how the estimates and its uncertainties propagate through the geometric

transformations

Rp = 2
rmrf

r2
m − r2

p

Ho

Dp =
√
D2

c +R2
p − 2DcRp cos(ϑ)

that were outlined in detail in section 4.1.2.

Derivations are straight forward by cascading intermediate results for covariance prop-

agation applied to elementary transforms as addition, subtraction, multiplication and

division as well as sin(.) and tan(.). Details can be found in appendix A.1.

The results for the uncertainties σ2
R̂p

and σ2
D̂p

in distance R̂p respectively Dp are as

follows. With equation (A.5) and (A.15) we drive

σ2
R̂p

= H0
2σ2

â + 4 (a2 + σ2
â)σ

2
Ĥp

with a :=
rmrf

r2
m − r2

f

(4.68)

σ2
â =

rm
2rf

2
(
rm

2σr̂f
2 + σr̂m

2rf
2 + σr̂m

2σr̂f
2
)

(rm2 − rf 2)4
+

4 rm
2σr̂m

2 + σr̂m
4 + 4 rf

2σr̂f
2 + σr̂f

4

(rm2 − rf 2)2
+

(
rm

2σr̂f
2 + σr̂m

2rf
2 + σr̂m

2σr̂f
2
)

(rm2 − rf 2)4

(
4 rm

2σr̂m
2 + σr̂m

4 + 4 rf
2σr̂f

2 + σr̂f
4
)

(4.69)

σ2
D̂p

=
N

D
By concatenating equation (A.17) and (A.13) we find (4.70)

D := 4
(
Rp

2 + Dc
2 − 2Rp Dc cos(v)

)
and

N := 2σR̂p

2σD̂c

2 + 4Dc
2σD̂c

2 + σR̂p

4 −
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Person at Position 1

Person at Position 2

∆β1

Pointing to Position 1 / 2

Omni Camera

Foveal Camera

= 0

R∆ pδ

p

unequal to zero

R∆

Rp Rp

∆β2

Figure 4.12: Local dependency - same uncertainty in Rp, different ∆β. For δ = 90◦, ∆β
and ∆Rp become maximal.

−8Rp Dc cos(v)σD̂c

2 + 4Rp
2Dc

2σϑ̂
4 (sin(v))4 −

−8Rp Dc cos(v)σR̂p

2 + σD̂c

4 + 4Rp
2σR̂p

2 +

+4σR̂p

2σD̂c

2σϑ̂
4 (sin(v))4 + 4σR̂p

2σD̂c

2 (cos(v))2 +

+4Rp
2σD̂c

2 (cos(v))2 + 4Rp
2σD̂c

2σϑ̂
4 (sin(v))4 +

+4σR̂p

2Dc
2 (cos(v))2 + 4σR̂p

2Dc
2σϑ̂

4 (sin(v))4

Figure 4.12 illustrates how uncertainties in 3D radial distance Rp influence the foveal

camera control parameters.

4.3.7 Analysis of T7: Foveal Camera Control Parameter Esti-

mation

For the following error propagation step we will assume that Ĥo, Ĥp, R̂h, and Ĥf are

Gaussian random variables with true unknown means Ho, Hp, Rh, and Hf , and variances

σ2
Ĥo

, σ2
Ĥp

, σ2
R̂h

, and σ2
Ĥf

respectively (all estimated in the calibration phase). As described

above, D̂p is assumed to be normal distributed with mean Dp, and variance σ2
D̂p

(see

equation (4.70)).

Similar to the analysis for T6 we can approximate tilt tan α̂, and pan sin β̂ to be

normal distributed with mean tanα respectively sin β̂ and covariance σ2
tan α̂ respectively

σ2
sin β̂

. As we will show in the following experiments, for

tan(α) =
Hp −Rh −Hf

Dp

sin(β) =
Rp

Dp

sin(ϑ)

the independence assumptions hold, such that the final results for the uncertainties in tilt

tan α̂, and pan sin β̂ can be estimated by applying equation (A.3) and (A.7) respectively
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(A.8) and (A.7) :

σ2
tan α̂ =

σ2
D̂p

D4
p

(
(Hp −Rh −Hf )

2 + σ2
Ĥp

+ σ2
R̂h

+ σ2
Ĥf

)
+

σ2
Ĥp

+ σ2
R̂h

+ σ2
Ĥf

D2
p

(4.71)

σ2
sin β̂

=
Rp

2σϑ̂
2 cos2 ϑ

Dp
2 +

(
sin2 ϑ+ σϑ̂

2 cos2 ϑ
) 

Rp
2σD̂p

2

Dp
4 +

σR̂p

2

Dp
2 +

σR̂p

2σD̂p

2

Dp
4



(4.72)

It is clear that the systems design and analysis phases involve the choice of various

models. For example, one has to make choices for the input perturbation model in the

first step (T1) (e.g. the CCD noise model in this application), the prior distributions that

influence various transformation stages, and hypotheses generation strategy. Moreover, the

systematic propagation of the statistical distributions through the various transformations

(T1 through T8) may involve approximations. There is a critical need to verify that these

approximations indeed are realistic ones, and that the errors introduced by cascading

several approximations do not render the analysis useless in practice. Thus, the systems

analysis phase needs to be coupled with validations of three kinds:

• Verification of the correctness of the theoretical expressions under the given assump-

tions using simulated data.

• Verification of the correctness of the models themselves from real data (“Model

Validation”)

• The ultimate test that a given system is ready for commercial use is through large-

scale experiments to verify that the designed system meets the requirements set.

This is done by devising a careful experimental design to measure the performance

of the system under various operating conditions.

In the following chapter on experiments it is illustrated how these steps are typically

carried out. For a detailed discussion on empirical evaluation, performance characteriza-

tion protocols, and experimental design issues please see [17],[54],[134], etc.
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4.4 Experiments and Validation

As pointed out in 4.3 there is a critical need to verify that approximations in the modelling

and transformation processes are indeed realistic ones, and that the errors introduced

by cascading several approximations do not render the analysis useless in practice. This

chapter illustrates validation of theoretical expressions and assumptions, model validation

and long-term experiments to verify that the designed system meets the requirements set.

4.4.1 Validation of Assumptions by Simulation

We verify the correctness of our theoretical expressions and approximations through ex-

tensive simulations (Monte-Carlo simulation). In the following we show plots validating

expressions for illumination normalization equation (4.53), Figure 4.13, and for foveal

camera control parameters pan and tilt eqn. 4.71, 4.72 , Figure 4.14). The validation

is performed in two steps: Verification of the theoretical results using simulations, and

model validation using real data (Please see section 4.4.2). In the following, we include

plots showing theoretically predicted answers and the differences between these predic-

tions and simulated results, based on 10000 samples of normal distributed parameters.

For demonstration purpose, parameters that represent the worst-case system behavior

were chosen, based on our range of application settings (see 4.4.3). The figures show re-

sults obtained by using the following parameters: Ĥo = 2.46m Ĥp = 1.75m Ĥf = 1.82m

D̂c = 2.38m. Following values for standard deviations were used: σĤo
= 1cm, σĤp

= 5cm,

σĤf
= 1cm, σϑ̂ = 1◦, σD̂c

= 10cm, σr̂f
= 3 pixels, σ = 2.5 gray-level.

For validation of the distribution of the normalized color values, we fixed B at different

values between 1 and 255 while varying R and G values in the range of 0 through 255.

Figure 4.13 illustrates results for B = 50. In reality uncertainties are calculated on-line

from the current data and are functions of the object, background and location of the

object as well as the sensor noise.

Plots show the correctness of the derivations and approximations, give insights of the

system limitations depending on user-defined tolerances, and show, where the assump-

tions hold. By examining parametric expressions for uncertainties (see equations (4.71),

an (4.72)) the differences between simulation, and derived predictions can be explained

by the error due to the linearization step at low levels of signal to noise ratio.

4.4.2 Validation of Models by Systematic Experiments

The correctness of the models is verified by comparing ground truth values of the control

parameters of the camera against module estimates for mean and variance of the running

system. First, we marked eight positions P1 − P8 of different radial distances and pan
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Figure 4.13: Color normalization: Variance σ2
r̂ + σ2

ĝ + σ2
r̂ĝ. Simulated values (left) and

difference between simulation and theory (right). Standard deviation in the RGB bands
were chosen to be σR = σR = σR = 2.5

Figure 4.14: Variances of sin(β̂) and tan(α̂) plotted as a function of person foot position
in omni-image coordinates. Left: Simulation. Right: Difference between simulation and
theory. Note different scale.

angles, see Figure 4.16. Positions, and test persons were chosen to simulate different

positions, illumination, and contrast. In the following Table 4.5, we show the final foveal



CHAPTER 4. THE SYSTEM: ARCHITECTURE, DESIGN & ANALYSIS 61

camera control parameters for one person. Ground truth values for the mean values were

taken by measuring tilt angle α, and pan angle β by hand, and are compared against the

corresponding mean of system measurements estimated from 100 trials per position and

person.

Figure 4.15: Omni-image; test positions at which snapshots in Figure 4.16 were taken.

The variances calculated by the system for pan and tilt angles are compared against

the corresponding variance-estimates calculated based on the theoretical analysis. The

comparison between system output and ground truth demonstrates the closeness between

theory and experiment, see Table 4.59.

Table 4.5: Model Validation: First two lines show the predicted (hat̂), and experimental
(tildẽ) variances for the tilt angle α̂. Next two lines correspond to pan angle β̂.

×10−5 P1 P2 P3 P4 P5 P6 P7 P8

σ̂2
tan α̂ 2.10 2.12 1.57 1.40 1.35 1.31 1.31 1.32

σ̃2
tan α̂ 2.05 2.04 1.60 1.34 1.36 1.32 1.40 1.31

σ̂2
sin β̂

28.9 26.1 21.3 17.9 15.3 15.2 18.4 20.1

σ̃2
sin β̂

25.9 24.1 19.5 15.1 14.9 15.0 18.1 19.3

A similar approach was taken to validate the zooming setting. Confidence percentile αz

was set to 95%. For 100 arbitrary positions in the room the foveal images were manually

classified into two groups.

