Real time survey

eduVote is an Audience Response System for the Academic Environment:

The use of ARS, also known as a TED-System or voting Qur Partners:
system, is considered very beneficial in large lecture
halls and various other teaching arenas:

- Students are engaged through active participation in
the material, thus increasing their attention span.

- As the students must give precise answers, they
gain an awareness of where they may have knowledge
gaps.

- In addition, the instructor is able to gain a quick
overview of the audience’s current knowledge on the
subject being discussed.

In comparison with other voting systems that require proprietary hardware (e.g. a hand-held
clicker), eduVote is very cost-efficient since it provides Apps that run on a student’s laptop or
smartphone. Thus minimizing the time and effort required to organize and distribute equipment and
eradicating any purchase or maintenance costs.

In comparison to a web-based system, we take privacy extremely seriously. The eduVote server does
not receive data regarding the instructor’s question or the student’s voting results. The question and
answers are stored locally on the instructor’s local machine. We are aware and respect that instructors
value this control over their questions and results.

Anything else? eduVote incurs no usage-based costs! eduVote can be integrated into PowerPoint for
Windows! And, since 2011, eduVote has been successfully used at a number of universities across
Germany, Austria and Switzerland.

eduVote Testimonials: evaluation and feedback on eduVote can be viewed here.

T&C's LEGAL NOTICE CONTACT

http://www.eduvote.de/en/




Exercises:

* maximal number of points: 110

* Typically, 1 exercise sheet per week: 10 points

 Sometimes larger sheets for two subsequent weeks:
20 points

Grading policy:

* 50% of all points: eligible for the final exam (date to be
determined)

* 75% of all points: improves the exam grade by 0.3/0.4
e.g.2.0->1.7,1.7->1.3,1.0->1.0




Today’s topics

e Curve fitting (and overfitting)
* Regularization

* Probability and expectation
 Normal distribution

* Likelihood

* Mixture of Gaussians

* Non-parametric methods




Slides modified from:
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Pattern recognition: an example




Linear Basis Function Models (1)

Example: Polynomial Curve Fitting
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Sum-of-Squares Error Function
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Ot" Order Polynomial




15t Order Polynomial




3" Order Polynomial




9th Order Polynomial




Over-fitting

—©— Training
—O— Test

Root-Mean-Square (RMS) Error: Erus = /2E(w*)/N




Polynomial Coefficients

M=0 M=1 M=3 M =9
wg | 019 082  0.31 0.35
wk 1.27  7.99 232.37
w -25.43 -5321.83
wk 17.37  48568.31
W -231639.30
wi 640042.26
wi -1061800.52
wk 1042400.18
wi -557682.99
wy 125201.43




Data Set Size: N =15

9t Order Polynomial




Data Set Size: N =100

9t Order Polynomial




Regularization

Penalize large coefficient values
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Regularization: In A = —18




Regularization: InA =0




Regularization: Erus VS. In A
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Model Selection

Cross-Validation

run 1

run 2

run 3

run 4
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Probability Theory

Marginal Probability
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Joint Probability Conditional Probability
PX =Y =y;) = p(Y = y|X = z) = 2
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Probability Theory

Product Rule

p(X:x’LvYZyj) —

Sum Rule
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The Rules of Probability

Sum Rule

Product Rule




Probability Densities
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Bayes’ Theorem

p(X|Y)p(Y)

p(Y|X) = ()

p(X) =) p(X|Y)p(Y)
Y

posterior x likelihood x prior

Use p(X,Y)=p(Y[X)p(X)




Prior - Likelihood = Posterior
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Expectations

E[f] =) p()f(z)




Expectations

Conditional Expectation
(discrete)

Approximate Expectation
(discrete and continuous)




Variances and Covariances

coviz,y] = BEg,[{z—Elz]}{y —Ely]}]
= Ex,y[xy] - E[x]]E[y]

covix,y] = Exy [{X —Ex]Hy" - ]E[YT]}}
= Exylxy']| —EXE[y"]




The Gaussian Distribution
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Gaussian Mean and Variance

E[z] = /OO N (zlp,0?) zdz = p
E[z?] = /OO N (z|p, %) 2° dz = p* + o*

var[z] = E[z?] — E[z]? = o




The Multivariate Gaussian
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Moments of the Multivariate Gaussian (2)

Exx'] = put + 3

cov[x] =E [(x —E[x])(x —E[x])'] ==
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Central Limit Theorem

The distribution of the sum of N i.i.d. random
variables becomes increasingly Gaussian as N
grows.

Example: N uniform [0,1] random variables.




Partitioned Conditionals and Marginals
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