
Slides	modified	from:		
PATTERN	RECOGNITION		
AND	MACHINE	LEARNING	
CHRISTOPHER	M.	BISHOP	

and:		
Computer	vision:	models,	
learning	and	inference.		
©2011	Simon	J.D.	Prince	

ClassificaLon	

Example:	Gender	ClassificaLon	

3	Computer	vision:	models,	learning	and	inference.		©2011	Simon	J.D.	Prince	

Incremental	logisLc	regression	

300	arc	tan	basis	funcLons:	

Results:	87.5%	(humans=95%)	

Regression	vs.	ClassificaLon	

Regression:	
	
	
ClassificaLon	(two	classes):	
	
	

x 2 [�1,1], t 2 [�1,1]

x 2 [�1,1], t 2 {0, 1}

Regression	vs.	ClassificaLon	

Linear	regression	model	predicLon	(y	real)	
	
ClassificaLon:	y	in	range	(0,1)	(posterior	
probabiliLes)	

	
f:	AcLvaLon	funcLon	(nonlinear)	
Decision	surface:	
(Generalized	linear	models)	

180 4. LINEAR MODELS FOR CLASSIFICATION

ways of using target values to represent class labels. For probabilistic models, the
most convenient, in the case of two-class problems, is the binary representation in
which there is a single target variable t ∈ {0, 1} such that t = 1 represents class C1

and t = 0 represents class C2. We can interpret the value of t as the probability that
the class is C1, with the values of probability taking only the extreme values of 0 and
1. For K > 2 classes, it is convenient to use a 1-of-K coding scheme in which t is
a vector of length K such that if the class is Cj , then all elements tk of t are zero
except element tj , which takes the value 1. For instance, if we have K = 5 classes,
then a pattern from class 2 would be given the target vector

t = (0, 1, 0, 0, 0)T. (4.1)

Again, we can interpret the value of tk as the probability that the class is Ck. For
nonprobabilistic models, alternative choices of target variable representation will
sometimes prove convenient.

In Chapter 1, we identified three distinct approaches to the classification prob-
lem. The simplest involves constructing a discriminant function that directly assigns
each vector x to a specific class. A more powerful approach, however, models the
conditional probability distribution p(Ck|x) in an inference stage, and then subse-
quently uses this distribution to make optimal decisions. By separating inference
and decision, we gain numerous benefits, as discussed in Section 1.5.4. There are
two different approaches to determining the conditional probabilities p(Ck|x). One
technique is to model them directly, for example by representing them as parametric
models and then optimizing the parameters using a training set. Alternatively, we
can adopt a generative approach in which we model the class-conditional densities
given by p(x|Ck), together with the prior probabilities p(Ck) for the classes, and then
we compute the required posterior probabilities using Bayes’ theorem

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
. (4.2)

We shall discuss examples of all three approaches in this chapter.
In the linear regression models considered in Chapter 3, the model prediction

y(x,w) was given by a linear function of the parameters w. In the simplest case,
the model is also linear in the input variables and therefore takes the form y(x) =
wTx+w0, so that y is a real number. For classification problems, however, we wish
to predict discrete class labels, or more generally posterior probabilities that lie in
the range (0, 1). To achieve this, we consider a generalization of this model in which
we transform the linear function of w using a nonlinear function f(·) so that

y(x) = f
(
wTx + w0

)
. (4.3)

In the machine learning literature f(·) is known as an activation function, whereas
its inverse is called a link function in the statistics literature. The decision surfaces
correspond to y(x) = constant, so that wTx + w0 = constant and hence the deci-
sion surfaces are linear functions of x, even if the function f(·) is nonlinear. For this
reason, the class of models described by (4.3) are called generalized linear models

180 4. LINEAR MODELS FOR CLASSIFICATION

ways of using target values to represent class labels. For probabilistic models, the
most convenient, in the case of two-class problems, is the binary representation in
which there is a single target variable t ∈ {0, 1} such that t = 1 represents class C1

and t = 0 represents class C2. We can interpret the value of t as the probability that
the class is C1, with the values of probability taking only the extreme values of 0 and
1. For K > 2 classes, it is convenient to use a 1-of-K coding scheme in which t is
a vector of length K such that if the class is Cj , then all elements tk of t are zero
except element tj , which takes the value 1. For instance, if we have K = 5 classes,
then a pattern from class 2 would be given the target vector

t = (0, 1, 0, 0, 0)T. (4.1)

Again, we can interpret the value of tk as the probability that the class is Ck. For
nonprobabilistic models, alternative choices of target variable representation will
sometimes prove convenient.

In Chapter 1, we identified three distinct approaches to the classification prob-
lem. The simplest involves constructing a discriminant function that directly assigns
each vector x to a specific class. A more powerful approach, however, models the
conditional probability distribution p(Ck|x) in an inference stage, and then subse-
quently uses this distribution to make optimal decisions. By separating inference
and decision, we gain numerous benefits, as discussed in Section 1.5.4. There are
two different approaches to determining the conditional probabilities p(Ck|x). One
technique is to model them directly, for example by representing them as parametric
models and then optimizing the parameters using a training set. Alternatively, we
can adopt a generative approach in which we model the class-conditional densities
given by p(x|Ck), together with the prior probabilities p(Ck) for the classes, and then
we compute the required posterior probabilities using Bayes’ theorem

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
. (4.2)

We shall discuss examples of all three approaches in this chapter.
In the linear regression models considered in Chapter 3, the model prediction

y(x,w) was given by a linear function of the parameters w. In the simplest case,
the model is also linear in the input variables and therefore takes the form y(x) =
wTx+w0, so that y is a real number. For classification problems, however, we wish
to predict discrete class labels, or more generally posterior probabilities that lie in
the range (0, 1). To achieve this, we consider a generalization of this model in which
we transform the linear function of w using a nonlinear function f(·) so that

y(x) = f
(
wTx + w0

)
. (4.3)

In the machine learning literature f(·) is known as an activation function, whereas
its inverse is called a link function in the statistics literature. The decision surfaces
correspond to y(x) = constant, so that wTx + w0 = constant and hence the deci-
sion surfaces are linear functions of x, even if the function f(·) is nonlinear. For this
reason, the class of models described by (4.3) are called generalized linear models

180 4. LINEAR MODELS FOR CLASSIFICATION

ways of using target values to represent class labels. For probabilistic models, the
most convenient, in the case of two-class problems, is the binary representation in
which there is a single target variable t ∈ {0, 1} such that t = 1 represents class C1

and t = 0 represents class C2. We can interpret the value of t as the probability that
the class is C1, with the values of probability taking only the extreme values of 0 and
1. For K > 2 classes, it is convenient to use a 1-of-K coding scheme in which t is
a vector of length K such that if the class is Cj , then all elements tk of t are zero
except element tj , which takes the value 1. For instance, if we have K = 5 classes,
then a pattern from class 2 would be given the target vector

t = (0, 1, 0, 0, 0)T. (4.1)

Again, we can interpret the value of tk as the probability that the class is Ck. For
nonprobabilistic models, alternative choices of target variable representation will
sometimes prove convenient.

In Chapter 1, we identified three distinct approaches to the classification prob-
lem. The simplest involves constructing a discriminant function that directly assigns
each vector x to a specific class. A more powerful approach, however, models the
conditional probability distribution p(Ck|x) in an inference stage, and then subse-
quently uses this distribution to make optimal decisions. By separating inference
and decision, we gain numerous benefits, as discussed in Section 1.5.4. There are
two different approaches to determining the conditional probabilities p(Ck|x). One
technique is to model them directly, for example by representing them as parametric
models and then optimizing the parameters using a training set. Alternatively, we
can adopt a generative approach in which we model the class-conditional densities
given by p(x|Ck), together with the prior probabilities p(Ck) for the classes, and then
we compute the required posterior probabilities using Bayes’ theorem

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
. (4.2)

We shall discuss examples of all three approaches in this chapter.
In the linear regression models considered in Chapter 3, the model prediction

y(x,w) was given by a linear function of the parameters w. In the simplest case,
the model is also linear in the input variables and therefore takes the form y(x) =
wTx+w0, so that y is a real number. For classification problems, however, we wish
to predict discrete class labels, or more generally posterior probabilities that lie in
the range (0, 1). To achieve this, we consider a generalization of this model in which
we transform the linear function of w using a nonlinear function f(·) so that

y(x) = f
(
wTx + w0

)
. (4.3)

In the machine learning literature f(·) is known as an activation function, whereas
its inverse is called a link function in the statistics literature. The decision surfaces
correspond to y(x) = constant, so that wTx + w0 = constant and hence the deci-
sion surfaces are linear functions of x, even if the function f(·) is nonlinear. For this
reason, the class of models described by (4.3) are called generalized linear models

180 4. LINEAR MODELS FOR CLASSIFICATION

ways of using target values to represent class labels. For probabilistic models, the
most convenient, in the case of two-class problems, is the binary representation in
which there is a single target variable t ∈ {0, 1} such that t = 1 represents class C1

and t = 0 represents class C2. We can interpret the value of t as the probability that
the class is C1, with the values of probability taking only the extreme values of 0 and
1. For K > 2 classes, it is convenient to use a 1-of-K coding scheme in which t is
a vector of length K such that if the class is Cj , then all elements tk of t are zero
except element tj , which takes the value 1. For instance, if we have K = 5 classes,
then a pattern from class 2 would be given the target vector

t = (0, 1, 0, 0, 0)T. (4.1)

Again, we can interpret the value of tk as the probability that the class is Ck. For
nonprobabilistic models, alternative choices of target variable representation will
sometimes prove convenient.

In Chapter 1, we identified three distinct approaches to the classification prob-
lem. The simplest involves constructing a discriminant function that directly assigns
each vector x to a specific class. A more powerful approach, however, models the
conditional probability distribution p(Ck|x) in an inference stage, and then subse-
quently uses this distribution to make optimal decisions. By separating inference
and decision, we gain numerous benefits, as discussed in Section 1.5.4. There are
two different approaches to determining the conditional probabilities p(Ck|x). One
technique is to model them directly, for example by representing them as parametric
models and then optimizing the parameters using a training set. Alternatively, we
can adopt a generative approach in which we model the class-conditional densities
given by p(x|Ck), together with the prior probabilities p(Ck) for the classes, and then
we compute the required posterior probabilities using Bayes’ theorem

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
. (4.2)

We shall discuss examples of all three approaches in this chapter.
In the linear regression models considered in Chapter 3, the model prediction

y(x,w) was given by a linear function of the parameters w. In the simplest case,
the model is also linear in the input variables and therefore takes the form y(x) =
wTx+w0, so that y is a real number. For classification problems, however, we wish
to predict discrete class labels, or more generally posterior probabilities that lie in
the range (0, 1). To achieve this, we consider a generalization of this model in which
we transform the linear function of w using a nonlinear function f(·) so that

y(x) = f
(
wTx + w0

)
. (4.3)

In the machine learning literature f(·) is known as an activation function, whereas
its inverse is called a link function in the statistics literature. The decision surfaces
correspond to y(x) = constant, so that wTx + w0 = constant and hence the deci-
sion surfaces are linear functions of x, even if the function f(·) is nonlinear. For this
reason, the class of models described by (4.3) are called generalized linear models

Decision	Theory	

Inference	step	
	Determine	either												or											.	

	
Decision	step	
	For	given	x,	determine	opLmal	t.	

Minimum	MisclassificaLon	Rate	

Minimum	MisclassificaLon	Rate	

To	minimize	integrand:	

1.5. Decision Theory 39

the rest of the book. Further background, as well as more detailed accounts, can be
found in Berger (1985) and Bather (2000).

Before giving a more detailed analysis, let us first consider informally how we
might expect probabilities to play a role in making decisions. When we obtain the
X-ray image x for a new patient, our goal is to decide which of the two classes to
assign to the image. We are interested in the probabilities of the two classes given
the image, which are given by p(Ck|x). Using Bayes’ theorem, these probabilities
can be expressed in the form

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
. (1.77)

Note that any of the quantities appearing in Bayes’ theorem can be obtained from
the joint distribution p(x, Ck) by either marginalizing or conditioning with respect to
the appropriate variables. We can now interpret p(Ck) as the prior probability for the
class Ck, and p(Ck|x) as the corresponding posterior probability. Thus p(C1) repre-
sents the probability that a person has cancer, before we take the X-ray measurement.
Similarly, p(C1|x) is the corresponding probability, revised using Bayes’ theorem in
light of the information contained in the X-ray. If our aim is to minimize the chance
of assigning x to the wrong class, then intuitively we would choose the class having
the higher posterior probability. We now show that this intuition is correct, and we
also discuss more general criteria for making decisions.