9Unfortunately, when the system was installed in the lab, we did only record the variances but not
the standard deviation of the predicted variances. However, we repeat the experiment later under even
relaxed constraints in an quasi-outdoor setting At that point we will present these data (see section 5.5).
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• Group A: “Entire head visible; no part of the head cut off.”

• Group B: “Rest.”

In 92 of the 100 trials, assignment for group A was made by the system. The trials included

having the person stand at several locations and wearing different clothing to simulate

various contrasts and sizes. For performance in terms of percentage of pixels in the foveal

frame being covered by the face, please refer to experimental results in Figure 4.17, 4.22,

and Table 6.1.

4.4.3 System Performance Evaluation

In this section, we illustrate the performance of the running system under various con-

ditions. Figures 4.17 through 4.22 demonstrate how the system can precisely locate a

person and zoom onto its head while guaranteeing that the face is in the frame. The

output of the foveal camera proved sufficient, as input for face detection algorithms (not

part of this work).

Since this work does not analysis of the tracker, we zoom only in when the person stops

moving, and zoom out if the location variation over time is larger than a threshold10.

Figures 4.17 through 4.22 show snapshots of the running system. The foveal camera

control parameters as well as the zoom parameter are functions of the geometry, as well as

of the current uncertainties in the estimates. The more certain the estimate the more we

can afford to zoom in. As described earlier the uncertainties are functions of the current

scene, quality of segmentation, geometry, and calibration uncertainties. In these figures,

the foot position estimate is displayed as a cross. Where the cross does not sit on the top

of the toes, the camera does not zoom in too much. Precise estimation is characterized

by stable positioning of the cross on the shoe. We tested the system without chang-

ing parameters in different settings (office, conference room) under different conditions.

Varying object/background contrast was obtained by having the person move in front of

different background areas and letting him wear different clothing with varied color and

texture. The results in all experiments were obtained with user specified probability αZ

that the detected person’s face is completely contained in the image while zoomed in to

the maximal extent.

In each figure 4.19 through 4.20 the left column shows the Omni-image: The red

segment defines region of interest, the line through the center corresponds to the angular

component of the position estimate. The inner cross corresponds to the radial foot position

estimate while the outer cross shows the estimate for the head position. The right column

shows the corresponding foveal frame.

10This is of course different from the uncertaity in the estimates based on the analysis discribed earlier,
which investigates into uncertainties of the estimates.
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Figure 4.16: Sequence 1. Left right, top down: Foveal image corresponding to positions
P1–P8 in Figure 4.15.
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Figure 4.17: Snap shots office O1-O2. Top: Even though feet are occluded by the edge of
the table, the foot location is estimated precisely and with high confidence: Foveal camera
zooms in. Bottom: Foot position is estimated quite precisely, nevertheless the uncertainty
is quite high, since the background is extremely dark behind the trousers such that only
parts of the person are segmented and therefor, the position estimate remains unreliable;
foveal camera does not zoom in much.
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Figure 4.18: Snap shots office O3-O5. Top: High contrast, reliable segmentation; zoomed
in. Center: Partial occlusion, therefor increased uncertainty; not too much zoomed in.
Bottom: Low contrast, foot position quite off / unreliable; zoomed out. Face is only
centered because estimated foot position, omni camera and foveal camera are aligned.
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Figure 4.19: Snap shots office O6-O7. Top: Precise location estimation, zoomed in. Bottom:
Extreme occlusion, prior model for projected person does not match data such that the
uncertainty in the location estimation is very large and the system zooms out.
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Figure 4.20: Snap shots conference room C1-C2. Top: Precise and reliable localization;
zoomed in to the maximal extend. Bottom: Person only partially captured; segmented
region does not correspond to expected region given the geometry model, high uncertainty;
zoomed out. Since foot position is quite off, face is not centered.
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Figure 4.21: Snap shots conference room C3-C5. Top: Low contrast between white trousers
and saturated background. Strong segmentation only for parts of the object such that
given the geometry model, many foot positions are possible, hence the estimate is unre-
liable, and it is zoomed out. Indeed, the foot position is off and the face is not centered.
Center: Precise and reliable estimate; zoomed in. Bottom: Even though partially occluded,
the contrast at that location is high enough to compensate for limited number of pixels:
Precise and reliable segmentation, zoomed in.
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Figure 4.22: Snap shots conference room C6-C7. Top: Saturated background provides
unreliable segmentation, hance zoomed out, even though the foot position is estimated
quire precisely in this particular case.



Chapter 5

Evolution of the System

In this chapter it will be illustrated how the existing system, which was designed and

analyzed as described above can be extended to relax the system operating conditions with

minimal re-design and analysis efforts. The key conclusion is that by choosing appropriate

modules and suitable statistical representations, we are able to re-use existing system

design and performance analysis results. In the following will reinforce the methodology

described earlier that proposes a design and analysis. Originally, the system was designed

for indoor (static illumination) settings. Now the goal is to extend the system to deal

with dynamic illumination changes such that extensive re-use of the original system and

its performance characterization results can be achieved.

5.1 Approach to Maximal Re-Use of Modules

Assuming that the system has been designed, analyzed, and tested for a given restricted

application scenario (as previously described), the question is how one can adapt the

system to operate under a less restrictive input condition. In order to adapt the system

configuration to meet extended system requirements one has to identify how a change in

requirement influences the existing modules and the system architecture. A redesign of all

modules affected is one option. Another way is to utilize third party modules to replace

existing ones. To retain the advantages derived by following a systematic methodology

during the design and analysis phases of the original system one has to choose external

modules that satisfy the following constraints:

• They should be amenable to statistical analysis so that a probabilistic fusion of the

component with the existing system is feasible, and

• They should facilitate ease of re-use of previous modules and their performance

analysis.

70
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The first point is important in order to be within the systems engineering formalism.

Moreover it is necessary to identify how the probabilistic fusion of two different modules

addressing the same task can be fused to derive hybrid solutions that meet the new re-

quirements. If one represents the system as an execution graph wherein the nodes are data

structures and the edges correspond to the transformations, a statistical characterization

is associated with each edge in the graph. The total system analysis, [97], essentially

provides the relationship between the final output statistics and the input statistics as

a function of all the system parameters. The replacement of a module within the larger

system corresponds to the change of an edge in the graph. In order for the total systems

analysis performed in the previous design cycle to be re-usable, one has to choose a new

module that satisfies the statistical distribution conditions for the input and output data

types. Thus, the second point is needed to not re-do the entire system analysis phase as

a result of modification of the input/output distribution in one module of the system.

In situations where no existing external module satisfies this constraint, we propose to

devise a wrapper transformation that essentially molds the external module and makes

its statistical interfaces consistent with the existing framework1. Our approach therefore

consists of:

• Identifying modules influenced by the translation of the relaxation in the application

constraints.

• Finding replacement modules that satisfy the engineering constraints mentioned

above.

• Performing statistical characterization of the replacement modules (or their hybrid

design variations obtained by fusing existing modules with the replacement modules)

• Developing the wrapper that enables us to integrate it with the existing system with

no re-analysis phase. Once the design is accomplished, the validation and test phase

follows.

5.2 Relaxed Constraints on Scene and Illumination

In chapter 4 the statistical modeling and performance characterization under indoor con-

ditions of our dual-camera surveillance system was discussed. The objective in this chapter

is to describe how this system can be refined to handle less restrictive input conditions

while retaining most of the original system design intact. The goal is to apply the system

1This is the statistical equivalent of wrapping legacy code written in Fortran to be usable in C++,
for instance.
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to quasi-outdoor setting (i.e. lobbies with external illumination) with minimal re-design

and analysis effort. Table 5.1 shows the relaxed constraints. The original system was de-

signed to handle shadow effects and changes in camera gain, the new system must also

handle slow changes in the background and fast changes between multiple background

modes. The system needs to operate 24 hours a day, 7 days a week in an office building

entrance lobby, that is lit by artificial light during night and primarily natural light during

day time.

Table 5.1: Comparison of old and new system requirements

Previous System Constraints New System Features

constant background changing background
constant illumination variable illumination
single mode background multi modal background
restricted operational in black operational on full
and saturated background areas sensor input range

Since the constraint being relaxed has to do with illumination, we need to replace the

relevant illumination invariant module in our original system. As described in section 4.2.1

the original system used the prior knowledge that the scene consisted of light sources with

same spectra but arbitrary intensities. No background adaptation to handle the changes

in spectra was done. The relaxation of this application constraint necessitates the use of a

background adaptation module. In our review of the literature, we could not find a module

that satisfies the requirements that the output distribution of the background adaptation

module is of the form suitable for input into our people detection module. Therefore, we

propose a method, which combines the advantages of our existing change detection module

with the advantages of the background adaptation algorithm by Stauffer-Grimson [111].

We will see that this fusion itself presents challenges due to complexity in analysis and

due to subtle differences in the output feature space: Shadows are assigned object labels

by [111] while our existing change detection algorithm assigns background labels to the

shadow pixels. We address this by adding an augmentation module that alters the output

data to be in the same feature space.

