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Predic?ve	Distribu?on	(1)	

Predict	t	for	new	values	of	x	by	integra?ng	
over	w:	
	
	
where	



The	Evidence	Approxima?on	(1)	

The	fully	Bayesian	predic?ve	distribu?on	is	given	by	
	
	
but	this	integral	is	intractable.	Approximate	with	
	
	
where											is	the	mode	of														,	which	is	assumed	to	
be	sharply	peaked;	a.k.a.	empirical	Bayes,	type	II	or	gene-
ralized	maximum	likelihood,	or	evidence	approxima;on.	



The	Evidence	Approxima?on	(2)	

From	Bayes’	theorem	we	have		
	

	

and	if	we	assume	p(α,β)	to	be	flat	we	see	that	
	

	
	



The	Evidence	Approxima?on	(3)	

Cont.:	
	
Evidence	func?on:	

	
	

with 
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From Bayes’ theorem, the posterior distribution for α and β is given by

p(α, β|t) ∝ p(t|α, β)p(α, β). (3.76)

If the prior is relatively flat, then in the evidence framework the values of α̂ and
β̂ are obtained by maximizing the marginal likelihood function p(t|α, β). We shall
proceed by evaluating the marginal likelihood for the linear basis function model and
then finding its maxima. This will allow us to determine values for these hyperpa-
rameters from the training data alone, without recourse to cross-validation. Recall
that the ratio α/β is analogous to a regularization parameter.

As an aside it is worth noting that, if we define conjugate (Gamma) prior distri-
butions over α and β, then the marginalization over these hyperparameters in (3.74)
can be performed analytically to give a Student’s t-distribution over w (see Sec-
tion 2.3.7). Although the resulting integral over w is no longer analytically tractable,
it might be thought that approximating this integral, for example using the Laplace
approximation discussed (Section 4.4) which is based on a local Gaussian approxi-
mation centred on the mode of the posterior distribution, might provide a practical
alternative to the evidence framework (Buntine and Weigend, 1991). However, the
integrand as a function of w typically has a strongly skewed mode so that the Laplace
approximation fails to capture the bulk of the probability mass, leading to poorer re-
sults than those obtained by maximizing the evidence (MacKay, 1999).

Returning to the evidence framework, we note that there are two approaches that
we can take to the maximization of the log evidence. We can evaluate the evidence
function analytically and then set its derivative equal to zero to obtain re-estimation
equations for α and β, which we shall do in Section 3.5.2. Alternatively we use a
technique called the expectation maximization (EM) algorithm, which will be dis-
cussed in Section 9.3.4 where we shall also show that these two approaches converge
to the same solution.

3.5.1 Evaluation of the evidence function
The marginal likelihood function p(t|α, β) is obtained by integrating over the

weight parameters w, so that

p(t|α, β) =
∫

p(t|w, β)p(w|α) dw. (3.77)

One way to evaluate this integral is to make use once again of the result (2.115)
for the conditional distribution in a linear-Gaussian model. Here we shall evaluateExercise 3.16
the integral instead by completing the square in the exponent and making use of the
standard form for the normalization coefficient of a Gaussian.

From (3.11), (3.12), and (3.52), we can write the evidence function in the formExercise 3.17

p(t|α, β) =
(

β

2π

)N/2 ( α

2π

)M/2
∫

exp {−E(w)} dw (3.78)
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where M is the dimensionality of w, and we have defined

E(w) = βED(w) + αEW (w)

=
β

2
∥t − Φw∥2 +

α

2
wTw. (3.79)

We recognize (3.79) as being equal, up to a constant of proportionality, to the reg-
ularized sum-of-squares error function (3.27). We now complete the square over wExercise 3.18
giving

E(w) = E(mN ) +
1
2
(w − mN )TA(w − mN ) (3.80)

where we have introduced
A = αI + βΦTΦ (3.81)

together with

E(mN ) =
β

2
∥t − ΦmN∥2 +

α

2
mT

NmN . (3.82)

Note that A corresponds to the matrix of second derivatives of the error function

A = ∇∇E(w) (3.83)

and is known as the Hessian matrix. Here we have also defined mN given by

mN = βA−1ΦTt. (3.84)