1.5.1 Minimizing the misclassification rate
Suppose that our goal is simply to make as few misclassifications as possible.

We need a rule that assigns each value of x to one of the available classes. Such a
rule will divide the input space into regions Rk called decision regions, one for each
class, such that all points in Rk are assigned to class Ck. The boundaries between
decision regions are called decision boundaries or decision surfaces. Note that each
decision region need not be contiguous but could comprise some number of disjoint
regions. We shall encounter examples of decision boundaries and decision regions in
later chapters. In order to find the optimal decision rule, consider first of all the case
of two classes, as in the cancer problem for instance. A mistake occurs when an input
vector belonging to class C1 is assigned to class C2 or vice versa. The probability of
this occurring is given by

p(mistake) = p(x ∈ R1, C2) + p(x ∈ R2, C1)

=
∫

R1

p(x, C2) dx +
∫

R2

p(x, C1) dx. (1.78)

We are free to choose the decision rule that assigns each point x to one of the two
classes. Clearly to minimize p(mistake) we should arrange that each x is assigned to
whichever class has the smaller value of the integrand in (1.78). Thus, if p(x, C1) >
p(x, C2) for a given value of x, then we should assign that x to class C1. From the
product rule of probability we have p(x, Ck) = p(Ck|x)p(x). Because the factor
p(x) is common to both terms, we can restate this result as saying that the minimum

must	be	small	

40 1. INTRODUCTION

R1 R2

x0 x̂

p(x, C1)

p(x, C2)

x

Figure 1.24 Schematic illustration of the joint probabilities p(x, Ck) for each of two classes plotted
against x, together with the decision boundary x = bx. Values of x ! bx are classified as
class C2 and hence belong to decision region R2, whereas points x < bx are classified
as C1 and belong to R1. Errors arise from the blue, green, and red regions, so that for
x < bx the errors are due to points from class C2 being misclassified as C1 (represented by
the sum of the red and green regions), and conversely for points in the region x ! bx the
errors are due to points from class C1 being misclassified as C2 (represented by the blue
region). As we vary the location bx of the decision boundary, the combined areas of the
blue and green regions remains constant, whereas the size of the red region varies. The
optimal choice for bx is where the curves for p(x, C1) and p(x, C2) cross, corresponding to
bx = x0, because in this case the red region disappears. This is equivalent to the minimum
misclassification rate decision rule, which assigns each value of x to the class having the
higher posterior probability p(Ck|x).

probability of making a mistake is obtained if each value of x is assigned to the class
for which the posterior probability p(Ck|x) is largest. This result is illustrated for
two classes, and a single input variable x, in Figure 1.24.

For the more general case of K classes, it is slightly easier to maximize the
probability of being correct, which is given by

p(correct) =
K∑

k=1

p(x ∈ Rk, Ck)

=
K∑

k=1

∫

Rk

p(x, Ck) dx (1.79)

which is maximized when the regions Rk are chosen such that each x is assigned
to the class for which p(x, Ck) is largest. Again, using the product rule p(x, Ck) =
p(Ck|x)p(x), and noting that the factor of p(x) is common to all terms, we see
that each x should be assigned to the class having the largest posterior probability
p(Ck|x).

Assign	x	to	class	for	which	the	posterior																				is	larger!	

We	are	free	to	choose	the	decision	rule	that	assigns	each	point	x	to	one	
of	the	two	classes.	This	defines	the	decision	regions	Rk.	

Minimum	Expected	Loss	

Example:	classify	medical	images	as	‘cancer’	or	‘normal’	
	

Decision	
Tr
ut
h	

Minimum	Expected	Loss	

Regions							are	chosen	to	minimize	

Reject	OpLon	

Three	strategies	

1.  Modeling	the	class-condiLonal	density	for	each	class	Ck	,	and	
prior,	then	use	Bayes	
	
	
	
Equivalently,	model	joint	distribuLon	p(x,Ck)	(Models	of	
distribuLon	of	input	and	output	are	generaLve	models)	

2.  First	solve	the	inference	problem	of	determining	the	
posterior	class	probabiliLes	p(Ck|x),	and	then	subsequently	
use	decision	theory	to	assign	each	new	x	to	one	of	the	
classes	(discriminaLve	models)	

3.  Find	discriminant	funcLon	that	directly	maps	x	to	class	label	

1.5. Decision Theory 43

subsequent decision stage in which we use these posterior probabilities to make op-
timal class assignments. An alternative possibility would be to solve both problems
together and simply learn a function that maps inputs x directly into decisions. Such
a function is called a discriminant function.

In fact, we can identify three distinct approaches to solving decision problems,
all of which have been used in practical applications. These are given, in decreasing
order of complexity, by:

(a) First solve the inference problem of determining the class-conditional densities
p(x|Ck) for each class Ck individually. Also separately infer the prior class
probabilities p(Ck). Then use Bayes’ theorem in the form

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
(1.82)

to find the posterior class probabilities p(Ck|x). As usual, the denominator
in Bayes’ theorem can be found in terms of the quantities appearing in the
numerator, because

p(x) =
∑

k

p(x|Ck)p(Ck). (1.83)

Equivalently, we can model the joint distribution p(x, Ck) directly and then
normalize to obtain the posterior probabilities. Having found the posterior
probabilities, we use decision theory to determine class membership for each
new input x. Approaches that explicitly or implicitly model the distribution of
inputs as well as outputs are known as generative models, because by sampling
from them it is possible to generate synthetic data points in the input space.

(b) First solve the inference problem of determining the posterior class probabilities
p(Ck|x), and then subsequently use decision theory to assign each new x to
one of the classes. Approaches that model the posterior probabilities directly
are called discriminative models.

(c) Find a function f(x), called a discriminant function, which maps each input x
directly onto a class label. For instance, in the case of two-class problems,
f(·) might be binary valued and such that f = 0 represents class C1 and f = 1
represents class C2. In this case, probabilities play no role.

Let us consider the relative merits of these three alternatives. Approach (a) is the
most demanding because it involves finding the joint distribution over both x and
Ck. For many applications, x will have high dimensionality, and consequently we
may need a large training set in order to be able to determine the class-conditional
densities to reasonable accuracy. Note that the class priors p(Ck) can often be esti-
mated simply from the fractions of the training set data points in each of the classes.
One advantage of approach (a), however, is that it also allows the marginal density
of data p(x) to be determined from (1.83). This can be useful for detecting new data
points that have low probability under the model and for which the predictions may

Class-condiLonal	density	vs.	posterior	
44 1. INTRODUCTION

p(x|C1)

p(x|C2)

x

cl
as

s
de

ns
iti

es

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

x

p(C1|x) p(C2|x)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Figure 1.27 Example of the class-conditional densities for two classes having a single input variable x (left
plot) together with the corresponding posterior probabilities (right plot). Note that the left-hand mode of the
class-conditional density p(x|C1), shown in blue on the left plot, has no effect on the posterior probabilities. The
vertical green line in the right plot shows the decision boundary in x that gives the minimum misclassification
rate.

be of low accuracy, which is known as outlier detection or novelty detection (Bishop,
1994; Tarassenko, 1995).

However, if we only wish to make classification decisions, then it can be waste-
ful of computational resources, and excessively demanding of data, to find the joint
distribution p(x, Ck) when in fact we only really need the posterior probabilities
p(Ck|x), which can be obtained directly through approach (b). Indeed, the class-
conditional densities may contain a lot of structure that has little effect on the pos-
terior probabilities, as illustrated in Figure 1.27. There has been much interest in
exploring the relative merits of generative and discriminative approaches to machine
learning, and in finding ways to combine them (Jebara, 2004; Lasserre et al., 2006).

An even simpler approach is (c) in which we use the training data to find a
discriminant function f(x) that maps each x directly onto a class label, thereby
combining the inference and decision stages into a single learning problem. In the
example of Figure 1.27, this would correspond to finding the value of x shown by
the vertical green line, because this is the decision boundary giving the minimum
probability of misclassification.

With option (c), however, we no longer have access to the posterior probabilities
p(Ck|x). There are many powerful reasons for wanting to compute the posterior
probabilities, even if we subsequently use them to make decisions. These include:

Minimizing risk. Consider a problem in which the elements of the loss matrix are
subjected to revision from time to time (such as might occur in a financial

Posterior	probabiliLes	Class-condiLonal	densiLes	

Why	Separate	Inference	and	Decision?	

•  Minimizing	risk	(loss	matrix	may	change	over	Lme)	
•  Reject	opLon	
•  Unbalanced	class	priors	
•  Combining	models	

Several	dimensions	

Several	dimensions	

4.1. Discriminant Functions 181

(McCullagh and Nelder, 1989). Note, however, that in contrast to the models used
for regression, they are no longer linear in the parameters due to the presence of the
nonlinear function f(·). This will lead to more complex analytical and computa-
tional properties than for linear regression models. Nevertheless, these models are
still relatively simple compared to the more general nonlinear models that will be
studied in subsequent chapters.

The algorithms discussed in this chapter will be equally applicable if we first
make a fixed nonlinear transformation of the input variables using a vector of basis
functions φ(x) as we did for regression models in Chapter 3. We begin by consider-
ing classification directly in the original input space x, while in Section 4.3 we shall
find it convenient to switch to a notation involving basis functions for consistency
with later chapters.

4.1. Discriminant Functions

A discriminant is a function that takes an input vector x and assigns it to one of K
classes, denoted Ck. In this chapter, we shall restrict attention to linear discriminants,
namely those for which the decision surfaces are hyperplanes. To simplify the dis-
cussion, we consider first the case of two classes and then investigate the extension
to K > 2 classes.

4.1.1 Two classes
The simplest representation of a linear discriminant function is obtained by tak-

ing a linear function of the input vector so that

y(x) = wTx + w0 (4.4)

where w is called a weight vector, and w0 is a bias (not to be confused with bias in
the statistical sense). The negative of the bias is sometimes called a threshold. An
input vector x is assigned to class C1 if y(x) ! 0 and to class C2 otherwise. The cor-
responding decision boundary is therefore defined by the relation y(x) = 0, which
corresponds to a (D − 1)-dimensional hyperplane within the D-dimensional input
space. Consider two points xA and xB both of which lie on the decision surface.
Because y(xA) = y(xB) = 0, we have wT(xA−xB) = 0 and hence the vector w is
orthogonal to every vector lying within the decision surface, and so w determines the
orientation of the decision surface. Similarly, if x is a point on the decision surface,
then y(x) = 0, and so the normal distance from the origin to the decision surface is
given by

wTx
∥w∥ = − w0

∥w∥ . (4.5)

We therefore see that the bias parameter w0 determines the location of the decision
surface. These properties are illustrated for the case of D = 2 in Figure 4.1.

Furthermore, we note that the value of y(x) gives a signed measure of the per-
pendicular distance r of the point x from the decision surface. To see this, consider

weight	
vector	 bias	

4.1. Discriminant Functions 181

(McCullagh and Nelder, 1989). Note, however, that in contrast to the models used
for regression, they are no longer linear in the parameters due to the presence of the
nonlinear function f(·). This will lead to more complex analytical and computa-
tional properties than for linear regression models. Nevertheless, these models are
still relatively simple compared to the more general nonlinear models that will be
studied in subsequent chapters.

The algorithms discussed in this chapter will be equally applicable if we first
make a fixed nonlinear transformation of the input variables using a vector of basis
functions φ(x) as we did for regression models in Chapter 3. We begin by consider-
ing classification directly in the original input space x, while in Section 4.3 we shall
find it convenient to switch to a notation involving basis functions for consistency
with later chapters.

4.1. Discriminant Functions

A discriminant is a function that takes an input vector x and assigns it to one of K
classes, denoted Ck. In this chapter, we shall restrict attention to linear discriminants,
namely those for which the decision surfaces are hyperplanes. To simplify the dis-
cussion, we consider first the case of two classes and then investigate the extension
to K > 2 classes.

4.1.1 Two classes
The simplest representation of a linear discriminant function is obtained by tak-

ing a linear function of the input vector so that

y(x) = wTx + w0 (4.4)

where w is called a weight vector, and w0 is a bias (not to be confused with bias in
the statistical sense). The negative of the bias is sometimes called a threshold. An
input vector x is assigned to class C1 if y(x) ! 0 and to class C2 otherwise. The cor-
responding decision boundary is therefore defined by the relation y(x) = 0, which
corresponds to a (D − 1)-dimensional hyperplane within the D-dimensional input
space. Consider two points xA and xB both of which lie on the decision surface.
Because y(xA) = y(xB) = 0, we have wT(xA−xB) = 0 and hence the vector w is
orthogonal to every vector lying within the decision surface, and so w determines the
orientation of the decision surface. Similarly, if x is a point on the decision surface,
then y(x) = 0, and so the normal distance from the origin to the decision surface is
given by

wTx
∥w∥ = − w0

∥w∥ . (4.5)

We therefore see that the bias parameter w0 determines the location of the decision
surface. These properties are illustrated for the case of D = 2 in Figure 4.1.