5.3 Module Description: Design and Analysis

This section provides a description of the background adaptation and change detection

modules being fused. Since section 4.2.1 and 4.2.2 already describe in detail the static

change detection module operating on normalized color the emphasis in this section is

put on introducing the third party module.
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5.3.1 Gain and Shadow Invariant Change Detection Module

In this subsection we briefly review our illumination invariant change detection method

based on normalized color as described in the design section 4.2.1 and 4.2.2. The module

takes as input a vector (R̂, Ĝ, B̂)T which is assumed to be normal distributed with mean

(R,G,B)T and covariance matrix Σ = diag(σ2
R, σ

2
G, σ

2
B), normalizes it by Ŝ = R̂+ Ĝ+ B̂

and provides a distance metric d̂2 between the current values µ̂c = (r̂c, ĝc)
T and a back-

ground representation µ̂b = (r̂c, ĝc) in the normalized space, where r̂ = R̂
Ŝ
, and ĝ = Ĝ

Ŝ
,

when subscripts b, c for background respectively current image are omitted. The proba-

bility of a pixel being background corresponds to the distance measure

d̂2 = (µ̂b − µ̂c)
T (2Σr̂b,ĝb

)−1 (µ̂b − µ̂c) with

Σr̂b,ĝb
=

σ2
S

S2




σ2
R

σ2
I
(1− 2R

S
) + R2

S2 −σ2
GR+σ2

RG

σ2
IS

+ RG
S2

−σ2
GR+σ2

RG

σ2
IS

+ RG
S2

σ2
G

σ2
I
(1− 2G

S
) + G2

S2


 (5.1)

where σ2
S = (σ2

R + σ2
G + σ2

B). For details please see [41].

Note, that in the normalized space the covariance matrix Σr̂b,ĝb
for each pixel is

different. This method was proved to perform very precisely and accurately in indoor

situations with static illumination within our module framework, but it is not suitable

for situations of varying light conditions and changes in the background. Due to the

nature of normalization, this module ignores cues provided by the signal intensity. Key-

features are invariance against shadows and changes in camera gain, and the notion of

sensor uncertainty. Nevertheless, the miss-detection rate is high in areas that are dark and

saturated due to the large uncertainty in the normalized color space. It also fails when

the input has no color information.

Analysis: We briefly review the results from the analysis section 4.3.1 and 4.3.2. The

statistical characterization for the normalized color segmentation module can be summa-

rized as follows: For normal distributed input parameters R̂, Ĝ, B̂, the output statistic d̂2

(see equation (5.1)) is χ2 distributed with two degrees of freedom for background pixels.

For object pixels, d̂2 can be approximated by a non-central χ2 distribution with two de-

grees of freedom, and non-centrality parameter c. d̂2 is exactly non-central χ2 distributed

with two degrees of freedom if the covariance matrix for background and foreground are

identical.

5.3.2 Background Adaptation Module

In [111] Stauffer and Grimson propose a background adaptation scheme, that adapts

to slowly drifting multi modal background intensities. They model each pixel value Xt
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as a mixture of K Gaussians with weights wi, means µi, variances σ2
i and use an on-

line approximation to update the model. For details, please refer to appendix A.2. For

simplification reason we omit time index t from here on. They introduce a pixel labeling

process, which is primarily based on the assumption that the least frequently occurring

component in the mixture with large variance is more likely to be objects. This is done by

the use of a threshold T that is based on the prior probability of a pixel being background.

A pixel is labeled ”background”, if it is closest in distance to one of the top B distribution

components in the mixture, where B = argminb(
∑b

k=0 wk > T ). The model parameters

for the mode µi, variance σ2
i , and weight wi, which represents the current data best

are updated following an exponential forgetting scheme with learning constant α. Pixels

which are outside an 2.5σi-interval around each of the K modes are labeled ”object” and

modeled by a new Gaussian distribution. The mean of this Gaussian corresponds to the

current pixel value, the variance is initialized with a high value σ2
init, its weight winit,

with a small value. The new mode replaces the background mode with least supporting

evidence. This is the mixture component with the smallest ratio of weight to the standard

deviation.

Statistical Analysis: To characterize the statistical behavior of the background adap-

tation module, we conducted numerous experiments on real data as well as on simulated

data with similar results. We generated random samples from a mixture distribution with

model parameters wi, µi, σ
2
i with i ∈ {0, 1, 2, 3}. Table 5.2 shows the parameter settings

used along with the ideal model parameters. Initialization for the modes of the components

were done randomly or in a deterministic fashion. For instance, in the example shown,

we initialized all modes with the same parameters: w = 1.88, µ = 0, σ2
i = 25 except for

the first mode’s mean, which we initialized with 10. In Figure 5.1 and 5.2 we show for

Table 5.2: Parameter setting for background adaptation.

T winit σ2
init α w0 w1 w2 w3

0.9 0.05 25.0 0.03 0.05̄ 0.16̄ 0.3̄ 0.4̄

µ0 µ1 µ2 µ3 σ2
0 σ2

1 σ2
2 σ2

3

10 50 150 205 0.3 0.3 0.3 0.3

simulated data how the model parameters typically evolve over 10,000 time intervals.

The experimental analysis shows, that only the modes of the mixture distribution are

estimated and tracked correctly. The variance and the weights are unstable and unreliable.

They do not track the data and do not converge. Even though the experiment uses a

random sample from a stationary mixture distribution, the variance and weights tend to

oscillate arbitrarily and are frequently re-initialized.
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Even if we assumed that the parameters do converge, for every sample that falls outside

all of the 2.5σ-intervals, a new mode is introduced and initialized with a high variance and

a small weight. For samples from the background mixture this occurs in approximately

1% of the cases. In other words, for every pixel the introduction of the new mode occurs

on an average of less than every 10 seconds if the system processes more than 10 frames

per second. Depending on the update factor α the model parameters σ2
k,t, and wk,t are

somewhere between the initial and the true value but do not represent the parameters

of the true underlying background distribution. Since the variances are not constrained

to have a lower-bound, variances from most frequently occurring modes are constantly

reduced and become significantly smaller then the true variances, such that this new mode

introduction happens even more often.

This is not a problem in the original implementation because the weights and the

variances are not used in any way in a subsequent processing step. They use connected

components followed by a region size threshold to prune false detection. On the contrary,

in our methodology, we need to characterize the stability of these estimates in order to

determine how they can be fused to another module and do the systems analysis. Since

the experiments show the mean estimates are stable, we explicitly use this feature to

develop the hybrid algorithm. We further note, that the estimated modes are approxi-

mately normal distributed such that the difference between the current measurement and

the closest background mode is approximately normal distributed with zero-mean and a

covariance that is different from model parameter σi
2 (see Fig. 5.4).

5.4 Fusion of Modules

In this section, we will show how to fuse two modules statistically correctly to obtain a

modified system to meet the old and newly added requirements simultaneously. Figure 5.3

shows the block diagram. The main essence in the fusion algorithm is as follows. The

change in background is modelled as two separate effects:

• Change due to the illumination spectrum and non-linear dynamics.

• Change due to sudden camera gain/shadow changes.

The Stauffer-Grimson (SG) algorithm is ideally suited to deal with changes in the il-

lumination spectrum and slow dynamics, while the normalized color change detection

algorithm is invariant to gain and shadows. By using SG algorithm first and feeding its

internal state to the normalized color change detection algorithm we gain the advantages

of both. Nevertheless, we still have two issues to contend with:

• The SG algorithm does not discriminate between shadows and objects and
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• The normalized color module fails when the input signal has no color and its dis-

crimination power diminishes in dark and saturated areas.

We will show that these problems can be solved by augmenting the SG algorithm to handle

shadow information and by proper statistical fusion of the two algorithm outputs. The

added requirement is that after we have done the fusion the output of the fused algorithm

must have the same output distribution suitable for integration into the original system.

5.4.1 Updating Normalized Color Model

We have seen that an analysis of the Stauffer-Grimson module demonstrated that the

modes of the mixture 2 are stable within a time window. Further, the distribution of es-

timated modes µ̂i for each color band can be approximated by normal distributions thus

matching the input distributional assumptions for the normalized color module. Summa-

rizing the estimated modes µ̂i for each color band RGB in a single vector vb,i we define

vb,i = (µ̂R,i, µ̂G,i, µ̂B,i)
T . Therefore, we can use the components of vb as estimates to

compute µb and Σr̂b,ĝb
in our normalized-color background-model as laid out in equa-

tion (4.53,4.11).

Let X denote a current pixel value representing one of the three color bands RGB.

We define the corresponding background mode Xb as the one closest to any of the B

background modes µ̂i:

X̂b = µj|j =
argmin

k
(µ̂k − X̂)2∀k ∈ {0...} (5.2)

Summarizing the estimated background values X̂b for each color band RGB in a single

vector vb we define vb = (R̂, b, Ĝ, b, B̂, b)T .

With vb = (R̂, b, Ĝ, b, B̂, b)T and equation (4.53,4.11) we then update covariance ma-

trix Σr̂b,ĝb
and mean µ̂b of the normalized color background.

The Mahalanobis distance d̂2 between the current normalized color value obtained

from µ̂c and µ̂b is used as the shadow/gain invariant change detection measure. The

distribution of this statistic is approximately chi-squared distributed with 2 degrees of

freedom.

5.4.2 Augmented Shadow-Invariant SG-Algorithm

As discussed above, the normalized color information should be augmented with intensity

information to deal with dark/saturated areas and when no color information is present

in the signal. Therefore, we apply the Stauffer-Grimson algorithm also to gray scale values

2We apply the algorithm to RGB bands independently such that for simplification reasons X denotes
a pixel value for one of the three channels RGB.
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I = (R+G+B)/3 and search for a representation which allows statistically correct fusion

of the two representations. This second kind of fusion differs from the one just discussed

in the previous section. Table 5.3 compares both representations. The SG algorithm is

Table 5.3: Pros and Cons in different feature spaces.