Using (3.54), we see that A = S−1
N , and hence (3.84) is equivalent to the previous

definition (3.53), and therefore represents the mean of the posterior distribution.
The integral over w can now be evaluated simply by appealing to the standard

result for the normalization coefficient of a multivariate Gaussian, givingExercise 3.19
∫

exp {−E(w)} dw

= exp{−E(mN )}
∫

exp
{
−1

2
(w − mN )TA(w − mN )

}
dw

= exp{−E(mN )}(2π)M/2|A|−1/2. (3.85)

Using (3.78) we can then write the log of the marginal likelihood in the form

ln p(t|α, β) =
M

2
ln α +

N

2
lnβ − E(mN ) − 1

2
ln |A|− N

2
ln(2π) (3.86)

which is the required expression for the evidence function.
Returning to the polynomial regression problem, we can plot the model evidence

against the order of the polynomial, as shown in Figure 3.14. Here we have assumed
a prior of the form (1.65) with the parameter α fixed at α = 5 × 10−3. The form
of this plot is very instructive. Referring back to Figure 1.4, we see that the M = 0
polynomial has very poor fit to the data and consequently gives a relatively low value



The	Evidence	Approxima?on	(4)	

Cont.:	
	
Comple?ng	the	square	over	w:	
	
with	
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The	Evidence	Approxima?on	(5)	

Evaluate	integral	over	w	
	

	

	

	

Thus,	log	of	marginal	likelihood	(evidence	func?on): 
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The	Evidence	Approxima?on	(6)	

Example:	sinusoidal	data,	M	th	degree	polynomial,		
	



Maximizing	the	Evidence	Func?on	(1)	

To	maximise																				w.r.t.	α	and	β,	we	define	the	
eigenvector	equa?on		

	
	
Thus	
	
has	eigenvalues		λi + α.	



Maximizing	the	Evidence	Func?on	(2)	
Deriva?ve	of	ln|A|	with	respect	to	α
	
	
Sta?onary	points	of	log	marginal	likelihood	
	
	
Thus	
	
and	therefore	
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Figure 3.14 Plot of the model evidence versus
the order M , for the polynomial re-
gression model, showing that the
evidence favours the model with
M = 3.
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for the evidence. Going to the M = 1 polynomial greatly improves the data fit, and
hence the evidence is significantly higher. However, in going to M = 2, the data
fit is improved only very marginally, due to the fact that the underlying sinusoidal
function from which the data is generated is an odd function and so has no even terms
in a polynomial expansion. Indeed, Figure 1.5 shows that the residual data error is
reduced only slightly in going from M = 1 to M = 2. Because this richer model
suffers a greater complexity penalty, the evidence actually falls in going from M = 1
to M = 2. When we go to M = 3 we obtain a significant further improvement in
data fit, as seen in Figure 1.4, and so the evidence is increased again, giving the
highest overall evidence for any of the polynomials. Further increases in the value
of M produce only small improvements in the fit to the data but suffer increasing
complexity penalty, leading overall to a decrease in the evidence values. Looking
again at Figure 1.5, we see that the generalization error is roughly constant between
M = 3 and M = 8, and it would be difficult to choose between these models on
the basis of this plot alone. The evidence values, however, show a clear preference
for M = 3, since this is the simplest model which gives a good explanation for the
observed data.

3.5.2 Maximizing the evidence function
Let us first consider the maximization of p(t|α, β) with respect to α. This can

be done by first defining the following eigenvector equation
(
βΦTΦ

)
ui = λiui. (3.87)

From (3.81), it then follows that A has eigenvalues α+λi. Now consider the deriva-
tive of the term involving ln |A| in (3.86) with respect to α. We have

d

dα
ln |A| =

d

dα
ln

∏

i

(λi + α) =
d

dα

∑

i

ln(λi + α) =
∑

i

1
λi + α

. (3.88)

Thus the stationary points of (3.86) with respect to α satisfy

0 =
M

2α
− 1

2
mT

NmN − 1
2

∑

i

1
λi + α

. (3.89)
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Thus the stationary points of (3.86) with respect to α satisfy
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Multiplying through by 2α and rearranging, we obtain

αmT
NmN = M − α

∑

i

1
λi + α

= γ. (3.90)

Since there are M terms in the sum over i, the quantity γ can be written

γ =
∑

i

λi

α + λi
. (3.91)

The interpretation of the quantity γ will be discussed shortly. From (3.90) we see
that the value of α that maximizes the marginal likelihood satisfiesExercise 3.20

α =
γ

mT
NmN

. (3.92)

Note that this is an implicit solution for α not only because γ depends on α, but also
because the mode mN of the posterior distribution itself depends on the choice of
α. We therefore adopt an iterative procedure in which we make an initial choice for
α and use this to find mN , which is given by (3.53), and also to evaluate γ, which
is given by (3.91). These values are then used to re-estimate α using (3.92), and the
process repeated until convergence. Note that because the matrix ΦTΦ is fixed, we
can compute its eigenvalues once at the start and then simply multiply these by β to
obtain the λi.