Furthermore, we note that the value of y(x) gives a signed measure of the per-
pendicular distance r of the point x from the decision surface. To see this, consider

4.1. Discriminant Functions 181

(McCullagh and Nelder, 1989). Note, however, that in contrast to the models used
for regression, they are no longer linear in the parameters due to the presence of the
nonlinear function f(·). This will lead to more complex analytical and computa-
tional properties than for linear regression models. Nevertheless, these models are
still relatively simple compared to the more general nonlinear models that will be
studied in subsequent chapters.

The algorithms discussed in this chapter will be equally applicable if we first
make a fixed nonlinear transformation of the input variables using a vector of basis
functions φ(x) as we did for regression models in Chapter 3. We begin by consider-
ing classification directly in the original input space x, while in Section 4.3 we shall
find it convenient to switch to a notation involving basis functions for consistency
with later chapters.

4.1. Discriminant Functions

A discriminant is a function that takes an input vector x and assigns it to one of K
classes, denoted Ck. In this chapter, we shall restrict attention to linear discriminants,
namely those for which the decision surfaces are hyperplanes. To simplify the dis-
cussion, we consider first the case of two classes and then investigate the extension
to K > 2 classes.

4.1.1 Two classes
The simplest representation of a linear discriminant function is obtained by tak-

ing a linear function of the input vector so that

y(x) = wTx + w0 (4.4)

where w is called a weight vector, and w0 is a bias (not to be confused with bias in
the statistical sense). The negative of the bias is sometimes called a threshold. An
input vector x is assigned to class C1 if y(x) ! 0 and to class C2 otherwise. The cor-
responding decision boundary is therefore defined by the relation y(x) = 0, which
corresponds to a (D − 1)-dimensional hyperplane within the D-dimensional input
space. Consider two points xA and xB both of which lie on the decision surface.
Because y(xA) = y(xB) = 0, we have wT(xA−xB) = 0 and hence the vector w is
orthogonal to every vector lying within the decision surface, and so w determines the
orientation of the decision surface. Similarly, if x is a point on the decision surface,
then y(x) = 0, and so the normal distance from the origin to the decision surface is
given by

wTx
∥w∥ = − w0

∥w∥ . (4.5)

We therefore see that the bias parameter w0 determines the location of the decision
surface. These properties are illustrated for the case of D = 2 in Figure 4.1.

Furthermore, we note that the value of y(x) gives a signed measure of the per-
pendicular distance r of the point x from the decision surface. To see this, consider

182 4. LINEAR MODELS FOR CLASSIFICATION

Figure 4.1 Illustration of the geometry of a
linear discriminant function in two dimensions.
The decision surface, shown in red, is perpen-
dicular to w, and its displacement from the
origin is controlled by the bias parameter w0.
Also, the signed orthogonal distance of a gen-
eral point x from the decision surface is given
by y(x)/∥w∥.

x2

x1

w
x

y(x)
∥w∥

x⊥

−w0
∥w∥

y = 0
y < 0

y > 0

R2

R1

an arbitrary point x and let x⊥ be its orthogonal projection onto the decision surface,
so that

x = x⊥ + r
w

∥w∥ . (4.6)

Multiplying both sides of this result by wT and adding w0, and making use of y(x) =
wTx + w0 and y(x⊥) = wTx⊥ + w0 = 0, we have

r =
y(x)
∥w∥ . (4.7)

This result is illustrated in Figure 4.1.
As with the linear regression models in Chapter 3, it is sometimes convenient

to use a more compact notation in which we introduce an additional dummy ‘input’
value x0 = 1 and then define w̃ = (w0,w) and x̃ = (x0,x) so that

y(x) = w̃Tx̃. (4.8)

In this case, the decision surfaces are D-dimensional hyperplanes passing through
the origin of the D + 1-dimensional expanded input space.

4.1.2 Multiple classes
Now consider the extension of linear discriminants to K > 2 classes. We might

be tempted be to build a K-class discriminant by combining a number of two-class
discriminant functions. However, this leads to some serious difficulties (Duda and
Hart, 1973) as we now show.

Consider the use of K−1 classifiers each of which solves a two-class problem of
separating points in a particular class Ck from points not in that class. This is known
as a one-versus-the-rest classifier. The left-hand example in Figure 4.2 shows an

Decision	surface	

Perceptron	1	

A	linear	discriminant	model	by	
Rosenblah	(1962)	

	
	
with	
	
and	feature	vector	

192 4. LINEAR MODELS FOR CLASSIFICATION

These covariance matrices have been defined in the original x-space. We can now
define similar matrices in the projected D′-dimensional y-space

sW =
K∑

k=1

∑

n∈Ck

(yn − µk)(yn − µk)T (4.47)

and

sB =
K∑

k=1

Nk(µk − µ)(µk − µ)T (4.48)

where

µk =
1

Nk

∑

n∈Ck

yn, µ =
1
N

K∑

k=1

Nkµk. (4.49)

Again we wish to construct a scalar that is large when the between-class covariance
is large and when the within-class covariance is small. There are now many possible
choices of criterion (Fukunaga, 1990). One example is given by

J(W) = Tr
{
s−1
W sB

}
. (4.50)

This criterion can then be rewritten as an explicit function of the projection matrix
W in the form

J(w) = Tr
{
(WSWWT)−1(WSBWT)

}
. (4.51)

Maximization of such criteria is straightforward, though somewhat involved, and is
discussed at length in Fukunaga (1990). The weight values are determined by those
eigenvectors of S−1

W SB that correspond to the D′ largest eigenvalues.
There is one important result that is common to all such criteria, which is worth

emphasizing. We first note from (4.46) that SB is composed of the sum of K ma-
trices, each of which is an outer product of two vectors and therefore of rank 1. In
addition, only (K − 1) of these matrices are independent as a result of the constraint
(4.44). Thus, SB has rank at most equal to (K − 1) and so there are at most (K − 1)
nonzero eigenvalues. This shows that the projection onto the (K − 1)-dimensional
subspace spanned by the eigenvectors of SB does not alter the value of J(w), and
so we are therefore unable to find more than (K − 1) linear ‘features’ by this means
(Fukunaga, 1990).

4.1.7 The perceptron algorithm
Another example of a linear discriminant model is the perceptron of Rosenblatt

(1962), which occupies an important place in the history of pattern recognition al-
gorithms. It corresponds to a two-class model in which the input vector x is first
transformed using a fixed nonlinear transformation to give a feature vector φ(x),
and this is then used to construct a generalized linear model of the form

y(x) = f
(
wTφ(x)

)
(4.52)

4.1. Discriminant Functions 193

where the nonlinear activation function f(·) is given by a step function of the form

f(a) =
{

+1, a ! 0
−1, a < 0. (4.53)

The vector φ(x) will typically include a bias component φ0(x) = 1. In earlier
discussions of two-class classification problems, we have focussed on a target coding
scheme in which t ∈ {0, 1}, which is appropriate in the context of probabilistic
models. For the perceptron, however, it is more convenient to use target values
t = +1 for class C1 and t = −1 for class C2, which matches the choice of activation
function.

The algorithm used to determine the parameters w of the perceptron can most
easily be motivated by error function minimization. A natural choice of error func-
tion would be the total number of misclassified patterns. However, this does not lead
to a simple learning algorithm because the error is a piecewise constant function
of w, with discontinuities wherever a change in w causes the decision boundary to
move across one of the data points. Methods based on changing w using the gradi-
ent of the error function cannot then be applied, because the gradient is zero almost
everywhere.

We therefore consider an alternative error function known as the perceptron cri-
terion. To derive this, we note that we are seeking a weight vector w such that
patterns xn in class C1 will have wTφ(xn) > 0, whereas patterns xn in class C2

have wTφ(xn) < 0. Using the t ∈ {−1, +1} target coding scheme it follows that
we would like all patterns to satisfy wTφ(xn)tn > 0. The perceptron criterion
associates zero error with any pattern that is correctly classified, whereas for a mis-
classified pattern xn it tries to minimize the quantity −wTφ(xn)tn. The perceptron
criterion is therefore given by

EP(w) = −
∑

n∈M

wTφntn (4.54)

Frank Rosenblatt
1928–1969

Rosenblatt’s perceptron played an
important role in the history of ma-
chine learning. Initially, Rosenblatt
simulated the perceptron on an IBM
704 computer at Cornell in 1957,
but by the early 1960s he had built

special-purpose hardware that provided a direct, par-
allel implementation of perceptron learning. Many of
his ideas were encapsulated in “Principles of Neuro-
dynamics: Perceptrons and the Theory of Brain Mech-
anisms” published in 1962. Rosenblatt’s work was
criticized by Marvin Minksy, whose objections were
published in the book “Perceptrons”, co-authored with

Seymour Papert. This book was widely misinter-
preted at the time as showing that neural networks
were fatally flawed and could only learn solutions for
linearly separable problems. In fact, it only proved
such limitations in the case of single-layer networks
such as the perceptron and merely conjectured (in-
correctly) that they applied to more general network
models. Unfortunately, however, this book contributed
to the substantial decline in research funding for neu-
ral computing, a situation that was not reversed un-
til the mid-1980s. Today, there are many hundreds,
if not thousands, of applications of neural networks
in widespread use, with examples in areas such as
handwriting recognition and information retrieval be-
ing used routinely by millions of people.

192 4. LINEAR MODELS FOR CLASSIFICATION

These covariance matrices have been defined in the original x-space. We can now
define similar matrices in the projected D′-dimensional y-space

sW =
K∑

k=1

∑

n∈Ck

(yn − µk)(yn − µk)T (4.47)

and

sB =
K∑

k=1

Nk(µk − µ)(µk − µ)T (4.48)

where

µk =
1

Nk

∑

n∈Ck

yn, µ =
1
N

K∑

k=1

Nkµk. (4.49)

Again we wish to construct a scalar that is large when the between-class covariance
is large and when the within-class covariance is small. There are now many possible
choices of criterion (Fukunaga, 1990). One example is given by

J(W) = Tr
{
s−1
W sB

}
. (4.50)

This criterion can then be rewritten as an explicit function of the projection matrix
W in the form

J(w) = Tr
{
(WSWWT)−1(WSBWT)

}
. (4.51)

Maximization of such criteria is straightforward, though somewhat involved, and is
discussed at length in Fukunaga (1990). The weight values are determined by those
eigenvectors of S−1

W SB that correspond to the D′ largest eigenvalues.
There is one important result that is common to all such criteria, which is worth

emphasizing. We first note from (4.46) that SB is composed of the sum of K ma-
trices, each of which is an outer product of two vectors and therefore of rank 1. In
addition, only (K − 1) of these matrices are independent as a result of the constraint
(4.44). Thus, SB has rank at most equal to (K − 1) and so there are at most (K − 1)
nonzero eigenvalues. This shows that the projection onto the (K − 1)-dimensional
subspace spanned by the eigenvectors of SB does not alter the value of J(w), and
so we are therefore unable to find more than (K − 1) linear ‘features’ by this means
(Fukunaga, 1990).

4.1.7 The perceptron algorithm
Another example of a linear discriminant model is the perceptron of Rosenblatt

(1962), which occupies an important place in the history of pattern recognition al-
gorithms. It corresponds to a two-class model in which the input vector x is first
transformed using a fixed nonlinear transformation to give a feature vector φ(x),
and this is then used to construct a generalized linear model of the form

y(x) = f
(
wTφ(x)

)
(4.52)

Perceptron	2	

Perceptron	criterion	
	
	
M	is	set	of	misclassified	paherns	
Learning:	

4.1. Discriminant Functions 193

where the nonlinear activation function f(·) is given by a step function of the form

f(a) =
{

+1, a ! 0
−1, a < 0. (4.53)

The vector φ(x) will typically include a bias component φ0(x) = 1. In earlier
discussions of two-class classification problems, we have focussed on a target coding
scheme in which t ∈ {0, 1}, which is appropriate in the context of probabilistic
models. For the perceptron, however, it is more convenient to use target values
t = +1 for class C1 and t = −1 for class C2, which matches the choice of activation
function.

The algorithm used to determine the parameters w of the perceptron can most
easily be motivated by error function minimization. A natural choice of error func-
tion would be the total number of misclassified patterns. However, this does not lead
to a simple learning algorithm because the error is a piecewise constant function
of w, with discontinuities wherever a change in w causes the decision boundary to
move across one of the data points. Methods based on changing w using the gradi-
ent of the error function cannot then be applied, because the gradient is zero almost
everywhere.