Normalized color Intensity

Pro eliminates shadow similar discrimination
power on full

sensor input range
very stable representation operates in poorly lit

environments as well
Con reduced discrimination power tends to assign

in dark and saturated shadow pixels to
background areas object group

not designed to distinguish between shadow and object pixels. They are both labeled

as object, since they occur simultaneously and have large variance. Therefore, we add a

computational test that augments the gray scale background state model in SG to include

a shadow component. Please note, that for RGB space, the normalized color representation

automatically takes care of the camera gain effect as well as the shadow effect and is more

time efficient, so we don’t maintain a mixture density in normalized color space. Under

the assumption that shadow pixel values are multiplicative factors (identical in each color

band) of the corresponding background color, pixels that are labeled as non-background

pixels by the original SG algorithm are further classified as being shadow or object. This is

done based on a classical statistical hypothesis test [75] for the current pixel being shadow

(please refer to appendix A.3 for further details and derivations). Along with a label, this

method also provides a probability that the given label is correct. Formally, the number

of background modes is augmented to be B + 1 where the last mode is the additional

shadow mode. Let µI,i, i = 1, . . . , B + 1 denote the means of background mixture model

for a given gray pixel.

The distance between the current intensity value Îc and the closest µI,i’s, denoted by

Î ′b, is used as the change detection measure. We denote this minimum distance by ∆̂.

Similar to equation (5.2)we derive with

Î ′b = µI,j|j =
argmin

k
(µ̂I,k − Îc)

2∀k ∈ {0...B + 1} (5.3)

∆̂ = Î ′b − µ̂I,j ∼ N(0, σÎ′
b

√
2) (5.4)

The distribution of ∆̂ is also approximated by a Gaussian distribution3. Note that the σi

3The actual distribution is a mixture that can be well approximated by a mixture of two Gaussians
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values provided by SG algorithm are not used in this distance measure because of their

instability. Moreover, the variance of the estimated mode is not the same as the vari-

ances of the components of the mixture. The variance of the estimated mode is obtained

through a analysis of the empirical distribution of ∆̂ for the background pixels. The local

fluctuations in the modes of the mixture distribution (within a small window of time) are

primarily assumed to be due to a global illumination effect such as camera gain. There-

fore, the trimmed standard deviation of the histogram of ∆̂ is used as an estimate of the

standard deviation σÎ′b of Î ′b.

5.4.3 Fused Change Detection Measure

The final goal is to statistically fuse the normalized color feature with the shadow invari-

ant intensity feature such that the new feature statistic has the same characteristic as the

old one. This is important in order to ensure, that the modules which follow in the original

system and take this new statistic as input can still be used, and the systems analysis

conducted earlier remains valid. Therefore, we need to find a feature for the augmented in-

tensity representation that will provide a change detection measure that is χ2 distributed,

since the original test statistic d̂2 was also χ2 distributed, see section 4.3.2. Knowing from

the analysis in 5.3.2 that the means are stable and approximately normal distributed, we

define a Mahalanobis distance d̂′2 similar to d̂2 as proposed in equation (4.58):

d̂′2 =




r̂b − r̂c

ĝb − ĝc

Î ′b − Îc




T (
2Σr̂b,ĝb ,̂Ib

)−1




r̂b − r̂c

ĝb − ĝc

Î ′b − Îc




with




r̂b − r̂c

ĝb − ĝc

Î ′b − Îc


 ∼ N





 µb − µc

I ′b − Ic


 , 2Σr̂b,ĝb ,̂Ib




with Ic denoting the current intensity value and I ′b denoting the mode in the background

mixture that is closest to Ic. Experiments show that the correlation between normalized

color representation and the intensity based mixture model is negligible such that the new

change detection measure:

d̂′2 = d̂2 +
(Î ′b − Îc)

2

2σ2
Îb

where d̂2 is identical with the output of the change detection module for normalized color

in section 4.3.2 equation (4.14). Thus, we know that under the given conditions d̂′2 is

approximately central χ2 distributed with 3 degrees of freedom for background pixels

both with zero mean, but one with very small variance due to the min operation.
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(including shadow pixels) and non-central χ2 distributed with 3 degrees of freedom for

object pixels. This shows that the distributional form of the statistic which serves as

input for the next module in our original system remains the same and the modules may

remain untouched. The only difference is in the parameter of the distribution, i.e. the

number of degrees of freedom changes from 2 to 3 in this case. Figure 5.5 illustrates the

cumulative distribution functions for the intensity based distance measure, the normalized

color-based measure, and the fused measure when there are no objects. It shows that the

approximations are reasonable.
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Figure 5.1: Model parameters w, σ2 evolving over time for K = 4.
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Figure 5.2: Model parameter w evolving over time for K = 4. Please note, that the modes are
stable, only labels alternate.

Figure 5.3: Fusion of SG and Shadow/Gain invariant change detection modules. The
output statistic after fusion is chi-square distributed as per our requirement for the systems
integration.
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Figure 5.4: Difference between the current measurement and the closest background mode:
True measurements overlayed by the Gaussian approximation.

Figure 5.5: Cumulative densities for distances when there is no object in the scene; system
output is overlaid by theoretical values. Left to right: Intensity band. Normalized color band
after fusion with background adaptation module. Combined distance measure after fusion of
intensity and normalized color distance measure as used for input in subsequent modules.
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5.5 Experiments and Validation

We have verified that new modifications to the system result in output statistics that

are the same as that required by other components in our original system. Therefore, the

systems analysis for the original system remains untouched and there is no need to re-do

the theoretical analysis and validation experiments. However, we do need to check whether

the approximation error introduced in the new module affect the final performance of the

system and verify this in real experiments.

Again, our real experiments follow a similar protocol as in section 4.4. The correctness

of the pan, tilt, and zoom parameters estimated by our modules are compared against

ground truth values of these control parameters to estimate the mean and variances of the

running system. First, we marked eight positions P1−P8 of different radial distances and

pan angles as shown in Figure 5.6. Positions, and test persons were chosen to simulate

different positions, illumination, and contrast. In the following table, we show the final

foveal camera control parameters for one person. Ground truth values for the mean values

were taken by measuring tilt angle α, and pan angle β by hand, and are compared against

the corresponding mean of system measurements estimated from 100 trials per position

and person. The variances calculated by the system for pan and tilt angles are compared

against the corresponding variance-estimates calculated based on the theoretical analysis.

The comparison between system output and ground truth demonstrates the closeness

between theory and experiment. Please see Table 5.4 for tilt angles and Table 5.5 for pan

angles.

Figure 5.6: . Positions P1–P8, corresponding to measurements in Table 5.4 for tilt angles
and in Table 5.5 for pan angles.

We repeat the experiment from section 4.4.2 to validate the zooming setting for

the extended system. Confidence percentile αz was again set to 95%. For 100 arbitrary

positions in the room the foveal images were manually classified into two groups.
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Table 5.4: Validation of tilt control for new system at positions P1–P8. First line shows
experimental variance σ̃2

tan α̂ for tan α̂, second line for the predicted equivalent σ̂2
tan α̂. third

line provides the corresponding standard deviation of the prediction.

×10−6 P1 P2 P3 P4 P5 P6 P7 P8

σ̃2
sin β̂

2.02 2.03 1.50 1.73 10.1 12.6 1.97 1.67

σ̂2
sin β̂

2.02 2.06 1.29 1.73 9.99 12.5 1.91 1.60

σσ̂2
sin β̂

0.36 0.27 0.21 0.37 2.28 10.5 0.40 0.24

Table 5.5: Validation of pan control for new system at positions P1–P8. First line shows
experimental variance σ̃2

sin β̂
for sin β̂, second line for the predicted equivalent σ̂2

sin β̂
. third

line provides the corresponding standard deviation of the prediction.

×10−4 P1 P2 P3 P4 P5 P6 P7 P8

σ̃2
tan α̂ 3.72 5.13 6.01 8.27 14.7 26.9 2.27 2.44

σ̂2
tan α̂ 2.93 5.11 13.9 8.12 18.3 20.4 2.24 2.10

σσ̂2
tan α̂

0.48 0.95 5.29 2.20 9.81 5.82 1.04 0.26

• Group A: “Entire head visible; no part of the head cut off.”

• Group B: “Rest.”

In 90 of the 100 trials, assignment for group A was made by the system. The trials included

having the person stand at several locations and wearing different clothing to simulate

various contrasts and sizes.

Results of people detection and zooming under various conditions including day, night,

day to night transitions, low contrast between object and background, and various posi-

tions of the object are demonstrated in Figures 5.7- 5.9. Figures 5.10- 5.12 demonstrate

how the system zooms out in occlusion situations, when the prior model of a projected

person does not match the data and therefore the uncertainty in the estimates increases.

They clearly show the robustness of the people detection and zooming system. The camera

control parameters as well as the zoom parameter are functions of the geometry, as well

as of the current uncertainties in the position estimates of the person. The more certain

the estimate the more we can afford to zoom in. The uncertainties are functions of the

current scene, quality of segmentation, geometry, and calibration uncertainties.
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Figure 5.7: New System: Performance during day: Lines indicate angular position of person
and crosses indicate foot and estimated head positions, top to bottom: a) Object far away,
partially saturated background, b) Object closer, c) Object closer, partially saturated
background.
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Figure 5.8: New System: Performance during transition from day to night illumination:
Lines indicate angular position of person and crosses indicate foot and estimated head
positions, top to bottom: a) Object far away, b) Object closer, very precise and reliable
foot position estimation c) Object far away from omni-camera center.
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Figure 5.9: New System: Performance during night: Lines indicate angular position of
person and crosses indicate foot and estimated head positions, top to bottom: a) Object
in front of dark background, partially low contrast, b) Precise and reliable foot position
estimation, zoomed in close, c) Object far away, low contrast, zoomed further out.
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Figure 5.10: Zooming during occlusion: Lines indicates angular position of person and
crosses indicate foot positions. An additional cross shows the head position of the person
being tracked by the foveal image. Three active sectors. Top to bottom: a) Person 1 being
tracked registers with guard, person 2 enters scene , b) Person 1 tracked by foveal camera,
person 2 and entering person 3 only tracked in omni view c) Person 1 still tracked solely,
person 2 close but still separated, person 3 left scene.
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Figure 5.11: Zooming during occlusion: Lines indicates angular position of person and
crosses indicate foot positions. An additional cross shows the head position of the person
being tracked by the foveal image. Three active sectors. Top to bottom: a,b) Person 1 and 2
are occluded, system interprets this as one person that does not closely match the prior on
expected projection length. Therefore, the position estimation becomes unreliable and the
system zooms that much out that all possible foot locations are covered and both person’s
heads are captured by the foveal camera. c) Occlusion ended, 2 different objects detected,
focus back on one person, zoomed in. Unfortunately, the focus changed erroneously from
person 1 to person 2.
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Figure 5.12: Zooming during occlusion: Lines indicates angular position of person and
crosses indicate foot positions. An additional cross shows the head position of the person
being tracked by the foveal image. Three active sectors. Top to bottom: a,b) Two people
occluded along same radial line, high foot position uncertainty, since model assumption
for projection does not match closely, system zooms out, captures both persons simulta-
neously. c) Person 1 occludes person 2 entirely in the omni-view, precise zoom onto person
1.