It should be emphasized that the value of α has been determined purely by look-
ing at the training data. In contrast to maximum likelihood methods, no independent
data set is required in order to optimize the model complexity.

We can similarly maximize the log marginal likelihood (3.86) with respect to β.
To do this, we note that the eigenvalues λi defined by (3.87) are proportional to β,
and hence dλi/dβ = λi/β giving

d

dβ
ln |A| =

d

dβ

∑

i

ln(λi + α) =
1
β

∑

i

λi

λi + α
=

γ

β
. (3.93)

The stationary point of the marginal likelihood therefore satisfies

0 =
N

2β
− 1

2

N∑

n=1

{
tn − mT

Nφ(xn)
}2 − γ

2β
(3.94)

and rearranging we obtainExercise 3.22

1
β

=
1

N − γ

N∑

n=1

{
tn − mT

Nφ(xn)
}2

. (3.95)

Again, this is an implicit solution for β and can be solved by choosing an initial
value for β and then using this to calculate mN and γ and then re-estimate β using
(3.95), repeating until convergence. If both α and β are to be determined from the
data, then their values can be re-estimated together after each update of γ.
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ways of using target values to represent class labels. For probabilistic models, the
most convenient, in the case of two-class problems, is the binary representation in
which there is a single target variable t ∈ {0, 1} such that t = 1 represents class C1

and t = 0 represents class C2. We can interpret the value of t as the probability that
the class is C1, with the values of probability taking only the extreme values of 0 and
1. For K > 2 classes, it is convenient to use a 1-of-K coding scheme in which t is
a vector of length K such that if the class is Cj , then all elements tk of t are zero
except element tj , which takes the value 1. For instance, if we have K = 5 classes,
then a pattern from class 2 would be given the target vector

t = (0, 1, 0, 0, 0)T. (4.1)

Again, we can interpret the value of tk as the probability that the class is Ck. For
nonprobabilistic models, alternative choices of target variable representation will
sometimes prove convenient.

In Chapter 1, we identified three distinct approaches to the classification prob-
lem. The simplest involves constructing a discriminant function that directly assigns
each vector x to a specific class. A more powerful approach, however, models the
conditional probability distribution p(Ck|x) in an inference stage, and then subse-
quently uses this distribution to make optimal decisions. By separating inference
and decision, we gain numerous benefits, as discussed in Section 1.5.4. There are
two different approaches to determining the conditional probabilities p(Ck|x). One
technique is to model them directly, for example by representing them as parametric
models and then optimizing the parameters using a training set. Alternatively, we
can adopt a generative approach in which we model the class-conditional densities
given by p(x|Ck), together with the prior probabilities p(Ck) for the classes, and then
we compute the required posterior probabilities using Bayes’ theorem

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
. (4.2)

We shall discuss examples of all three approaches in this chapter.
In the linear regression models considered in Chapter 3, the model prediction

y(x,w) was given by a linear function of the parameters w. In the simplest case,
the model is also linear in the input variables and therefore takes the form y(x) =
wTx+w0, so that y is a real number. For classification problems, however, we wish
to predict discrete class labels, or more generally posterior probabilities that lie in
the range (0, 1). To achieve this, we consider a generalization of this model in which
we transform the linear function of w using a nonlinear function f( · ) so that

y(x) = f
(
wTx + w0

)
. (4.3)

In the machine learning literature f( · ) is known as an activation function, whereas
its inverse is called a link function in the statistics literature. The decision surfaces
correspond to y(x) = constant, so that wTx + w0 = constant and hence the deci-
sion surfaces are linear functions of x, even if the function f(·) is nonlinear. For this
reason, the class of models described by (4.3) are called generalized linear models
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the rest of the book. Further background, as well as more detailed accounts, can be
found in Berger (1985) and Bather (2000).