We therefore consider an alternative error function known as the perceptron cri-
terion. To derive this, we note that we are seeking a weight vector w such that
patterns xn in class C1 will have wTφ(xn) > 0, whereas patterns xn in class C2

have wTφ(xn) < 0. Using the t ∈ {−1, +1} target coding scheme it follows that
we would like all patterns to satisfy wTφ(xn)tn > 0. The perceptron criterion
associates zero error with any pattern that is correctly classified, whereas for a mis-
classified pattern xn it tries to minimize the quantity −wTφ(xn)tn. The perceptron
criterion is therefore given by

EP(w) = −
∑

n∈M

wTφntn (4.54)

Frank Rosenblatt
1928–1969

Rosenblatt’s perceptron played an
important role in the history of ma-
chine learning. Initially, Rosenblatt
simulated the perceptron on an IBM
704 computer at Cornell in 1957,
but by the early 1960s he had built

special-purpose hardware that provided a direct, par-
allel implementation of perceptron learning. Many of
his ideas were encapsulated in “Principles of Neuro-
dynamics: Perceptrons and the Theory of Brain Mech-
anisms” published in 1962. Rosenblatt’s work was
criticized by Marvin Minksy, whose objections were
published in the book “Perceptrons”, co-authored with

Seymour Papert. This book was widely misinter-
preted at the time as showing that neural networks
were fatally flawed and could only learn solutions for
linearly separable problems. In fact, it only proved
such limitations in the case of single-layer networks
such as the perceptron and merely conjectured (in-
correctly) that they applied to more general network
models. Unfortunately, however, this book contributed
to the substantial decline in research funding for neu-
ral computing, a situation that was not reversed un-
til the mid-1980s. Today, there are many hundreds,
if not thousands, of applications of neural networks
in widespread use, with examples in areas such as
handwriting recognition and information retrieval be-
ing used routinely by millions of people.

194 4. LINEAR MODELS FOR CLASSIFICATION

where M denotes the set of all misclassified patterns. The contribution to the error
associated with a particular misclassified pattern is a linear function of w in regions
of w space where the pattern is misclassified and zero in regions where it is correctly
classified. The total error function is therefore piecewise linear.

We now apply the stochastic gradient descent algorithm to this error function.Section 3.1.3
The change in the weight vector w is then given by

w(τ+1) = w(τ) − η∇EP(w) = w(τ) + ηφntn (4.55)

where η is the learning rate parameter and τ is an integer that indexes the steps of
the algorithm. Because the perceptron function y(x,w) is unchanged if we multiply
w by a constant, we can set the learning rate parameter η equal to 1 without of
generality. Note that, as the weight vector evolves during training, the set of patterns
that are misclassified will change.

The perceptron learning algorithm has a simple interpretation, as follows. We
cycle through the training patterns in turn, and for each pattern xn we evaluate the
perceptron function (4.52). If the pattern is correctly classified, then the weight
vector remains unchanged, whereas if it is incorrectly classified, then for class C1

we add the vector φ(xn) onto the current estimate of weight vector w while for
class C2 we subtract the vector φ(xn) from w. The perceptron learning algorithm is
illustrated in Figure 4.7.

If we consider the effect of a single update in the perceptron learning algorithm,
we see that the contribution to the error from a misclassified pattern will be reduced
because from (4.55) we have

−w(τ+1)Tφntn = −w(τ)Tφntn − (φntn)Tφntn < −w(τ)Tφntn (4.56)

where we have set η = 1, and made use of ∥φntn∥2 > 0. Of course, this does
not imply that the contribution to the error function from the other misclassified
patterns will have been reduced. Furthermore, the change in weight vector may have
caused some previously correctly classified patterns to become misclassified. Thus
the perceptron learning rule is not guaranteed to reduce the total error function at
each stage.

However, the perceptron convergence theorem states that if there exists an ex-
act solution (in other words, if the training data set is linearly separable), then the
perceptron learning algorithm is guaranteed to find an exact solution in a finite num-
ber of steps. Proofs of this theorem can be found for example in Rosenblatt (1962),
Block (1962), Nilsson (1965), Minsky and Papert (1969), Hertz et al. (1991), and
Bishop (1995a). Note, however, that the number of steps required to achieve con-
vergence could still be substantial, and in practice, until convergence is achieved,
we will not be able to distinguish between a nonseparable problem and one that is
simply slow to converge.

Even when the data set is linearly separable, there may be many solutions, and
which one is found will depend on the initialization of the parameters and on the or-
der of presentation of the data points. Furthermore, for data sets that are not linearly
separable, the perceptron learning algorithm will never converge.

Perceptron	3	 4.1. Discriminant Functions 195

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 4.7 Illustration of the convergence of the perceptron learning algorithm, showing data points from two
classes (red and blue) in a two-dimensional feature space (φ1, φ2). The top left plot shows the initial parameter
vector w shown as a black arrow together with the corresponding decision boundary (black line), in which the
arrow points towards the decision region which classified as belonging to the red class. The data point circled
in green is misclassified and so its feature vector is added to the current weight vector, giving the new decision
boundary shown in the top right plot. The bottom left plot shows the next misclassified point to be considered,
indicated by the green circle, and its feature vector is again added to the weight vector giving the decision
boundary shown in the bottom right plot for which all data points are correctly classified.

Fisher’s	linear	discriminant	1	

ProjecLng	data	down	to	one	dimension	
	
But	how?	

4.1. Discriminant Functions 187

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red
(×), green (+), and blue (◦). Lines denote the decision boundaries, and the background colours denote the
respective classes of the decision regions. On the left is the result of using a least-squares discriminant. We see
that the region of input space assigned to the green class is too small and so most of the points from this class
are misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing
correct classification of the training data.

dimensional input vector x and project it down to one dimension using

y = wTx. (4.20)

If we place a threshold on y and classify y ! −w0 as class C1, and otherwise class
C2, then we obtain our standard linear classifier discussed in the previous section.
In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original D-dimensional space may
become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vector w, we can select a projection that maximizes the class
separation. To begin with, consider a two-class problem in which there are N1 points
of class C1 and N2 points of class C2, so that the mean vectors of the two classes are
given by

m1 =
1

N1

∑

n∈ C1

xn, m2 =
1

N2

∑

n∈ C2

xn. (4.21)

The simplest measure of the separation of the classes, when projected onto w, is the
separation of the projected class means. This suggests that we might choose w so as
to maximize

m2 − m1 = wT(m2 − m1) (4.22)

where
mk = wTmk (4.23)

Fisher’s	linear	discriminant	2	

Define	class	means	
	
	
Try	maximize		

4.1. Discriminant Functions 187

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red
(×), green (+), and blue (◦). Lines denote the decision boundaries, and the background colours denote the
respective classes of the decision regions. On the left is the result of using a least-squares discriminant. We see
that the region of input space assigned to the green class is too small and so most of the points from this class
are misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing
correct classification of the training data.

dimensional input vector x and project it down to one dimension using

y = wTx. (4.20)

If we place a threshold on y and classify y ! −w0 as class C1, and otherwise class
C2, then we obtain our standard linear classifier discussed in the previous section.
In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original D-dimensional space may
become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vector w, we can select a projection that maximizes the class
separation. To begin with, consider a two-class problem in which there are N1 points
of class C1 and N2 points of class C2, so that the mean vectors of the two classes are
given by

m1 =
1

N1

∑

n∈ C1

xn, m2 =
1

N2

∑

n∈ C2

xn. (4.21)

The simplest measure of the separation of the classes, when projected onto w, is the
separation of the projected class means. This suggests that we might choose w so as
to maximize

m2 − m1 = wT(m2 − m1) (4.22)

where
mk = wTmk (4.23)

4.1. Discriminant Functions 187

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red
(×), green (+), and blue (◦). Lines denote the decision boundaries, and the background colours denote the
respective classes of the decision regions. On the left is the result of using a least-squares discriminant. We see
that the region of input space assigned to the green class is too small and so most of the points from this class
are misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing
correct classification of the training data.

dimensional input vector x and project it down to one dimension using

y = wTx. (4.20)

If we place a threshold on y and classify y ! −w0 as class C1, and otherwise class
C2, then we obtain our standard linear classifier discussed in the previous section.
In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original D-dimensional space may
become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vector w, we can select a projection that maximizes the class
separation. To begin with, consider a two-class problem in which there are N1 points
of class C1 and N2 points of class C2, so that the mean vectors of the two classes are
given by

m1 =
1

N1

∑

n∈ C1

xn, m2 =
1

N2

∑

n∈ C2

xn. (4.21)

The simplest measure of the separation of the classes, when projected onto w, is the
separation of the projected class means. This suggests that we might choose w so as
to maximize

m2 − m1 = wT(m2 − m1) (4.22)

where
mk = wTmk (4.23)

188 4. LINEAR MODELS FOR CLASSIFICATION

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,
showing the greatly improved class separation.

is the mean of the projected data from class Ck. However, this expression can be
made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that

∑
i w2

i = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find thatAppendix E
w ∝ (m2 −m1). There is still a problem with this approach, however, as illustratedExercise 4.4
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by

s2
k =

∑

n∈Ck

(yn − mk)2 (4.24)

where yn = wTxn. We can define the total within-class variance for the whole
data set to be simply s2

1 + s2
2. The Fisher criterion is defined to be the ratio of the

between-class variance to the within-class variance and is given by

J(w) =
(m2 − m1)2

s2
1 + s2

2

. (4.25)

We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the formExercise 4.5

Fisher’s	linear	discriminant	3	

Instead,	consider:	raLo	of	between	class	
variance	to	within	class	variance			

	
	
With	
	
	
Called	Fisher	criterion.	Maximize	it!	

188 4. LINEAR MODELS FOR CLASSIFICATION

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,
showing the greatly improved class separation.

is the mean of the projected data from class Ck. However, this expression can be
made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that

∑
i w2

i = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find thatAppendix E
w ∝ (m2 −m1). There is still a problem with this approach, however, as illustratedExercise 4.4
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by

s2
k =

∑

n∈Ck

(yn − mk)2 (4.24)

where yn = wTxn. We can define the total within-class variance for the whole
data set to be simply s2

1 + s2
2. The Fisher criterion is defined to be the ratio of the

between-class variance to the within-class variance and is given by

J(w) =
(m2 − m1)2

s2
1 + s2

2

. (4.25)

We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the formExercise 4.5

188 4. LINEAR MODELS FOR CLASSIFICATION

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,
showing the greatly improved class separation.

is the mean of the projected data from class Ck. However, this expression can be
made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that

∑
i w2

i = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find thatAppendix E
w ∝ (m2 −m1). There is still a problem with this approach, however, as illustratedExercise 4.4
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by

s2
k =

∑

n∈Ck

(yn − mk)2 (4.24)

where yn = wTxn. We can define the total within-class variance for the whole
data set to be simply s2

1 + s2
2. The Fisher criterion is defined to be the ratio of the

between-class variance to the within-class variance and is given by

J(w) =
(m2 − m1)2

s2
1 + s2

2

. (4.25)

We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the formExercise 4.5

Fisher’s	linear	discriminant	4	
Fisher	criterion	
	
Rewrite	
	
Between-class	cov.	
	
Within-class	cov.	

188 4. LINEAR MODELS FOR CLASSIFICATION

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,
showing the greatly improved class separation.

is the mean of the projected data from class Ck. However, this expression can be
made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that

∑
i w2

i = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find thatAppendix E
w ∝ (m2 −m1). There is still a problem with this approach, however, as illustratedExercise 4.4
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by

s2
k =

∑

n∈Ck

(yn − mk)2 (4.24)

where yn = wTxn. We can define the total within-class variance for the whole
data set to be simply s2

1 + s2
2. The Fisher criterion is defined to be the ratio of the

between-class variance to the within-class variance and is given by

J(w) =
(m2 − m1)2

s2
1 + s2

2

. (4.25)

We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the formExercise 4.5

4.1. Discriminant Functions 189

J(w) =
wTSBw
wTSWw

(4.26)

where SB is the between-class covariance matrix and is given by

SB = (m2 − m1)(m2 − m1)T (4.27)

and SW is the total within-class covariance matrix, given by

SW =
∑

n∈C1

(xn − m1)(xn − m1)T +
∑

n∈C2

(xn − m2)(xn − m2)T. (4.28)

Differentiating (4.26) with respect to w, we find that J(w) is maximized when

(wTSBw)SWw = (wTSWw)SBw. (4.29)

From (4.27), we see that SBw is always in the direction of (m2−m1). Furthermore,
we do not care about the magnitude of w, only its direction, and so we can drop the
scalar factors (wTSBw) and (wTSWw). Multiplying both sides of (4.29) by S−1

W
we then obtain

w ∝ S−1
W (m2 − m1). (4.30)

Note that if the within-class covariance is isotropic, so that SW is proportional to the
unit matrix, we find that w is proportional to the difference of the class means, as
discussed above.