Chapter 6

Results and Insights

In the following sections the results obtained as well as the insights gained from the

analysis and experiments are presented and discussed.

The essence of the message is that by carefully decomposing the global task into sub-

pieces, by statistical characterizing the system, and by incorporating application specific

priors in various stages of the system, it is possible to build a computationally efficient,

but yet statistically well motivated system.

The main two result under the system engineering aspect is that by carefully decom-

posing the global task into sub-pieces, by statistical characterizing the system, and by

incorporating application specific priors in various stages of the system, it is possible to

build a computationally efficient, but yet statistically well motivated system. Following

these systematic engineering principles rigorously, one can minimize re-design and anal-

ysis efforts required when extend functionality of a vision system. The key conclusion is

that by choosing appropriate modules and suitable statistical representations, we are able

to re-use existing system design, software, and performance analysis results.

From the application point of view, we obtained the following results. The system

operates reliable during day and night operations. The final system is installed in an

office and an office-building lobby that is lit by a mix of natural and artificial light during

the day, while during night it is only lit by artificial light. Tests showed that the system

successfully handles camera gain changes and shadows, as well as dynamic illumination

changes.

In terms of zooming, we set the probability that the head is entirely contained in the

foveal frame to αZ = 0.95. Experiments confirmed in 90 out of 100 trials that the entire

head was contained in the foveal view .

91
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6.1 Quantitative Results

The experiments demonstrate that the zoom parameter estimated by the system is a

function of three factors: the contrast, the angle δ (corresponding to the relative position

of the object between center of the foveal camera and the omni camera center), as well

as the radial distance between the object and the omni-cam center, Rp. For low, medium,

and moderate signal to noise ratios (specified by the median contrast measure between

object and background), the zoom factor is a function of δ, while for high contrast the

zoom factor is mainly a function of the distance Rp. Finally, the zoom factor is directly

related to the median signal to noise ratio, i.e. the higher the signal to noise ratio the

larger the zoom factor. Table 6.1 illustrates for the original system the face sizes in pixels

obtained under various operation conditions depicted in Figures 4.17 through 4.22. While

the new system is able to operate on a much larger range of settings (see Figures 5.7-

5.9) and in a much less restricted environment, the zooming results remain stable given

comparable segmentation. Of course, in regions where the segmentation is improved such

that it affects the reliability in the foot position estimation, the improved system zooms

in closer.

It illustrates the number of face pixels in the foveal frame as a function of the segmen-

tation quality (specified by the median contrast measure between object and background),

and the angle δ = 180◦ − β − ϑ (see Figure 4.3). The alphanumeric entry after the face

size corresponds to the images in Figure 4.17 through 4.22: C for conference room, O

for office sequence, numbers top down. Note, that the maximal number of face pixels is

approximately 160 × 240; due to the fact that a face has inverse aspect ratio relative to

the image frame (portrait (face) vs. landscape (image)).

Figure 6.1 illustrates the theoretical values for the percentage of pixels in the foveal

frame being covered by the face for a given signal to noise ratio of > 3 and assumed

uncertainty of σrf
= 3 pixel at any pixel location. Note that the outer circle maps to

infinity in 3D. For an area of approximately 220m2, the ratio of face pixel area to total

image pixel area is > 1 : 10. (e.g. 90 x 90 pixels in a 320 x 240 image). The center image

clearly shows the relative geometry influencing the results: For positions along the line

passing through both cameras and the person location simultaneously the uncertainties

in the pan estimate is minimal ant therefor zooming in further is possible1.

Table 6.1 summarizes the results from real experiments. Here, the zooming is a function

of the actual segmentation quality and therefor neither a fixed signal to noise ratio nor

a fixed uncertainty in the foot position estimation is guaranteed for any position equally.

We see that the experimental results match the expectation: In areas of low segmentation

quality (< 50%) the zoom setting is rather low and a function of angle δ. For segmentation

1Please note, that this overweighs the influence that the distance between the two cameras has.
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Table 6.1: Number of face pixels in foveal frame as function of segmentation quality
(specified by the median contrast measure between object and background), and angle
δ = 180◦−β−ϑ (see Figure 4.3). Second entry (alphanumeric) refers to scenarios such as
in Figure 4.19 through 4.20: C for conference room, O for office sequence, numbers top
down. Note, that the maximal number of face pixels is approximately 160× 240; due to
the fact that a face has inverse aspect ratio relative to the image frame (portrait (face)
vs. landscape (image)).

δ low medium moderate high

5 52× 80(C2) 156× 218(C7)

10 38× 60(O5) 97× 147(C5)

15 45× 73(O4)

20 37× 58(O2)

25 15× 22(O7)

35 89× 138(O3) 96× 145(C4)

45 82× 130(O1) 127× 189(C1)

50 74× 109(C3) 97× 153(O6)

55 67× 87(C6)

Figure 6.1: Influence of foot position in the space on the percentage of pixels in the foveal
frame being covered by a face. For demonstration purpose fixed signal to noise ratio > 3
), uncertainty of σrf

= 3 pixels at any position (in reality, smaller at most positions).
Ratio of 10% corresponds to 90 x 90 pixels in a 320 x 240 image. Left: Horizontal. Center:
Vertical. Right: Entire image.

results of > 80% one can not find the zoom being a function of δ; it rather seems to be

a function of rf respectively Rp. This is anticipated, since for good segmentation results,

the uncertainty in the foot position estimation σ2
rf

becomes small, while we know from

equation (4.68) that for large rf uncertainty in 3D value Rp grow. This is due to the

character of the transformation equation (4.6), where for small rf one pixel maps to a

few centimeter, while for large rf one pixel can map to multiple decimeters. Please note,

that even very small values for the uncertainty in the angle estimates may at a large

distance Rp not necessarily map to high amounts of head pixels in the foveal frame: due

to geometry, the amount of head pixels in the frame is a function of the angle times the
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distance Rp .

This discussion shows that theoretical derivations alone do not buy anything, unless

we get a handle on the uncertainties of the current estimates. Even though the geometry

strongly influences the results, the final zooming quality equally has to be a function of the

segmentation quality (encoded in foot position uncertainties), and is therefor a function

of the current data. That exactly is the strength of the system: The uncertainties are

calculated online from the actual data, and the parameters are set in real-time accordingly.

In our case, the uncertainties are very much a function of the segmentation results and

therefor not predictable in advance; we have to derive them from the actual data. These

results, which we generated online by propagating the uncertainties at run time, helped

us to zoom properly for the current situation. We have seen, that we can afford to zoom

in even further where segmentation results improve due to improved signal to noise ratio

in the current signal. Some Results obtained in the experiments exceed the results shown

in the plots, which were generated on the base of fixed values as described earlier. In cases

of poorer signals, the results are worse, and we are able to zoom further out to guarantee

performance in terms of ensuring that the head is still in the foveal frame.

6.2 Optimization and Customization of Setup

We now illustrate, how the statistical analysis is used to optimize the camera setup. The

formulas 4.71, and 4.72 suggest that the configuration that minimizes these uncertainties

is the one with large inter-camera distance Dc and foveal camera height Hf equal to the

mean person eye-level height Hp. Figure 6.2 illustrates a comparison of the uncertainties

in the pan angle for this setup (right plots), versus a camera position setup with lower

distance Dc (left plots). In Figure 6.3 we compare the uncertainties in the tilt angle for this

setup (Hf ≈ Hp, right plots), versus a foveal camera mounting height of Hf = 3.75m(left

plots).

Figures 6.2, and 6.3 illustrates how the setup of the system (here placement/mounting

of foveal camera)influences precision globally and locally. Especially in Figure 6.2, note

preferred zones with low uncertainties. During installation, these results can be used to

adapt the system to have optimized operational performance in certain areas of the room.

One can note that the plots for the uncertainties are truncated for (row,col) coordinates

that are farther away from the omni-image center. These points represent areas where the

uncertainties are beyond an acceptable threshold and hence the zoom parameter is never

adapted.
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Figure 6.2: Influence of camera positioning on global and local performance. Top: vari-
ance σ ˆsinβ (pan). Bottom: corresponding contours. Left: close distance Dc between foveal
camera and OmniCam. Right: larger distance, better performance.

6.3 Discussion

In this section we list and discuss some details and insights gained while engineering,

testing and refining the current system. The following discussion is meant to provide

starting points for further module and system improvements.

Discrimination: The current system performs reliable in indoor and quasi outdoor set-

tings. However, since the pixel based miss detection rate is space variant in the normalized

color space (indicated by spacial varying covariance matrix Σr̂,ĝ), it seems worthwhile to

explore, how to weight the terms contributing to the accumulated feature representation

accordingly.