Before giving a more detailed analysis, let us first consider informally how we
might expect probabilities to play a role in making decisions. When we obtain the
X-ray image x for a new patient, our goal is to decide which of the two classes to
assign to the image. We are interested in the probabilities of the two classes given
the image, which are given by p(Ck|x). Using Bayes’ theorem, these probabilities
can be expressed in the form

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
. (1.77)

Note that any of the quantities appearing in Bayes’ theorem can be obtained from
the joint distribution p(x, Ck) by either marginalizing or conditioning with respect to
the appropriate variables. We can now interpret p(Ck) as the prior probability for the
class Ck, and p(Ck|x) as the corresponding posterior probability. Thus p(C1) repre-
sents the probability that a person has cancer, before we take the X-ray measurement.
Similarly, p(C1|x) is the corresponding probability, revised using Bayes’ theorem in
light of the information contained in the X-ray. If our aim is to minimize the chance
of assigning x to the wrong class, then intuitively we would choose the class having
the higher posterior probability. We now show that this intuition is correct, and we
also discuss more general criteria for making decisions.

1.5.1 Minimizing the misclassification rate
Suppose that our goal is simply to make as few misclassifications as possible.

We need a rule that assigns each value of x to one of the available classes. Such a
rule will divide the input space into regions Rk called decision regions, one for each
class, such that all points in Rk are assigned to class Ck. The boundaries between
decision regions are called decision boundaries or decision surfaces. Note that each
decision region need not be contiguous but could comprise some number of disjoint
regions. We shall encounter examples of decision boundaries and decision regions in
later chapters. In order to find the optimal decision rule, consider first of all the case
of two classes, as in the cancer problem for instance. A mistake occurs when an input
vector belonging to class C1 is assigned to class C2 or vice versa. The probability of
this occurring is given by

p(mistake) = p(x ∈ R1, C2) + p(x ∈ R2, C1)

=
∫

R1

p(x, C2) dx +
∫

R2

p(x, C1) dx. (1.78)

We are free to choose the decision rule that assigns each point x to one of the two
classes. Clearly to minimize p(mistake) we should arrange that each x is assigned to
whichever class has the smaller value of the integrand in (1.78). Thus, if p(x, C1) >
p(x, C2) for a given value of x, then we should assign that x to class C1. From the
product rule of probability we have p(x, Ck) = p(Ck|x)p(x). Because the factor
p(x) is common to both terms, we can restate this result as saying that the minimum

must	be	small	
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R1 R2

x0 x̂

p(x, C1)

p(x, C2)

x

Figure 1.24 Schematic illustration of the joint probabilities p(x, Ck) for each of two classes plotted
against x, together with the decision boundary x = bx. Values of x ! bx are classified as
class C2 and hence belong to decision region R2, whereas points x < bx are classified
as C1 and belong to R1. Errors arise from the blue, green, and red regions, so that for
x < bx the errors are due to points from class C2 being misclassified as C1 (represented by
the sum of the red and green regions), and conversely for points in the region x ! bx the
errors are due to points from class C1 being misclassified as C2 (represented by the blue
region). As we vary the location bx of the decision boundary, the combined areas of the
blue and green regions remains constant, whereas the size of the red region varies. The
optimal choice for bx is where the curves for p(x, C1) and p(x, C2) cross, corresponding to
bx = x0, because in this case the red region disappears. This is equivalent to the minimum
misclassification rate decision rule, which assigns each value of x to the class having the
higher posterior probability p(Ck|x).

probability of making a mistake is obtained if each value of x is assigned to the class
for which the posterior probability p(Ck|x) is largest. This result is illustrated for
two classes, and a single input variable x, in Figure 1.24.

For the more general case of K classes, it is slightly easier to maximize the
probability of being correct, which is given by

p(correct) =
K∑

k=1

p(x ∈ Rk, Ck)

=
K∑

k=1

∫

Rk

p(x, Ck) dx (1.79)

which is maximized when the regions Rk are chosen such that each x is assigned
to the class for which p(x, Ck) is largest. Again, using the product rule p(x, Ck) =
p(Ck|x)p(x), and noting that the factor of p(x) is common to all terms, we see
that each x should be assigned to the class having the largest posterior probability
p(Ck|x).

Assign	x	to	class	for	which	the	posterior																				is	larger!	

We	are	free	to	choose	the	decision	rule	that	assigns	each	point	x	to	one	
of	the	two	classes.	This	defines	the	decision	regions	Rk.	