The result (4.30) is known as Fisher’s linear discriminant, although strictly it
is not a discriminant but rather a specific choice of direction for projection of the
data down to one dimension. However, the projected data can subsequently be used
to construct a discriminant, by choosing a threshold y0 so that we classify a new
point as belonging to C1 if y(x) ! y0 and classify it as belonging to C2 otherwise.
For example, we can model the class-conditional densities p(y|Ck) using Gaussian
distributions and then use the techniques of Section 1.2.4 to find the parameters
of the Gaussian distributions by maximum likelihood. Having found Gaussian ap-
proximations to the projected classes, the formalism of Section 1.5.1 then gives an
expression for the optimal threshold. Some justification for the Gaussian assumption
comes from the central limit theorem by noting that y = wTx is the sum of a set of
random variables.

4.1.5 Relation to least squares
The least-squares approach to the determination of a linear discriminant was

based on the goal of making the model predictions as close as possible to a set of
target values. By contrast, the Fisher criterion was derived by requiring maximum
class separation in the output space. It is interesting to see the relationship between
these two approaches. In particular, we shall show that, for the two-class problem,
the Fisher criterion can be obtained as a special case of least squares.

So far we have considered 1-of-K coding for the target values. If, however, we
adopt a slightly different target coding scheme, then the least-squares solution for

4.1. Discriminant Functions 189

J(w) =
wTSBw
wTSWw

(4.26)

where SB is the between-class covariance matrix and is given by

SB = (m2 − m1)(m2 − m1)T (4.27)

and SW is the total within-class covariance matrix, given by

SW =
∑

n∈C1

(xn − m1)(xn − m1)T +
∑

n∈C2

(xn − m2)(xn − m2)T. (4.28)

Differentiating (4.26) with respect to w, we find that J(w) is maximized when

(wTSBw)SWw = (wTSWw)SBw. (4.29)

From (4.27), we see that SBw is always in the direction of (m2−m1). Furthermore,
we do not care about the magnitude of w, only its direction, and so we can drop the
scalar factors (wTSBw) and (wTSWw). Multiplying both sides of (4.29) by S−1

W
we then obtain

w ∝ S−1
W (m2 − m1). (4.30)

Note that if the within-class covariance is isotropic, so that SW is proportional to the
unit matrix, we find that w is proportional to the difference of the class means, as
discussed above.

The result (4.30) is known as Fisher’s linear discriminant, although strictly it
is not a discriminant but rather a specific choice of direction for projection of the
data down to one dimension. However, the projected data can subsequently be used
to construct a discriminant, by choosing a threshold y0 so that we classify a new
point as belonging to C1 if y(x) ! y0 and classify it as belonging to C2 otherwise.
For example, we can model the class-conditional densities p(y|Ck) using Gaussian
distributions and then use the techniques of Section 1.2.4 to find the parameters
of the Gaussian distributions by maximum likelihood. Having found Gaussian ap-
proximations to the projected classes, the formalism of Section 1.5.1 then gives an
expression for the optimal threshold. Some justification for the Gaussian assumption
comes from the central limit theorem by noting that y = wTx is the sum of a set of
random variables.

4.1.5 Relation to least squares
The least-squares approach to the determination of a linear discriminant was

based on the goal of making the model predictions as close as possible to a set of
target values. By contrast, the Fisher criterion was derived by requiring maximum
class separation in the output space. It is interesting to see the relationship between
these two approaches. In particular, we shall show that, for the two-class problem,
the Fisher criterion can be obtained as a special case of least squares.

So far we have considered 1-of-K coding for the target values. If, however, we
adopt a slightly different target coding scheme, then the least-squares solution for

4.1. Discriminant Functions 189

J(w) =
wTSBw
wTSWw

(4.26)

where SB is the between-class covariance matrix and is given by

SB = (m2 − m1)(m2 − m1)T (4.27)

and SW is the total within-class covariance matrix, given by

SW =
∑

n∈C1

(xn − m1)(xn − m1)T +
∑

n∈C2

(xn − m2)(xn − m2)T. (4.28)

Differentiating (4.26) with respect to w, we find that J(w) is maximized when

(wTSBw)SWw = (wTSWw)SBw. (4.29)

From (4.27), we see that SBw is always in the direction of (m2−m1). Furthermore,
we do not care about the magnitude of w, only its direction, and so we can drop the
scalar factors (wTSBw) and (wTSWw). Multiplying both sides of (4.29) by S−1

W
we then obtain

w ∝ S−1
W (m2 − m1). (4.30)

Note that if the within-class covariance is isotropic, so that SW is proportional to the
unit matrix, we find that w is proportional to the difference of the class means, as
discussed above.

The result (4.30) is known as Fisher’s linear discriminant, although strictly it
is not a discriminant but rather a specific choice of direction for projection of the
data down to one dimension. However, the projected data can subsequently be used
to construct a discriminant, by choosing a threshold y0 so that we classify a new
point as belonging to C1 if y(x) ! y0 and classify it as belonging to C2 otherwise.
For example, we can model the class-conditional densities p(y|Ck) using Gaussian
distributions and then use the techniques of Section 1.2.4 to find the parameters
of the Gaussian distributions by maximum likelihood. Having found Gaussian ap-
proximations to the projected classes, the formalism of Section 1.5.1 then gives an
expression for the optimal threshold. Some justification for the Gaussian assumption
comes from the central limit theorem by noting that y = wTx is the sum of a set of
random variables.

4.1.5 Relation to least squares
The least-squares approach to the determination of a linear discriminant was

based on the goal of making the model predictions as close as possible to a set of
target values. By contrast, the Fisher criterion was derived by requiring maximum
class separation in the output space. It is interesting to see the relationship between
these two approaches. In particular, we shall show that, for the two-class problem,
the Fisher criterion can be obtained as a special case of least squares.

So far we have considered 1-of-K coding for the target values. If, however, we
adopt a slightly different target coding scheme, then the least-squares solution for

Fisher’s	linear	discriminant	5	
	
	
DifferenLate	with	respect	to	w	
	
	
SBw	is	proporLonal	to	(m2-m1)	
Thus	(Fisher’s	linear	discriminant):	

4.1. Discriminant Functions 189

J(w) =
wTSBw
wTSWw

(4.26)

where SB is the between-class covariance matrix and is given by

SB = (m2 − m1)(m2 − m1)T (4.27)

and SW is the total within-class covariance matrix, given by

SW =
∑

n∈C1

(xn − m1)(xn − m1)T +
∑

n∈C2

(xn − m2)(xn − m2)T. (4.28)

Differentiating (4.26) with respect to w, we find that J(w) is maximized when

(wTSBw)SWw = (wTSWw)SBw. (4.29)

From (4.27), we see that SBw is always in the direction of (m2−m1). Furthermore,
we do not care about the magnitude of w, only its direction, and so we can drop the
scalar factors (wTSBw) and (wTSWw). Multiplying both sides of (4.29) by S−1

W
we then obtain

w ∝ S−1
W (m2 − m1). (4.30)

Note that if the within-class covariance is isotropic, so that SW is proportional to the
unit matrix, we find that w is proportional to the difference of the class means, as
discussed above.

The result (4.30) is known as Fisher’s linear discriminant, although strictly it
is not a discriminant but rather a specific choice of direction for projection of the
data down to one dimension. However, the projected data can subsequently be used
to construct a discriminant, by choosing a threshold y0 so that we classify a new
point as belonging to C1 if y(x) ! y0 and classify it as belonging to C2 otherwise.
For example, we can model the class-conditional densities p(y|Ck) using Gaussian
distributions and then use the techniques of Section 1.2.4 to find the parameters
of the Gaussian distributions by maximum likelihood. Having found Gaussian ap-
proximations to the projected classes, the formalism of Section 1.5.1 then gives an
expression for the optimal threshold. Some justification for the Gaussian assumption
comes from the central limit theorem by noting that y = wTx is the sum of a set of
random variables.

4.1.5 Relation to least squares
The least-squares approach to the determination of a linear discriminant was

based on the goal of making the model predictions as close as possible to a set of
target values. By contrast, the Fisher criterion was derived by requiring maximum
class separation in the output space. It is interesting to see the relationship between
these two approaches. In particular, we shall show that, for the two-class problem,
the Fisher criterion can be obtained as a special case of least squares.

So far we have considered 1-of-K coding for the target values. If, however, we
adopt a slightly different target coding scheme, then the least-squares solution for

4.1. Discriminant Functions 189

J(w) =
wTSBw
wTSWw

(4.26)

where SB is the between-class covariance matrix and is given by

SB = (m2 − m1)(m2 − m1)T (4.27)

and SW is the total within-class covariance matrix, given by

SW =
∑

n∈C1

(xn − m1)(xn − m1)T +
∑

n∈C2

(xn − m2)(xn − m2)T. (4.28)

Differentiating (4.26) with respect to w, we find that J(w) is maximized when

(wTSBw)SWw = (wTSWw)SBw. (4.29)

From (4.27), we see that SBw is always in the direction of (m2−m1). Furthermore,
we do not care about the magnitude of w, only its direction, and so we can drop the
scalar factors (wTSBw) and (wTSWw). Multiplying both sides of (4.29) by S−1

W
we then obtain

w ∝ S−1
W (m2 − m1). (4.30)

Note that if the within-class covariance is isotropic, so that SW is proportional to the
unit matrix, we find that w is proportional to the difference of the class means, as
discussed above.

The result (4.30) is known as Fisher’s linear discriminant, although strictly it
is not a discriminant but rather a specific choice of direction for projection of the
data down to one dimension. However, the projected data can subsequently be used
to construct a discriminant, by choosing a threshold y0 so that we classify a new
point as belonging to C1 if y(x) ! y0 and classify it as belonging to C2 otherwise.
For example, we can model the class-conditional densities p(y|Ck) using Gaussian
distributions and then use the techniques of Section 1.2.4 to find the parameters
of the Gaussian distributions by maximum likelihood. Having found Gaussian ap-
proximations to the projected classes, the formalism of Section 1.5.1 then gives an
expression for the optimal threshold. Some justification for the Gaussian assumption
comes from the central limit theorem by noting that y = wTx is the sum of a set of
random variables.

4.1.5 Relation to least squares
The least-squares approach to the determination of a linear discriminant was

based on the goal of making the model predictions as close as possible to a set of
target values. By contrast, the Fisher criterion was derived by requiring maximum
class separation in the output space. It is interesting to see the relationship between
these two approaches. In particular, we shall show that, for the two-class problem,
the Fisher criterion can be obtained as a special case of least squares.

So far we have considered 1-of-K coding for the target values. If, however, we
adopt a slightly different target coding scheme, then the least-squares solution for

4.1. Discriminant Functions 189

J(w) =
wTSBw
wTSWw

(4.26)

where SB is the between-class covariance matrix and is given by

SB = (m2 − m1)(m2 − m1)T (4.27)

and SW is the total within-class covariance matrix, given by

SW =
∑

n∈C1

(xn − m1)(xn − m1)T +
∑

n∈C2

(xn − m2)(xn − m2)T. (4.28)

Differentiating (4.26) with respect to w, we find that J(w) is maximized when

(wTSBw)SWw = (wTSWw)SBw. (4.29)

From (4.27), we see that SBw is always in the direction of (m2−m1). Furthermore,
we do not care about the magnitude of w, only its direction, and so we can drop the
scalar factors (wTSBw) and (wTSWw). Multiplying both sides of (4.29) by S−1

W
we then obtain

w ∝ S−1
W (m2 − m1). (4.30)

Note that if the within-class covariance is isotropic, so that SW is proportional to the
unit matrix, we find that w is proportional to the difference of the class means, as
discussed above.

The result (4.30) is known as Fisher’s linear discriminant, although strictly it
is not a discriminant but rather a specific choice of direction for projection of the
data down to one dimension. However, the projected data can subsequently be used
to construct a discriminant, by choosing a threshold y0 so that we classify a new
point as belonging to C1 if y(x) ! y0 and classify it as belonging to C2 otherwise.
For example, we can model the class-conditional densities p(y|Ck) using Gaussian
distributions and then use the techniques of Section 1.2.4 to find the parameters
of the Gaussian distributions by maximum likelihood. Having found Gaussian ap-
proximations to the projected classes, the formalism of Section 1.5.1 then gives an
expression for the optimal threshold. Some justification for the Gaussian assumption
comes from the central limit theorem by noting that y = wTx is the sum of a set of
random variables.