Modelling Person Height Hp by a single Gaussian: As described earlier, we model

a person’s height Ĥp as normal distributed with mean Hp and variance σ2
Ĥp

. Nevertheless,

in section 4.2.4 where we estimate the radial foot location in the omni-image, we use the

assumption that the variance of the height and size is small, and just fix Hp as constants
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Figure 6.3: Influence of foveal camera mounting height on global and local performance.
Top: variance σ ˆtanα (tilt). Bottom: corresponding contours. Left: Hf approximately Hp.
Right: Mounting height increased by 2m.

in equation (4.26). Though the current system is designed for persons of average height

1.75m, extension to a multi-modal approach for groups of e.g. children, people of small,

average, and tall size can be done within the proposed framework. Allowing for a different

variance in the height distribution could adapt the system to application needs. Currently,

a larger variance would result in more conservative zooming. Maintaining close zooming

and allowing for different people heights (e.g. children, small, average and tall people)

would make necessary a different prior model for Ĥp, e.g. a mixture of Gaussian.

Occlusion: The system and the analysis needs to be further adapted to deal with sce-

narios where we have multiple persons along a given radial line along with occlusions.

However, the current system would interpret occluded persons as a single person that

does not match the prior assumption well. This will result in high uncertainty in the foot

position estimation such that the foveal camera zooms out and captures both persons in

the same frame (see Figures 5.10- 5.12).

Out of Focus Images: The system adapts to variations in camera setup like sub-

optimal focusing and automatically account for the varying uncertainty in the measure-
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ments. An out of focus situation results in a larger uncertainty in the measurement al-

lowing the system not to zoom in too close. We found that with a sharper focused setup,

the zoom factors were consistently higher than with a blurred focus.

Radial Foot-Position Estimation: In the estimation step for the radial foot

position, we replace the likelihood term for p (measurment |object) by the term

p (measurment |hypothesis non-background), see equation (4.26). Since we know that the

distribution M̂�
r,θf

for objects p (measurment |object) is χ2
2k′(c

�
r,θ) distributed with known

degrees of freedom 2k′ and known non-centrality parameter c�r,θ (see section 4.3.5) an esti-

mation based on this distribution had been even more precise, since it included knowledge

of the object data itself. Nevertheless, it would be more time consuming in the parametric

sampling process that tries to analyze the uncertainty in the estimate.

Tracking: Although we mainly discussed person detection and location estimation

alone, the actual video surveillance system has tracking algorithms implemented. How-

ever precise tracking is only implemented for slowly moving persons. The current system

uses temporal uncertainty in the location estimation to switch between adaptive zooming

when the object moves slowly and zoomed-out mode if the person is moving arbitrarily in

the scene. Please note the difference between temporal uncertainty estimated over a time

window and uncertainty in the location estimation.

Interface to Higher Level Algorithms: The fact that our approach does not only

provide best estimates but along with it also uncertainties in these estimates, the out put

can be used as input for higher level algorithms. For example, a face detection/recognition

engine would know the expected size of the head and can initialize its filters and kernel

sizes adaptively.

Illumination Adaptation: When we put the original system in a stationary environ-

ment illuminated by sunlight, we found that it would only operate successfully for ap-

proximately 20 minutes. This is the time, during which the sun travels 5◦. The change in

illumination caused a shift in the camera gain, large enough that the background learned

during the initialization phase changed significantly and produced 100% false alarms. In

cloudy weather conditions the system failed even sooner, since the underlying illumination

model was also violated sooner. As described earlier, the final system has an additional

modules implemented that models these effects such that the revised system combines

advantages of the original and the added illumination module, while their individual lim-

itations were compensated by each other.
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Summary

The objective in this work was to study the systematic engineering, design and test cycle

while building a dual-camera video surveillance system for people detection and zooming.

There are two main contributions of this thesis:

• One contribution is the demonstration of a systematic design methodology for build-

ing a complete real-time video surveillance system.

• The other Contribution deals with the adaptation of the existing system to show how

one can incrementally evolve the current system design to meet added requirements.

A system was developed, which goal it was to continuously provide a high resolution

zoomed-in image of a persons head at any location of the monitored area. An omni-

directional camera video is processed to detect people and to precisely control a high-

resolution foveal camera, which has pan, tilt and zoom capabilities. The pan and tilt

parameters of the foveal camera and its uncertainties are shown to be functions of the

underlying geometry, lighting conditions, background color/contrast, relative position of

the person with respect to both cameras as well as of sensor noise and calibration errors.

The uncertainty in the estimates is used to adaptively estimate the zoom parameter

that guarantees with a user specified probability αZ that the detected person’s face is

completely contained in the image while zoomed in to the maximal extent. The higher

the probability αZ the more conservative the zoom factor would be. With αZ set to 95% we

achieved zooming results that in average provided foveal images that contained 80× 115

face pixels out of 320 × 240 in an entrance lobby area of about 400m2. Experiments

confirmed in 92 out of 100 trials for the original system and in 90 out of 100 trials for the

extended system that the entire head was contained in the foveal view.

It was shown how application specific constraints impact the choice of the system

configuration. The process of making the right choice of feature representations is still an

art and not a science. However, it was demonstrated that once a system configuration has
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been chosen it is possible to analyze the system behavior and quantify its performance

relative to the application at hand. Further research is needed to understand what feature

representations are appropriate for a given task and to identify how the representation

correlates with application specific priors. The work demonstrated how by careful statis-

tical modelling it is possible to develop and quantify a visual surveillance system. The

essence of the message is that by carefully decomposing the global task into sub-pieces,

by statistical characterizing the system, and by incorporating application specific priors

in various stages of the system, it is possible to build a computationally efficient, but yet

statistically well motivated system.

To present this essence, it was necessary to make certain simplifying prior assump-

tions and illustrate a working system in a constraint environment. Following a systematic

methodology during the design and analysis phases we were able to relax the constraints

in a second development cycle/phase.

The second point we wish to make is that by following these rigorous systematic en-

gineering principles one can minimize re-design and analysis efforts required to extend

functionality of a vision system. The key conclusion is that by choosing appropriate mod-

ules and suitable statistical representations, we are able to re-use existing system design,

software, and performance analysis results. A new change detection algorithm fusing two

different change detection algorithms was devised. One dealt with camera gain changes

and shadows, while another dealt with dynamic illumination changes. The strengths of

both these algorithms were retained, while their individual limitations were compensated

by each other. The integration was done by paying attention to how the change detection

component interfaces with the rest of the existing system.

Extensive amount of real and synthetic data experiments was used to validate the

models derived. The new system was successfully tested in a conference room, in an office

and an office-building lobby that was lit by a mix of natural and artificial light during

the day, while during night it was only lit by artificial light. It operated successfully dur-

ing day and night operations. The system proved robust when tested under a variety of

situations without modification of system parameters: It was able to deal with various

backgrounds, shadows, camera gain changes, dark and saturated measurements, and vary-

ing illumination conditions. The system high sensitivity was achieved in detection while

retaining precise and data-driven adaptive zooming of the person head. The system could

adapt to variations in camera setup like sub-optimal focusing/blurring, and automatically

account for the varying uncertainty in the measurements. For example: With a sharper

focused setup, the zoom factors were consistently higher than with a blurred focus.

The analysis and the experiments point out the following:

• The statistical analysis enable us to optimize the system setup to obtain minimal

variance in the control parameters over a large area.
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• The system control parameters can be derived online as a function of the current

data measurements and used to setup the zoom parameter adaptively.

• The amount of zoom is a function of median contrast between the object and the

background (as well as the form of the change detection measure profile along the

radial line), the relative positioning of the person with respect to the omni-camera

and the foveal camera, and the distance of the person from the omni-camera.

• The original system is real-time and operates at approximately 10 frames per second

on a Pentium III, 600MHz CPU, with prototype code being non-optimized. The new

system is significantly slower. However, a software analysis tool revealed that this is

primarily due to inefficient coding. After recoding, we expect similar performance,

since the performance is mainly restricted by the slow frame-grabberA.4 with a

frame-rate of maximal 10 frames per second, when operating on a 320× 240 RGB

image, 8 bit color depth.

• Without using intensity information the detection step in the original system failed

when the background area is completely black or saturated, due to the nature of

the illumination invariant used in the normalized color change detection step. The

combination of two different background adaptation and change detection methods

eliminates this problem and allows for robust operation indoor as well as in quasi-

outdoor settings, where the light conditions vary from natural sunlight through a

mix of natural and artificial light to pure artificial light conditions.

• The probability of capturing the entire head in the foveal frame is user defined,

while the system performance is determined by the number of head pixels in the

foveal image. The higher this number, the better the system performs. Given that

the aspect ratio for a head and for the foveal image are approximately inverse1,

approximately maximal 50% of the pixels in x-direction can be head pixels, which

corresponds to a maximal head pixel region of approximately 160 × 240 pixels for

a 320 × 240 foveal image. Typical numbers for the static background case can be

found in Table 6.1. We set the probability of capturing the entire head in the foveal

view to αZ = 95%. For a 320×240 foveal image, the size of head pixel regions range

from 15×22 for low segmentation quality to 156×218 for high segmentation quality,

averaging overt time and location approximately 80× 115 pixels. This is equivalent

to filling approximately half of the y-axis, and quarter of the x-axis in the foveal view

with head-pixels. While the new system is able to operate on a much larger range

of settings and in a much less restricted environment, the zooming results remain

1depending on each persons individual head dimensions
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stable given comparable segmentation. Of course, in regions where the segmentation

is improved such that it affects the reliability in the foot position estimation, the

improved system zooms in closer. We repeated the experiments for the extended

system and received similar results: In 90 out of 100 trials the entire head was

contained in the foveal view.

While this are partially qualitative statements, the analysis provides quantitative ta-

bles and plots that quantify the operating limits of the system.



