
Real	&me	survey	

In comparison with other voting systems that require proprietary hardware (e.g. a hand-held
clicker), eduVote is very cost-efficient since it provides Apps that run on a student’s laptop or
smartphone. Thus minimizing the time and effort required to organize and distribute equipment and
eradicating any purchase or maintenance costs.
 
In comparison to a web-based system, we take privacy extremely seriously. The eduVote server does
not receive data regarding the instructor’s question or the student’s voting results. The question and
answers are stored locally on the instructor’s local machine. We are aware and respect that instructors
value this control over their questions and results.
 
Anything else? eduVote incurs no usage-based costs! eduVote can be integrated into PowerPoint for
Windows! And, since 2011, eduVote has been successfully used at a number of universities across
Germany, Austria and Switzerland.
 
eduVote Testimonials: evaluation and feedback on eduVote can be viewed here.

The use of ARS, also known as a TED-System or voting
system, is considered very beneficial in large lecture
halls and various other teaching arenas:

• Students are engaged through active participation in
the material, thus increasing their attention span.

• As the students must give precise answers, they
gain an awareness of where they may have knowledge
gaps.

• In addition, the instructor is able to gain a quick
overview of the audience’s current knowledge on the
subject being discussed.

Our Partners:

eduVote is an Audience Response System for the Academic Environment:eduVote - ARS
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Exercises:	
	
•  maximal	number	of	points:	110		
•  Typically,	1	exercise	sheet	per	week:	10	points	
•  SomeBmes	larger	sheets	for	two	subsequent	weeks:		
20	points	

	
Grading	policy:		
•  50%	of	all	points:	eligible	for	the	final	exam	(date	to	be	

determined)		
•  75%	of	all	points:	improves	the	exam	grade	by	0.3/0.4		

e.g.	2.0->1.7,	1.7->1.3,	1.0->1.0		
	



Today’s	topics	

•  Curve	fiSng	(and	overfiSng)	
•  RegularizaBon		
•  Probability	and	expectaBon	
•  Normal	distribuBon	
•  Likelihood	
•  Mixture	of	Gaussians	
•  Non-parametric	methods	



Slides	modified	from:		
PATTERN	RECOGNITION		
AND	MACHINE	LEARNING	
CHRISTOPHER	M.	BISHOP	

and:		
Computer	vision:	models,	
learning	and	inference.		
©2011	Simon	J.D.	Prince	



Pa"ern	recogniBon:	an	example	



Linear	Basis	FuncBon	Models	(1)	

Example:	Polynomial	Curve	FiSng	



Sum-of-Squares	Error	FuncBon	



0th	Order	Polynomial	



1st	Order	Polynomial	



3rd	Order	Polynomial	



9th	Order	Polynomial	



Over-fiSng	

Root-Mean-Square	(RMS)	Error:	



Polynomial	Coefficients			 



Data	Set	Size:		

9th	Order	Polynomial	



Data	Set	Size:		

9th	Order	Polynomial	



RegularizaBon	

Penalize	large	coefficient	values	



RegularizaBon:		



RegularizaBon:		



RegularizaBon:											vs.		



Model	SelecBon	

Cross-ValidaBon	



16 1. INTRODUCTION
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Figure 1.11 An illustration of a distribution over two variables, X, which takes 9 possible values, and Y , which
takes two possible values. The top left figure shows a sample of 60 points drawn from a joint probability distri-
bution over these variables. The remaining figures show histogram estimates of the marginal distributions p(X)
and p(Y ), as well as the conditional distribution p(X|Y = 1) corresponding to the bottom row in the top left
figure.

Again, note that these probabilities are normalized so that

p(F = a|B = r) + p(F = o|B = r) = 1 (1.20)

and similarly
p(F = a|B = b) + p(F = o|B = b) = 1. (1.21)

We can now use the sum and product rules of probability to evaluate the overall
probability of choosing an apple

p(F = a) = p(F = a|B = r)p(B = r) + p(F = a|B = b)p(B = b)

=
1
4
× 4

10
+

3
4
× 6

10
=

11
20

(1.22)

from which it follows, using the sum rule, that p(F = o) = 1 − 11/20 = 9/20.



Probability	Theory	

	
Marginal	Probability	
	
	
	
	
CondiBonal	Probability	Joint	Probability	

	



Probability	Theory	

Sum	Rule	
	
	
	

Product	Rule	
	



The	Rules	of	Probability	

	
Sum	Rule	

	
Product	Rule	



Probability	DensiBes	



Bayes’	Theorem	

posterior	∝	likelihood	×	prior	

Use	



Prior	·	Likelihood	=	Posterior	



ExpectaBons	



ExpectaBons	

CondiBonal	ExpectaBon	
(discrete)	

Approximate	ExpectaBon	
(discrete	and	conBnuous)	



Variances	and	Covariances	



The	Gaussian	DistribuBon	



Gaussian	Mean	and	Variance	



The	MulBvariate	Gaussian	



Moments	of	the	MulBvariate	Gaussian	(2)	



Central	Limit	Theorem		

The	distribuBon	of	the	sum	of	N	i.i.d.	random	
variables	becomes	increasingly	Gaussian	as	N	
grows.	
Example:	N	uniform	[0,1]	random	variables.	
	



ParBBoned	CondiBonals	and	Marginals	