4.1.5 Relation to least squares
The least-squares approach to the determination of a linear discriminant was

based on the goal of making the model predictions as close as possible to a set of
target values. By contrast, the Fisher criterion was derived by requiring maximum
class separation in the output space. It is interesting to see the relationship between
these two approaches. In particular, we shall show that, for the two-class problem,
the Fisher criterion can be obtained as a special case of least squares.

So far we have considered 1-of-K coding for the target values. If, however, we
adopt a slightly different target coding scheme, then the least-squares solution for

Fisher’s	linear	discriminant	6	

4.1. Discriminant Functions 189

J(w) =
wTSBw
wTSWw

(4.26)

where SB is the between-class covariance matrix and is given by

SB = (m2 − m1)(m2 − m1)T (4.27)

and SW is the total within-class covariance matrix, given by

SW =
∑

n∈C1

(xn − m1)(xn − m1)T +
∑

n∈C2

(xn − m2)(xn − m2)T. (4.28)

Differentiating (4.26) with respect to w, we find that J(w) is maximized when

(wTSBw)SWw = (wTSWw)SBw. (4.29)

From (4.27), we see that SBw is always in the direction of (m2−m1). Furthermore,
we do not care about the magnitude of w, only its direction, and so we can drop the
scalar factors (wTSBw) and (wTSWw). Multiplying both sides of (4.29) by S−1

W
we then obtain

w ∝ S−1
W (m2 − m1). (4.30)

Note that if the within-class covariance is isotropic, so that SW is proportional to the
unit matrix, we find that w is proportional to the difference of the class means, as
discussed above.

The result (4.30) is known as Fisher’s linear discriminant, although strictly it
is not a discriminant but rather a specific choice of direction for projection of the
data down to one dimension. However, the projected data can subsequently be used
to construct a discriminant, by choosing a threshold y0 so that we classify a new
point as belonging to C1 if y(x) ! y0 and classify it as belonging to C2 otherwise.
For example, we can model the class-conditional densities p(y|Ck) using Gaussian
distributions and then use the techniques of Section 1.2.4 to find the parameters
of the Gaussian distributions by maximum likelihood. Having found Gaussian ap-
proximations to the projected classes, the formalism of Section 1.5.1 then gives an
expression for the optimal threshold. Some justification for the Gaussian assumption
comes from the central limit theorem by noting that y = wTx is the sum of a set of
random variables.

4.1.5 Relation to least squares
The least-squares approach to the determination of a linear discriminant was

based on the goal of making the model predictions as close as possible to a set of
target values. By contrast, the Fisher criterion was derived by requiring maximum
class separation in the output space. It is interesting to see the relationship between
these two approaches. In particular, we shall show that, for the two-class problem,
the Fisher criterion can be obtained as a special case of least squares.

So far we have considered 1-of-K coding for the target values. If, however, we
adopt a slightly different target coding scheme, then the least-squares solution for

188 4. LINEAR MODELS FOR CLASSIFICATION

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,
showing the greatly improved class separation.

is the mean of the projected data from class Ck. However, this expression can be
made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that

∑
i w2

i = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find thatAppendix E
w ∝ (m2 −m1). There is still a problem with this approach, however, as illustratedExercise 4.4
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by

s2
k =

∑

n∈Ck

(yn − mk)2 (4.24)

where yn = wTxn. We can define the total within-class variance for the whole
data set to be simply s2

1 + s2
2. The Fisher criterion is defined to be the ratio of the

between-class variance to the within-class variance and is given by

J(w) =
(m2 − m1)2

s2
1 + s2

2

. (4.25)

We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the formExercise 4.5

188 4. LINEAR MODELS FOR CLASSIFICATION

−2 2 6

−2

0

2

4

−2 2 6

−2

0

2

4

Figure 4.6 The left plot shows samples from two classes (depicted in red and blue) along with the histograms
resulting from projection onto the line joining the class means. Note that there is considerable class overlap in
the projected space. The right plot shows the corresponding projection based on the Fisher linear discriminant,
showing the greatly improved class separation.

is the mean of the projected data from class Ck. However, this expression can be
made arbitrarily large simply by increasing the magnitude of w. To solve this
problem, we could constrain w to have unit length, so that

∑
i w2

i = 1. Using
a Lagrange multiplier to perform the constrained maximization, we then find thatAppendix E
w ∝ (m2 −m1). There is still a problem with this approach, however, as illustratedExercise 4.4
in Figure 4.6. This shows two classes that are well separated in the original two-
dimensional space (x1, x2) but that have considerable overlap when projected onto
the line joining their means. This difficulty arises from the strongly nondiagonal
covariances of the class distributions. The idea proposed by Fisher is to maximize
a function that will give a large separation between the projected class means while
also giving a small variance within each class, thereby minimizing the class overlap.

The projection formula (4.20) transforms the set of labelled data points in x
into a labelled set in the one-dimensional space y. The within-class variance of the
transformed data from class Ck is therefore given by

s2
k =

∑

n∈Ck

(yn − mk)2 (4.24)

where yn = wTxn. We can define the total within-class variance for the whole
data set to be simply s2

1 + s2
2. The Fisher criterion is defined to be the ratio of the

between-class variance to the within-class variance and is given by

J(w) =
(m2 − m1)2

s2
1 + s2

2

. (4.25)

We can make the dependence on w explicit by using (4.20), (4.23), and (4.24) to
rewrite the Fisher criterion in the formExercise 4.5

Fisher’s	linear	discriminant	 Fisher	Criterion	

Least	squares	for	classificaLon	fails	
186 4. LINEAR MODELS FOR CLASSIFICATION

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

−4 −2 0 2 4 6 8

−8

−6

−4

−2

0

2

4

Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles, together with
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
curve), which is discussed later in Section 4.3.2. The right-hand plot shows the corresponding results obtained
when extra data points are added at the bottom left of the diagram, showing that least squares is highly sensitive
to outliers, unlike logistic regression.

boundary. In Section 7.1.2, we shall consider several alternative error functions for
classification and we shall see that they do not suffer from this difficulty.

However, problems with least squares can be more severe than simply lack of
robustness, as illustrated in Figure 4.5. This shows a synthetic data set drawn from
three classes in a two-dimensional input space (x1, x2), having the property that lin-
ear decision boundaries can give excellent separation between the classes. Indeed,
the technique of logistic regression, described later in this chapter, gives a satisfac-
tory solution as seen in the right-hand plot. However, the least-squares solution gives
poor results, with only a small region of the input space assigned to the green class.

The failure of least squares should not surprise us when we recall that it cor-
responds to maximum likelihood under the assumption of a Gaussian conditional
distribution, whereas binary target vectors clearly have a distribution that is far from
Gaussian. By adopting more appropriate probabilistic models, we shall obtain clas-
sification techniques with much better properties than least squares. For the moment,
however, we continue to explore alternative nonprobabilistic methods for setting the
parameters in the linear classification models.

4.1.4 Fisher’s linear discriminant
One way to view a linear classification model is in terms of dimensionality

reduction. Consider first the case of two classes, and suppose we take the D-

Use	logisLc	regression	instead!	

ProbabilisLc	generaLve	models	

Posterior	probability	for	class	C1	can	be	wrihen	
	
	
	
	
with	
	
and	the	logisLc	sigmoid	funcLon		

4.2. Probabilistic Generative Models 197

Figure 4.9 Plot of the logistic sigmoid function
σ(a) defined by (4.59), shown in
red, together with the scaled pro-
bit function Φ(λa), for λ2 = π/8,
shown in dashed blue, where Φ(a)
is defined by (4.114). The scal-
ing factor π/8 is chosen so that the
derivatives of the two curves are
equal for a = 0.

−5 0 5
0

0.5

1

approach in which we model the class-conditional densities p(x|Ck), as well as the
class priors p(Ck), and then use these to compute posterior probabilities p(Ck|x)
through Bayes’ theorem.

Consider first of all the case of two classes. The posterior probability for class
C1 can be written as

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
= σ(a) (4.57)

where we have defined

a = ln
p(x|C1)p(C1)
p(x|C2)p(C2)

(4.58)

and σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
(4.59)

which is plotted in Figure 4.9. The term ‘sigmoid’ means S-shaped. This type of
function is sometimes also called a ‘squashing function’ because it maps the whole
real axis into a finite interval. The logistic sigmoid has been encountered already
in earlier chapters and plays an important role in many classification algorithms. It
satisfies the following symmetry property

σ(−a) = 1 − σ(a) (4.60)

as is easily verified. The inverse of the logistic sigmoid is given by

a = ln
(σ

1 − σ

)
(4.61)

and is known as the logit function. It represents the log of the ratio of probabilities
ln [p(C1|x)/p(C2|x)] for the two classes, also known as the log odds.

4.2. Probabilistic Generative Models 197

Figure 4.9 Plot of the logistic sigmoid function
σ(a) defined by (4.59), shown in
red, together with the scaled pro-
bit function Φ(λa), for λ2 = π/8,
shown in dashed blue, where Φ(a)
is defined by (4.114). The scal-
ing factor π/8 is chosen so that the
derivatives of the two curves are
equal for a = 0.

−5 0 5
0

0.5

1

approach in which we model the class-conditional densities p(x|Ck), as well as the
class priors p(Ck), and then use these to compute posterior probabilities p(Ck|x)
through Bayes’ theorem.

Consider first of all the case of two classes. The posterior probability for class
C1 can be written as

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
= σ(a) (4.57)

where we have defined

a = ln
p(x|C1)p(C1)
p(x|C2)p(C2)

(4.58)

and σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
(4.59)

which is plotted in Figure 4.9. The term ‘sigmoid’ means S-shaped. This type of
function is sometimes also called a ‘squashing function’ because it maps the whole
real axis into a finite interval. The logistic sigmoid has been encountered already
in earlier chapters and plays an important role in many classification algorithms. It
satisfies the following symmetry property

σ(−a) = 1 − σ(a) (4.60)

as is easily verified. The inverse of the logistic sigmoid is given by

a = ln
(σ

1 − σ

)
(4.61)

and is known as the logit function. It represents the log of the ratio of probabilities
ln [p(C1|x)/p(C2|x)] for the two classes, also known as the log odds.

4.2. Probabilistic Generative Models 197

Figure 4.9 Plot of the logistic sigmoid function
σ(a) defined by (4.59), shown in
red, together with the scaled pro-
bit function Φ(λa), for λ2 = π/8,
shown in dashed blue, where Φ(a)
is defined by (4.114). The scal-
ing factor π/8 is chosen so that the
derivatives of the two curves are
equal for a = 0.

−5 0 5
0

0.5

1

approach in which we model the class-conditional densities p(x|Ck), as well as the
class priors p(Ck), and then use these to compute posterior probabilities p(Ck|x)
through Bayes’ theorem.

Consider first of all the case of two classes. The posterior probability for class
C1 can be written as

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
= σ(a) (4.57)

where we have defined

a = ln
p(x|C1)p(C1)
p(x|C2)p(C2)

(4.58)

and σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
(4.59)

which is plotted in Figure 4.9. The term ‘sigmoid’ means S-shaped. This type of
function is sometimes also called a ‘squashing function’ because it maps the whole
real axis into a finite interval. The logistic sigmoid has been encountered already
in earlier chapters and plays an important role in many classification algorithms. It
satisfies the following symmetry property

σ(−a) = 1 − σ(a) (4.60)

as is easily verified. The inverse of the logistic sigmoid is given by

a = ln
(σ

1 − σ

)
(4.61)

and is known as the logit function. It represents the log of the ratio of probabilities
ln [p(C1|x)/p(C2|x)] for the two classes, also known as the log odds.

LogisLc	sigmoid	funcLon	
4.2. Probabilistic Generative Models 197

Figure 4.9 Plot of the logistic sigmoid function
σ(a) defined by (4.59), shown in
red, together with the scaled pro-
bit function Φ(λa), for λ2 = π/8,
shown in dashed blue, where Φ(a)
is defined by (4.114). The scal-
ing factor π/8 is chosen so that the
derivatives of the two curves are
equal for a = 0.

−5 0 5
0

0.5

1

approach in which we model the class-conditional densities p(x|Ck), as well as the
class priors p(Ck), and then use these to compute posterior probabilities p(Ck|x)
through Bayes’ theorem.