Chapter 8

Outlook

In the following an outlook on future work is provided. Although, in the work presented,

we mainly discussed person detection and location estimation alone, the actual video

surveillance system has tracking algorithms implemented. However, an analysis of the

tracking module and an analysis of the active camera dynamics is not provided. System-

atic characterization of the tracking algorithm is a subject of further research. A proper

analysis of the motion prediction module and camera dynamics would allow to also zoom

in to the maximal extent while the person is moving. The current system uses tempo-

ral uncertainty in the location estimation to switch between adaptive zooming when the

object stops moving and zoomed-out mode if the person is moving arbitrarily in the scene.

Furthermore, the system and the analysis needs to be adapted to deal with scenarios

where we have multiple persons along a given radial line along with occlusions. The

framework allows for straight forward modification of the prior used. However, the current

system would interpret occluded persons as a single person and zoom out such that both

persons are captured by the same foveal camera frame.

To further improve precision and resolve ambiguities, future research will deal with

evaluating the foveal image and feeding results back to the system. Since the current

system uses only priors on the geometry of persons, investigation in the foveal frame could

serve in an verification step to reject detection of moving objects that are not people. This

approach can be combined with a setting that uses multiple properly positioned foveal

cameras, such that the system guarantees to provide face images and not only images of

the head1.

While the system tracks multiple people simultaneously in the omni-directional view,

only one person can be tracked by the single foveal camera. Future research will introduce

multiple foveal cameras and address the issue of sophisticated control strategies such that

optimal zooming can be achieved for all persons in the scene.

1Which might be captured from behind.
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Finally, future research topics may address how applications as face recognition engines

can benefit from the quantitative performance measures our system provides along with

its output.
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Appendix A

Mathmatic Appendix

A.1 Appendix: Variance Propagation

In this work we derived variances σ2
f̂

of a random variable f̂ , and covariance σf̂ ,ĝ of

two random variables f̂ , and ĝ . f̂ and ĝ are assumed to be normal distributed with
f̂ ∼ N(f, σ2

f̂
) respectively ĝ ∼ N(g, σ2

ĝ) and happen to be a function of n random variables

v̂i ∼ N(vi, σ
2
v̂i
), i ∈ {0 . . . n− 1}. Each variance σ2

f̂
presented can be derived directly from

following relations by propagating various σ2
v̂i
. Let’s define â = v̂0, b̂ = v̂1, ĉ = v̂2,

Â = v̂3, B̂ = v̂4, and ϑ̂ = v̂5, and assume that they are all statistically independent if not
specifically stated otherwise.

σ2
f̂

= E{
(
f − f̂

)2} (A.1)

= E{(f − (f + ηf ))
2}

= E{η2
f}

σf̂ ,ĝ = E{
(
f − f̂

)
(g − ĝ)}

= E{(f − (f + ηf )) (g − (g + ηg))}
= E{ηfηg} (A.2)

In the following, we assume that E{ηfηg} = 0 if f̂ and ĝ are statistically independent,
and omit higher order error-terms. We derive covariance-terms for uncertainties in the
results of following transforms:

Summation: For random variables a and b being correlated.

σ2
f̂=â±b̂

= σ2
â + σ2

b̂
+ E{ηaηb} (A.3)

For random variables a and b being uncorrelated, E{ηaηb} = 0

Square:

σ2
f̂=â2 ≈ 4a2σ2

â + σ4
â (A.4)
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Multiplication: For random variables a and b being correlated.

σ2
f̂=â∗b̂ ≈ a2σ2

b̂
+ b2σ2

â + σ2
b̂
σ2
â (A.5)

Division: For random variables a and b being correlated.

σ2
f̂= â

b̂

= E{
(
a

b
− a+ ηa

b+ ηb

)2

} (A.6)

= E{f̂ 2} with

f̂ 2 =

(
a

b
−

a
b
+ ηa

b

1 + ηb

b

)2

≈
(
a

b
−

((
a

b
+

ηa
b

) (
1− ηb

b

)))2

≈ A+B with

A =
a2η2

b + η2
ab

2 + η2
aη

2
b

b4

B = −2
aηaηb

(
1− ηb

b

)
+ η2

aηb

b3

such that

σ2
f̂= â

b̂

≈ a2σ2
b̂
+ σ2

âb
2 + σ2

âσ
2
b̂

b4
+ E{B} (A.7)

For random variables a and b being uncorrelated, E{B} = 0

Trigonometric Functions: Using first order Taylor approximation.

σ2
f̂=cosϑ̂

≈ σ2
ϑ̂
sin2 ϑ (A.8)

σ2
f̂=sinϑ̂

≈ σ2
ϑ̂
cos2 ϑ (A.9)

Polar to Cartesian Coordinates:

σ2
x̂ = σ2

R̂ cos θ̂
≈ σ2

θ

(
R2 + σ2

R

)
sin2 θ + σ2

R cos2 θ (A.10)

σ2
ŷ = σ2

R̂ sin θ̂
≈ σ2

θ

(
R2 + σ2

R

)
cos2 θ + σ2

R sin2 θ (A.11)

σx̂,ŷ = σR̂ cos θ̂,R̂ sin θ̂

≈ E{
(
R2 sin θ cos θ − (R + ηR)

2 sin (θ + ηθ) cos (θ + ηθ)
)
}

≈ E{
(
R2 sin θ cos θ − (R + ηR)

2 (sin θ + ηθ cos θ) (cos θ − ηθ sin θ)
)
}

≈ sin θ cos θ
(
R2σ2

θ + σ2
Rσ

2
θ − σ2

R

)
(A.12)

Square Root:

σ2
f̂=

√
â

≈ σ2
â

4a
(A.13)
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Special Transforms:

a) σ2

f̂= â+b̂

â2−b̂2

= E{
(

a+ b

a2 − b2
− a+ ηa + b+ ηb

(a+ ηa)
2 − (b+ ηb)

2

)2

} (A.14)

= E{
(
A

B
− A+ ηA

B + ηB

)2

}

= σ2

f̂= Â

B̂

with

A = a+ b, ηA = ηa + ηb

B = a2 − b2, ηB = 2aηa + η2
a − 2bηb − η2

b

With equations (A.3),(A.4), and (A.7) we finally get

σ2

f̂= â+b̂

â2−b̂2

≈ a2b2 (a2σb̂
2 + σâ

2b2 + σâ
2σb̂

2)

(a2 − b2)4
+

4 a2σâ
2 + σâ

4 + 4 b2σb̂
2 + σb̂

4

(a2 − b2)2

+
(a2σb̂

2 + σâ
2b2 + σâ

2σb̂
2)

(a2 − b2)4

(
4 a2σâ

2 + σâ
4 + 4 b2σb̂

2 + σb̂
4
)

(A.15)

b) σ2
f̂=â2+b̂2+n âb̂ĉ

≈ 2σâ
2σb̂

2 + 4 b2σb̂
2 + 4nabcσb̂

2 + σâ
4 + n2a2b2σĉ

2 + 4nabcσâ
2

+ σb̂
4 + 4 a2σâ

2 + n2σâ
2σb̂

2σĉ
2 + n2σâ

2σb̂
2c2 + n2a2σb̂

2c2

+ n2a2σb̂
2σĉ

2 + n2σâ
2b2c2 + n2σâ

2b2σĉ
2 (A.16)

can be derived from equations (A.3),(A.4), and (A.5)

c) σ2
f̂= a

a+c
= E{

(
a

a+ c
− a+ ηa

a+ ηa + c+ ηc

)2

} (A.17)

= E{
(
a

b
− a+ ηa

b+ ηb

)2

}

= σ2
f̂= â

b̂

(A.18)

Continue with equation (A.7) where b = a+ c and ηb = ηa + ηc

Covariance for Normalized Color: With S = R + G + B and ηS = ηR + ηG + ηB
and R,G,B being uncorrelated, we derive

σ2
r̂,ĝ = E{(r̂ − r) (ĝ − g)} (A.19)

= E{
(
R + ηR
S + ηS

− R

S

) (
G+ ηG
S + ηS

− G

S

)
}

≈ E{
((

R

S
+

ηR
S

) (
1− ηS

S

)
− R

S

) ((
G

S
+

ηG
S

) (
1− ηS

S

)
− G

S

)
}

≈ E{
(
−RηS

S2
+

ηRS

S2
− ηRηS

S2

) (
−GηS

S2
+

ηGS

S2
− ηGηS

S2

)
}

≈ 1

S4

(
RGσ2

S −RSσ2
G −GSσ2

R

)
(A.20)
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A.2 Appendix: Stauffer / Grimson Algorithm

The algorithm proposed [111] models each value Xt ∈ R(t), G(t), B(t), I(t) of a particular
pixel at time t as a mixture of Gaussians:

P (Xt) =
K∑
i=1

wi,t ∗ ζ(Xt, µi,t, σi,t) (A.21)

where K is the number of distributions, wi,t is an estimate of the weight, and µi,t

and σi,t are the mean respectively variance values of the ith Gaussian in the mixture at
time t, and where ζ is a Gaussian probability function. In our system K is set to 4; K is
essentially determined by computational power and availability of memory.

Based on the persistence and the variance of each of the Gaussians of the mixture, it
is determined which Gaussian may correspond to background values. Each new pixel gray
value Xt is checked against the existing K Gaussian distributions, until the best match
is found. If none of the K distributions match the current gray value, the least probable
distribution – the one with the smallest weight wi,t – is replaced with a distribution, that
is characterized by the current value as its mean, and an initially high variance, and low
weight. The prior weights wk,t of the K distributions at time t are adjusted as follows

wk,t = (1− αt)wk,t−1 + αtMk,t (A.22)

where αt is the learning rate and Mk,t is 1 for the model which matched and 0 for the
remaining models. For details please refer to [111].

The µ and σ parameters for the unmatched distributions remain the same, while for
the best matched distribution they are updated as follows:

µt = (1− ρ)µt−1 + ρXt (A.23)

σ2
t = (1− ρ)σ2

t−1 + ρ(Xt − µt−1)
2 (A.24)

with ρ = αζ(Xt|µt−1, σt−1) (A.25)

To determine, if a pixel represents object or background, the Gaussians are ordered
by wk,t/σk,t. A pixel is classified as background pixel if it is represented best by one of the
first B distributions, where

B = argminb

(
b∑

k=1

wk > T

)
(A.26)

and T is a measure for the minimum portion of the data that should be accounted for
by the background. Otherwise, it is classified as object pixel.

This algorithm contains two significant priors, which are application dependent, and
are imposed by the scene model: α, the learning constant, and T , the background propor-
tion.

A.3 Appendix: Shadow Augmentation

To re-use the third-party module as proposed in chapter 5, we need to augment it such that
it meets our application requirements. In the following, the augmentations are described.
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Hypothesis Test for Classification of Shadow Pixels: Let v̂c = (R̂c, Ĝc, B̂c)
T be

the current color values, and v̂b = (R̂b, Ĝb, B̂b) be most dominant background values of
the mixture model in each color band with v̂c ∼ N(Fµ,Σ), and v̂b ∼ N(Fµb,Σ). In the
following we use the feature that the ratios between the current and the most dominant
background values are approximately the same across all color bands (hypothesis H0),
while the ratio varies across the bands for non-shadow pixels (hypothesis H1). We then
test the hypothesis H0 against H1. Hypothesis H0, which supports the shadow assumption
reads as follows:

H0 : Fµb = kFµ, Fµ,Σ known. (A.27)

Let ŷ be the vector combining the current and most dominant background pixel estimates:

ŷ =

(
v̂c

v̂b

)
∼ N (y,Σŷ) with (A.28)

y =

(
Fµ
kFµ

)
, Σŷ =

(
Σ 0
0 Σ

)
(A.29)

The probability p0 = p(ŷ|Fµ,Σ, k,H0) can be written as

p0 =
1

(2π)
6
2 |Σ| 12 exp

(
−1

2
(ŷ − y)TΣŷ

−1(ŷ − y)
)

(A.30)

Deriving the m.l.e. for k is straight forward. Solving dp0(k)
dk

for k̂ leads to

k̂ = (vb
TΣ−1µ)/(µTΣ−1µ) (A.31)

For hypothesis H1, which supports the non-shadow assumption, only the scalar k is re-
placed by matrix K:

H1 : Fµb = KFµ, K =


 k1 0 0

0 k2 0
0 0 k3


 ; Fµ,Σ known. (A.32)

Deriving the m.l.e. for ki follows the same principles as described above. Solving dp1(ki)
dki

for k̂i leads to

k̂i =
vb

TΣ−1
i

µTΣ−1
i

(A.33)

where Σ−1
i denotes the ith column vector of Σ−1.

It can be easily shown that the likelihood ratio test statistic d̂ is given by:

d̂ = (v̂b − k̂Fµ)TΣ−1(v̂b − k̂Fµ)

− (v̂b − K̂Fµ)TΣ−1(v̂b − K̂Fµ) (A.34)

For R,G,B being uncorrelated, Σ = diag(σ2
R̂
σ2
Ĝ
σ2
B̂
), such that equation (A.34) can be

rewritten as

d̂ = (v̂b −Mv̂b)
TΣ−1(v̂b −Mv̂b)
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= (M̃v̂b)
TΣ−1(M̃v̂b), with

M̃ =




(
−G2

c

σ2
Ĝ

− B2
c

σ2
B̂

)
RcGc

σ2
Ĝ

RcBc

σ2
B̂

RcGc

σ2
R̂

(
−R2

c

σ2
R̂

− B2
c

σ2
B̂

)
GcBc

σ2
B̂

RcBc

σ2
R̂

GcBc

σ2
Ĝ

(
−R2

c

σ2
R̂

− G2
c

σ2
Ĝ

)




(A.35)

Since rank(M̃) = 2, it is obvious that for hypothesis H0 (meaning k1=k2=k3) d̂ is χ2

distributed with 2 degrees of freedom. It is easy to see that pixel values which support
H0 minimize d̂. If the test statistic satisfies the 90-percentile of the distribution, we label
a pixel as ”shadow” pixel.

If the test statistic satisfies the 90-percentile of the distribution, we classify a pixel as
shadow pixel.

For shadow pixels we introduce an additional mode parameterized by
w′

K+1,t, µK+1,t, σK+1,t to the mixture model, so that equation (A.21) changes to

P (Xt) =
B∑
i=1

wi,t ∗ ζ(Xt, µi,t, σi,t) +
K∑

l=B+1

wl,t ∗ ζ(Xt, µl,t, σl,t) + wK+1,t ∗ ζ(Xt, µK+1,t, σK+1,t)

:= P (Xt)
B
1 + P (Xt)

K
B+1 + P (Xt)K+1 (A.36)

Nevertheless, the background adaptation algorithm still runs as originally proposed
on modes 1...K only. In case, sample Xt is classified as background, nothing changed. In
case, the sample is classified as object and P (Ho) < 90% nothing changes, either. But,
in case, the sample is classified as object and P (Ho) > 90%, then following additional
update procedure for the K + 1th mode is executed:

wk+1,t = (1− αtP (Ho))wk+1,t−1 + αtP (Ho) (A.37)

µk+i,t = (1− ˜̃ρ)µk+1,t−1 + ˜̃ρXt (A.38)

σ2
k+i,t = (1− ˜̃ρ)σ2

k+1,t−1 + ˜̃ρ(Xt − µk+i,t)
2 (A.39)

with ˜̃ρ = ρ̃P (Ho) (A.40)

Additionally, the parameters which corresponds to the object mode that best repre-
sents the sample, is modified as follows. Let’s assume the sample got assigned to object
mode o ∈ {1 . . . K}:

wo,t = (1− αtP̄ (Ho))wo,t−1 + αtP̄ (Ho) (A.41)

µo,t = (1− ˜̃ρ)µo,t−1 + ˜̃ρXt (A.42)

σ2
o,t = (1− ˜̃ρ)σ2

o,t−1 + ˜̃ρ(Xt − µo,t)
2 (A.43)

with ˜̃ρ = ρ̃P̄ (Ho) and P̄ (Ho) = 1− P (H1) (A.44)

Finally, all K+1 weights are normalized to so that they sum to 1.
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Please note, that the shadow mode never gets destroyed or eliminated by object data
or newly introduced modes1.

The ”best” matched mode j is defined as

j =
argmin

k
(dk,t|dk,t < (2.5σk,t)) with dk,t = |Xc,t − µk,t|∀k ∈ {0 . . . B,K + 1}(A.45)

This means, that the shadow mode is included in the background representation. This
changes equation (5.2) to

Xb,t = µj,t|j =
argmin

k
(µk −Xc,t)

2 ∀k ∈ {0 . . . B,K + 1} (A.46)

A.4 Appendix: Hardware

Omnidirectional Camera

• CycloVision optics (parabolic mirror and orthographic lens)

• CCD Color Camera Panasonic GP-KR222

Foveal Camera

• Sony EVI D30

Figure A.1: Horizontal field of view in degrees. Corresponds to function
(
T h
Z

)−1
(Z) = 2γh.

Workstation

• Dell Precision 620, Dual Pentium III 600MHz, only one processor used for image
processing and frame grabbing.

• Operating system Windows NT 4.0

1Its index is always K + 1 > B
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Frame-Grabber

• Truevision Targa 2000

• Maximal frame-rate 10 frames per second, when operating on a 320 × 240 RGB
image, 8 bit color depth.

• Using Microsoft’s Video for Windows library
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Table B.1: Geometric model parameters (see also Figure 4.2, 4.3). Capital variables are
variables in 3D, and small variables are given in image coordinates.ˆ(hat) indicates data
values being observation of a random variable.

Ĥo height of OmniCam above floor (meters)

Ĥf height of foveal camera above floor (meters)

Ĥp person’s height (meters)

R̂h person’s head radius (meters)

R̂p person’s foot position in world coordinates (meters)

Ŝp person’s size (meters)

D̂c on floor projected distance between cameras (meters)

D̂p on floor projected distance between foveal camera and person (meters)

D̂′
p direct distance between foveal camera and person’s center of face (meters)

(x̂c, ŷc) position of OmniCam center, (in omni-image, pixel coordinates, Cartesian)
(x̂, ŷ) position in omni space, (in omni-image, pixel coordinates, Cartesian)
r̂m radius of parabolic mirror (in omni-image) (pixels)
r̂h distance person’s head – (in omni-image) (pixels)
r̂f distance person’s foot – (in omni-image) (pixels)
ŝ projected size of person – (in omni-image) (pixels)

k̂ number of pixels a person projects onto omni image plane

ϑ̂ angle between the person and the foveal camera relative to
the OmniCam image center (please see Figure 4.3)

θ̂l angle between the left side of person and the foveal camera relative to
the OmniCam image center.

θ̂r angle between the right side of person and the foveal camera relative to
the OmniCam image center.

θ̂ angle between the radial line corresponding to the person and the zero
reference line (please see Figure 4.3)

σ2
(.) Denotes variance of the variable used in the subscript

α̂ Tilt angle

β̂ Pan angle
Z Zoom factor
q′ Number of pixels summed within sector of interest in radial direction

to generate feature M̂theta.
s′ Number of pixels summed in direction orthogonal to radial direction

to generate feature M̂�
r,θ.

r′i Number of pixels summed in ith sub-sector along radial line in direction

M̂θ Sum of d2 along radial line
iM̂θ Sum of d2 along radial line within sub-sector

M̂�
r,θf

Sum in orthogonal direction bounded by θl and θr
bi(θ) Binary sub-sector profile