Consider first of all the case of two classes. The posterior probability for class
C1 can be written as

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
= σ(a) (4.57)

where we have defined

a = ln
p(x|C1)p(C1)
p(x|C2)p(C2)

(4.58)

and σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
(4.59)

which is plotted in Figure 4.9. The term ‘sigmoid’ means S-shaped. This type of
function is sometimes also called a ‘squashing function’ because it maps the whole
real axis into a finite interval. The logistic sigmoid has been encountered already
in earlier chapters and plays an important role in many classification algorithms. It
satisfies the following symmetry property

σ(−a) = 1 − σ(a) (4.60)

as is easily verified. The inverse of the logistic sigmoid is given by

a = ln
(σ

1 − σ

)
(4.61)

and is known as the logit function. It represents the log of the ratio of probabilities
ln [p(C1|x)/p(C2|x)] for the two classes, also known as the log odds.

4.2. Probabilistic Generative Models 197

Figure 4.9 Plot of the logistic sigmoid function
σ(a) defined by (4.59), shown in
red, together with the scaled pro-
bit function Φ(λa), for λ2 = π/8,
shown in dashed blue, where Φ(a)
is defined by (4.114). The scal-
ing factor π/8 is chosen so that the
derivatives of the two curves are
equal for a = 0.

−5 0 5
0

0.5

1

approach in which we model the class-conditional densities p(x|Ck), as well as the
class priors p(Ck), and then use these to compute posterior probabilities p(Ck|x)
through Bayes’ theorem.

Consider first of all the case of two classes. The posterior probability for class
C1 can be written as

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
= σ(a) (4.57)

where we have defined

a = ln
p(x|C1)p(C1)
p(x|C2)p(C2)

(4.58)

and σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
(4.59)

which is plotted in Figure 4.9. The term ‘sigmoid’ means S-shaped. This type of
function is sometimes also called a ‘squashing function’ because it maps the whole
real axis into a finite interval. The logistic sigmoid has been encountered already
in earlier chapters and plays an important role in many classification algorithms. It
satisfies the following symmetry property

σ(−a) = 1 − σ(a) (4.60)

as is easily verified. The inverse of the logistic sigmoid is given by

a = ln
(σ

1 − σ

)
(4.61)

and is known as the logit function. It represents the log of the ratio of probabilities
ln [p(C1|x)/p(C2|x)] for the two classes, also known as the log odds.

Gaussian	class-condiLonal	densiLes	(different	
means,	but	equal	variances)	

Yields	
	
with	
	
	
Linear	funcLon	of	x	in	argument	of	logisLc	sigmoid		
	

198 4. LINEAR MODELS FOR CLASSIFICATION

Note that in (4.57) we have simply rewritten the posterior probabilities in an
equivalent form, and so the appearance of the logistic sigmoid may seem rather vac-
uous. However, it will have significance provided a(x) takes a simple functional
form. We shall shortly consider situations in which a(x) is a linear function of x, in
which case the posterior probability is governed by a generalized linear model.

For the case of K > 2 classes, we have

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

(4.62)

which is known as the normalized exponential and can be regarded as a multiclass
generalization of the logistic sigmoid. Here the quantities ak are defined by

ak = ln p(x|Ck)p(Ck). (4.63)

The normalized exponential is also known as the softmax function, as it represents
a smoothed version of the ‘max’ function because, if ak ≫ aj for all j ̸= k, then
p(Ck|x) ≃ 1, and p(Cj |x) ≃ 0.

We now investigate the consequences of choosing specific forms for the class-
conditional densities, looking first at continuous input variables x and then dis-
cussing briefly the case of discrete inputs.

4.2.1 Continuous inputs
Let us assume that the class-conditional densities are Gaussian and then explore

the resulting form for the posterior probabilities. To start with, we shall assume that
all classes share the same covariance matrix. Thus the density for class Ck is given
by

p(x|Ck) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µk)TΣ−1(x − µk)

}
. (4.64)

Consider first the case of two classes. From (4.57) and (4.58), we have

p(C1|x) = σ(wTx + w0) (4.65)

where we have defined

w = Σ−1(µ1 − µ2) (4.66)

w0 = −1
2
µT

1 Σ−1µ1 +
1
2
µT

2 Σ−1µ2 + ln
p(C1)
p(C2)

. (4.67)

We see that the quadratic terms in x from the exponents of the Gaussian densities
have cancelled (due to the assumption of common covariance matrices) leading to
a linear function of x in the argument of the logistic sigmoid. This result is illus-
trated for the case of a two-dimensional input space x in Figure 4.10. The resulting

198 4. LINEAR MODELS FOR CLASSIFICATION

Note that in (4.57) we have simply rewritten the posterior probabilities in an
equivalent form, and so the appearance of the logistic sigmoid may seem rather vac-
uous. However, it will have significance provided a(x) takes a simple functional
form. We shall shortly consider situations in which a(x) is a linear function of x, in
which case the posterior probability is governed by a generalized linear model.

For the case of K > 2 classes, we have

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

(4.62)

which is known as the normalized exponential and can be regarded as a multiclass
generalization of the logistic sigmoid. Here the quantities ak are defined by

ak = ln p(x|Ck)p(Ck). (4.63)

The normalized exponential is also known as the softmax function, as it represents
a smoothed version of the ‘max’ function because, if ak ≫ aj for all j ̸= k, then
p(Ck|x) ≃ 1, and p(Cj |x) ≃ 0.

We now investigate the consequences of choosing specific forms for the class-
conditional densities, looking first at continuous input variables x and then dis-
cussing briefly the case of discrete inputs.

4.2.1 Continuous inputs
Let us assume that the class-conditional densities are Gaussian and then explore

the resulting form for the posterior probabilities. To start with, we shall assume that
all classes share the same covariance matrix. Thus the density for class Ck is given
by

p(x|Ck) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µk)TΣ−1(x − µk)

}
. (4.64)

Consider first the case of two classes. From (4.57) and (4.58), we have

p(C1|x) = σ(wTx + w0) (4.65)

where we have defined

w = Σ−1(µ1 − µ2) (4.66)

w0 = −1
2
µT

1 Σ−1µ1 +
1
2
µT

2 Σ−1µ2 + ln
p(C1)
p(C2)

. (4.67)

We see that the quadratic terms in x from the exponents of the Gaussian densities
have cancelled (due to the assumption of common covariance matrices) leading to
a linear function of x in the argument of the logistic sigmoid. This result is illus-
trated for the case of a two-dimensional input space x in Figure 4.10. The resulting

198 4. LINEAR MODELS FOR CLASSIFICATION

Note that in (4.57) we have simply rewritten the posterior probabilities in an
equivalent form, and so the appearance of the logistic sigmoid may seem rather vac-
uous. However, it will have significance provided a(x) takes a simple functional
form. We shall shortly consider situations in which a(x) is a linear function of x, in
which case the posterior probability is governed by a generalized linear model.

For the case of K > 2 classes, we have

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

=
exp(ak)∑
j exp(aj)

(4.62)

which is known as the normalized exponential and can be regarded as a multiclass
generalization of the logistic sigmoid. Here the quantities ak are defined by

ak = ln p(x|Ck)p(Ck). (4.63)

The normalized exponential is also known as the softmax function, as it represents
a smoothed version of the ‘max’ function because, if ak ≫ aj for all j ̸= k, then
p(Ck|x) ≃ 1, and p(Cj |x) ≃ 0.

We now investigate the consequences of choosing specific forms for the class-
conditional densities, looking first at continuous input variables x and then dis-
cussing briefly the case of discrete inputs.

4.2.1 Continuous inputs
Let us assume that the class-conditional densities are Gaussian and then explore

the resulting form for the posterior probabilities. To start with, we shall assume that
all classes share the same covariance matrix. Thus the density for class Ck is given
by

p(x|Ck) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µk)TΣ−1(x − µk)

}
. (4.64)

Consider first the case of two classes. From (4.57) and (4.58), we have

p(C1|x) = σ(wTx + w0) (4.65)

where we have defined

w = Σ−1(µ1 − µ2) (4.66)

w0 = −1
2
µT

1 Σ−1µ1 +
1
2
µT

2 Σ−1µ2 + ln
p(C1)
p(C2)

. (4.67)

We see that the quadratic terms in x from the exponents of the Gaussian densities
have cancelled (due to the assumption of common covariance matrices) leading to
a linear function of x in the argument of the logistic sigmoid. This result is illus-
trated for the case of a two-dimensional input space x in Figure 4.10. The resulting

4.2. Probabilistic Generative Models 199

Figure 4.10 The left-hand plot shows the class-conditional densities for two classes, denoted red and blue.
On the right is the corresponding posterior probability p(C1|x), which is given by a logistic sigmoid of a linear
function of x. The surface in the right-hand plot is coloured using a proportion of red ink given by p(C1|x) and a
proportion of blue ink given by p(C2|x) = 1 − p(C1|x).

decision boundaries correspond to surfaces along which the posterior probabilities
p(Ck|x) are constant and so will be given by linear functions of x, and therefore
the decision boundaries are linear in input space. The prior probabilities p(Ck) enter
only through the bias parameter w0 so that changes in the priors have the effect of
making parallel shifts of the decision boundary and more generally of the parallel
contours of constant posterior probability.

For the general case of K classes we have, from (4.62) and (4.63),

ak(x) = wT
k x + wk0 (4.68)

where we have defined

wk = Σ−1µk (4.69)

wk0 = −1
2
µT

k Σ−1µk + ln p(Ck). (4.70)

We see that the ak(x) are again linear functions of x as a consequence of the cancel-
lation of the quadratic terms due to the shared covariances. The resulting decision
boundaries, corresponding to the minimum misclassification rate, will occur when
two of the posterior probabilities (the two largest) are equal, and so will be defined
by linear functions of x, and so again we have a generalized linear model.

If we relax the assumption of a shared covariance matrix and allow each class-
conditional density p(x|Ck) to have its own covariance matrix Σk, then the earlier
cancellations will no longer occur, and we will obtain quadratic functions of x, giv-
ing rise to a quadratic discriminant. The linear and quadratic decision boundaries
are illustrated in Figure 4.11.

posterior	probability	p(C
1
|x)\	class-condiLonal	densiLes	

ProbabilisLc	discriminaLve	models:	
LogisLc	regression	-	A	model	of	classificaLon	

	
	
	
	
σ(�)	is	sigmoid	funcLon	
	
Also:	
	
M	parameter	(M(M+5)/2+1	for	generaLve	model)		

4.3. Probabilistic Discriminative Models 205

basis functions is typically set to a constant, say φ0(x) = 1, so that the correspond-
ing parameter w0 plays the role of a bias. For the remainder of this chapter, we shall
include a fixed basis function transformation φ(x), as this will highlight some useful
similarities to the regression models discussed in Chapter 3.

For many problems of practical interest, there is significant overlap between
the class-conditional densities p(x|Ck). This corresponds to posterior probabilities
p(Ck|x), which, for at least some values of x, are not 0 or 1. In such cases, the opti-
mal solution is obtained by modelling the posterior probabilities accurately and then
applying standard decision theory, as discussed in Chapter 1. Note that nonlinear
transformations φ(x) cannot remove such class overlap. Indeed, they can increase
the level of overlap, or create overlap where none existed in the original observation
space. However, suitable choices of nonlinearity can make the process of modelling
the posterior probabilities easier.

Such fixed basis function models have important limitations, and these will beSection 3.6
resolved in later chapters by allowing the basis functions themselves to adapt to the
data. Notwithstanding these limitations, models with fixed nonlinear basis functions
play an important role in applications, and a discussion of such models will intro-
duce many of the key concepts needed for an understanding of their more complex
counterparts.

4.3.2 Logistic regression
We begin our treatment of generalized linear models by considering the problem

of two-class classification. In our discussion of generative approaches in Section 4.2,
we saw that under rather general assumptions, the posterior probability of class C1

can be written as a logistic sigmoid acting on a linear function of the feature vector
φ so that

p(C1|φ) = y(φ) = σ
(
wTφ

)
(4.87)

with p(C2|φ) = 1 − p(C1|φ). Here σ(·) is the logistic sigmoid function defined by
(4.59). In the terminology of statistics, this model is known as logistic regression,
although it should be emphasized that this is a model for classification rather than
regression.

For an M -dimensional feature space φ, this model has M adjustable parameters.
By contrast, if we had fitted Gaussian class conditional densities using maximum
likelihood, we would have used 2M parameters for the means and M(M + 1)/2
parameters for the (shared) covariance matrix. Together with the class prior p(C1),
this gives a total of M(M +5)/2+1 parameters, which grows quadratically with M ,
in contrast to the linear dependence on M of the number of parameters in logistic
regression. For large values of M , there is a clear advantage in working with the
logistic regression model directly.

We now use maximum likelihood to determine the parameters of the logistic
regression model. To do this, we shall make use of the derivative of the logistic sig-
moid function, which can conveniently be expressed in terms of the sigmoid function
itselfExercise 4.12

dσ

da
= σ(1 − σ). (4.88)

Posterior	probability	of	class	C1	can	be	wrihen	
as	a	logisLc	sigmoid	acLng	on	a	linear	funcLon	of	the	
feature	vector	φ		

4.2. Probabilistic Generative Models 197

Figure 4.9 Plot of the logistic sigmoid function
σ(a) defined by (4.59), shown in
red, together with the scaled pro-
bit function Φ(λa), for λ2 = π/8,
shown in dashed blue, where Φ(a)
is defined by (4.114). The scal-
ing factor π/8 is chosen so that the
derivatives of the two curves are
equal for a = 0.

−5 0 5
0

0.5

1

approach in which we model the class-conditional densities p(x|Ck), as well as the
class priors p(Ck), and then use these to compute posterior probabilities p(Ck|x)
through Bayes’ theorem.

Consider first of all the case of two classes. The posterior probability for class
C1 can be written as

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)
= σ(a) (4.57)

where we have defined

a = ln
p(x|C1)p(C1)
p(x|C2)p(C2)

(4.58)

and σ(a) is the logistic sigmoid function defined by

σ(a) =
1

1 + exp(−a)
(4.59)

which is plotted in Figure 4.9. The term ‘sigmoid’ means S-shaped. This type of
function is sometimes also called a ‘squashing function’ because it maps the whole
real axis into a finite interval. The logistic sigmoid has been encountered already
in earlier chapters and plays an important role in many classification algorithms. It
satisfies the following symmetry property

σ(−a) = 1 − σ(a) (4.60)

as is easily verified. The inverse of the logistic sigmoid is given by

a = ln
(σ

1 − σ

)
(4.61)

and is known as the logit function. It represents the log of the ratio of probabilities
ln [p(C1|x)/p(C2|x)] for the two classes, also known as the log odds.

4.3. Probabilistic Discriminative Models 205

basis functions is typically set to a constant, say φ0(x) = 1, so that the correspond-
ing parameter w0 plays the role of a bias. For the remainder of this chapter, we shall
include a fixed basis function transformation φ(x), as this will highlight some useful
similarities to the regression models discussed in Chapter 3.

For many problems of practical interest, there is significant overlap between
the class-conditional densities p(x|Ck). This corresponds to posterior probabilities
p(Ck|x), which, for at least some values of x, are not 0 or 1. In such cases, the opti-
mal solution is obtained by modelling the posterior probabilities accurately and then
applying standard decision theory, as discussed in Chapter 1. Note that nonlinear
transformations φ(x) cannot remove such class overlap. Indeed, they can increase
the level of overlap, or create overlap where none existed in the original observation
space. However, suitable choices of nonlinearity can make the process of modelling
the posterior probabilities easier.

Such fixed basis function models have important limitations, and these will beSection 3.6
resolved in later chapters by allowing the basis functions themselves to adapt to the
data. Notwithstanding these limitations, models with fixed nonlinear basis functions
play an important role in applications, and a discussion of such models will intro-
duce many of the key concepts needed for an understanding of their more complex
counterparts.

4.3.2 Logistic regression
We begin our treatment of generalized linear models by considering the problem

of two-class classification. In our discussion of generative approaches in Section 4.2,
we saw that under rather general assumptions, the posterior probability of class C1

can be written as a logistic sigmoid acting on a linear function of the feature vector
φ so that

p(C1|φ) = y(φ) = σ
(
wTφ

)
(4.87)

with p(C2|φ) = 1 − p(C1|φ). Here σ(·) is the logistic sigmoid function defined by
(4.59). In the terminology of statistics, this model is known as logistic regression,
although it should be emphasized that this is a model for classification rather than
regression.

For an M -dimensional feature space φ, this model has M adjustable parameters.
By contrast, if we had fitted Gaussian class conditional densities using maximum
likelihood, we would have used 2M parameters for the means and M(M + 1)/2
parameters for the (shared) covariance matrix. Together with the class prior p(C1),
this gives a total of M(M +5)/2+1 parameters, which grows quadratically with M ,
in contrast to the linear dependence on M of the number of parameters in logistic
regression. For large values of M , there is a clear advantage in working with the
logistic regression model directly.

We now use maximum likelihood to determine the parameters of the logistic
regression model. To do this, we shall make use of the derivative of the logistic sig-
moid function, which can conveniently be expressed in terms of the sigmoid function
itselfExercise 4.12

dσ

da
= σ(1 − σ). (4.88)

Maximum	likelihood	logisLc	regression	(1)	

Error	funcLon	
	
	
with	
	

206 4. LINEAR MODELS FOR CLASSIFICATION

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN)T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

With 	 	 	 	 	 	and		
	
for	a	data	set	{φn,tn},	where	tn	∈	{0,1}	and	φn	=	φ(xn),	with	n	=	1,…,	N	
	

206 4. LINEAR MODELS FOR CLASSIFICATION

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN)T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

206 4. LINEAR MODELS FOR CLASSIFICATION

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN)T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

206 4. LINEAR MODELS FOR CLASSIFICATION

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN)T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

yn = �(wT�n)

Maximum	likelihood	logisLc	regression	(2)	

Gradient	of	the	error	funcLon	with	respect	to	w		
	
	
StochasLc	gradient	update	rule	
	
τ:	iteraLon	number;	η:	learning	rate	parameter		

144 3. LINEAR MODELS FOR REGRESSION

in which the data points are considered one at a time, and the model parameters up-
dated after each such presentation. Sequential learning is also appropriate for real-
time applications in which the data observations are arriving in a continuous stream,
and predictions must be made before all of the data points are seen.

We can obtain a sequential learning algorithm by applying the technique of
stochastic gradient descent, also known as sequential gradient descent, as follows. If
the error function comprises a sum over data points E =

∑
n En, then after presen-

tation of pattern n, the stochastic gradient descent algorithm updates the parameter
vector w using

w(τ+1) = w(τ) − η∇En (3.22)

where τ denotes the iteration number, and η is a learning rate parameter. We shall
discuss the choice of value for η shortly. The value of w is initialized to some starting
vector w(0). For the case of the sum-of-squares error function (3.12), this gives

w(τ+1) = w(τ) + η(tn − w(τ)Tφn)φn (3.23)

where φn = φ(xn). This is known as least-mean-squares or the LMS algorithm.
The value of η needs to be chosen with care to ensure that the algorithm converges
(Bishop and Nabney, 2008).

3.1.4 Regularized least squares
In Section 1.1, we introduced the idea of adding a regularization term to an

error function in order to control over-fitting, so that the total error function to be
minimized takes the form

ED(w) + λEW (w) (3.24)

where λ is the regularization coefficient that controls the relative importance of the
data-dependent error ED(w) and the regularization term EW (w). One of the sim-
plest forms of regularizer is given by the sum-of-squares of the weight vector ele-
ments

EW (w) =
1
2
wTw. (3.25)

If we also consider the sum-of-squares error function given by

E(w) =
1
2

N∑

n=1

{tn − wTφ(xn)}2 (3.26)

then the total error function becomes

1
2

N∑

n=1

{tn − wTφ(xn)}2 +
λ

2
wTw. (3.27)

This particular choice of regularizer is known in the machine learning literature as
weight decay because in sequential learning algorithms, it encourages weight values
to decay towards zero, unless supported by the data. In statistics, it provides an ex-
ample of a parameter shrinkage method because it shrinks parameter values towards

206 4. LINEAR MODELS FOR CLASSIFICATION

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN)T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

206 4. LINEAR MODELS FOR CLASSIFICATION

For a data set {φn, tn}, where tn ∈ {0, 1} and φn = φ(xn), with n =
1, . . . , N , the likelihood function can be written

p(t|w) =
N∏

n=1

ytn
n {1 − yn}1−tn (4.89)

where t = (t1, . . . , tN)T and yn = p(C1|φn). As usual, we can define an error
function by taking the negative logarithm of the likelihood, which gives the cross-
entropy error function in the form

E(w) = − ln p(t|w) = −
N∑

n=1

{tn ln yn + (1 − tn) ln(1 − yn)} (4.90)

where yn = σ(an) and an = wTφn. Taking the gradient of the error function with
respect to w, we obtainExercise 4.13

∇E(w) =
N∑

n=1

(yn − tn)φn (4.91)

where we have made use of (4.88). We see that the factor involving the derivative
of the logistic sigmoid has cancelled, leading to a simplified form for the gradient
of the log likelihood. In particular, the contribution to the gradient from data point
n is given by the ‘error’ yn − tn between the target value and the prediction of the
model, times the basis function vector φn. Furthermore, comparison with (3.13)
shows that this takes precisely the same form as the gradient of the sum-of-squares
error function for the linear regression model.Section 3.1.1

If desired, we could make use of the result (4.91) to give a sequential algorithm
in which patterns are presented one at a time, in which each of the weight vectors is
updated using (3.22) in which ∇En is the nth term in (4.91).

It is worth noting that maximum likelihood can exhibit severe over-fitting for
data sets that are linearly separable. This arises because the maximum likelihood so-
lution occurs when the hyperplane corresponding to σ = 0.5, equivalent to wTφ =
0, separates the two classes and the magnitude of w goes to infinity. In this case, the
logistic sigmoid function becomes infinitely steep in feature space, corresponding to
a Heaviside step function, so that every training point from each class k is assigned
a posterior probability p(Ck|x) = 1. Furthermore, there is typically a continuumExercise 4.14
of such solutions because any separating hyperplane will give rise to the same pos-
terior probabilities at the training data points, as will be seen later in Figure 10.13.
Maximum likelihood provides no way to favour one such solution over another, and
which solution is found in practice will depend on the choice of optimization algo-
rithm and on the parameter initialization. Note that the problem will arise even if
the number of data points is large compared with the number of parameters in the
model, so long as the training data set is linearly separable. The singularity can be
avoided by inclusion of a prior and finding a MAP solution for w, or equivalently by
adding a regularization term to the error function.

Example	
204 4. LINEAR MODELS FOR CLASSIFICATION

x1

x2

−1 0 1

−1

0

1

φ1

φ2

0 0.5 1

0

0.5

1

Figure 4.12 Illustration of the role of nonlinear basis functions in linear classification models. The left plot
shows the original input space (x1, x2) together with data points from two classes labelled red and blue. Two
‘Gaussian’ basis functions φ1(x) and φ2(x) are defined in this space with centres shown by the green crosses
and with contours shown by the green circles. The right-hand plot shows the corresponding feature space
(φ1, φ2) together with the linear decision boundary obtained given by a logistic regression model of the form
discussed in Section 4.3.2. This corresponds to a nonlinear decision boundary in the original input space,
shown by the black curve in the left-hand plot.

Bayes’ theorem, represents an example of generative modelling, because we could
take such a model and generate synthetic data by drawing values of x from the
marginal distribution p(x). In the direct approach, we are maximizing a likelihood
function defined through the conditional distribution p(Ck|x), which represents a
form of discriminative training. One advantage of the discriminative approach is
that there will typically be fewer adaptive parameters to be determined, as we shall
see shortly. It may also lead to improved predictive performance, particularly when
the class-conditional density assumptions give a poor approximation to the true dis-
tributions.

4.3.1 Fixed basis functions
So far in this chapter, we have considered classification models that work di-

rectly with the original input vector x. However, all of the algorithms are equally
applicable if we first make a fixed nonlinear transformation of the inputs using a
vector of basis functions φ(x). The resulting decision boundaries will be linear in
the feature space φ, and these correspond to nonlinear decision boundaries in the
original x space, as illustrated in Figure 4.12. Classes that are linearly separable
in the feature space φ(x) need not be linearly separable in the original observation
space x. Note that as in our discussion of linear models for regression, one of the

LogisLc	regression	

35	Computer	vision:	models,	learning	and	inference.		©2011	Simon	J.D.	Prince	

Two	parameters	
	
Learning	by	standard	methods	(ML,MAP,	Bayesian)	
Inference:		Just	evaluate	Pr(w|x)	

36	Computer	vision:	models,	learning	and	inference.		©2011	Simon	J.D.	Prince	

Neater	NotaLon	

To	make	notaLon	easier	to	handle,	we	
•  Ahach	a	1	to	the	start	of	every	data	vector	

•  Ahach	the	offset	to	the	start	of	the	gradient	vector	φ

New	model:	

37	Computer	vision:	models,	learning	and	inference.		©2011	Simon	J.D.	Prince	

LogisLc	regression	

38	Computer	vision:	models,	learning	and	inference.		©2011	Simon	J.D.	Prince	

