Likelihood

Consider probability distribution depending on parameter $\boldsymbol{\theta}$ Likelihood:

$$L(\theta|x) = P(x|\theta)$$

The likelihood of parameter value θ given an observed (fixed) outcome x is equal to the probability of x given the parameter value θ

Example

- "Given that I have flipped a coin 100 times and it is a fair coin, what is the *probability* of it landing heads-up every time?"
- "Given that I have flipped a coin 100 times and it has landed heads-up 100 times, what is the *likelihood* that the coin is fair?"

Maximum Likelihood (ML)

Consider probability distribution depending on parameter $\boldsymbol{\theta}$ Likelihood:

$$L(\theta|x) = P(x|\theta)$$

The likelihood of parameter value θ given an observed (fixed) outcome x is equal to the probability of x given the parameter value θ

What is the most likely value of the parameter θ , given the outcome x?

Fitting normal distribution: ML

Fitting a normal distribution: ML

 $Pr(x_{1...I}|\mu,\sigma^2)$

Gaussian Parameter Estimation

Likelihood for the Gaussian

Assume σ is known. Given i.i.d. data

 $\mathbf{x} = \{x_1, \dots, x_N\}$, the likelihood function for $\boldsymbol{\mu}$ is given by

$$p(\mathbf{x}|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2\right\}.$$

This has a Gaussian shape as a function of μ (but it is *not* a distribution over μ).

Maximum (Log) Likelihood

$$\ln p\left(\mathbf{x}|\mu,\sigma^{2}\right) = -\frac{1}{2\sigma^{2}}\sum_{n=1}^{N}(x_{n}-\mu)^{2} - \frac{N}{2}\ln\sigma^{2} - \frac{N}{2}\ln(2\pi)$$

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n \qquad \sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2$$

Properties of $\mu_{ m ML}$ and $\sigma_{ m ML}^2$

$$\mathbb{E}[\mu_{\mathrm{ML}}] = \mu$$
$$\mathbb{E}[\sigma_{\mathrm{ML}}^2] = \left(\frac{N-1}{N}\right)\sigma^2$$
$$\widetilde{\sigma}^2 = \frac{N}{N-1}\sigma_{\mathrm{ML}}^2$$
$$= \frac{1}{N-1}\sum_{n=1}^N (x_n - \mu_{\mathrm{ML}})^2$$

Bayesian Inference for the Gaussian (1)

Assume σ is known. Given i.i.d. data

 $\mathbf{x} = \{x_1, \dots, x_N\}$, the likelihood function for $\boldsymbol{\mu}$ is given by

$$p(\mathbf{x}|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2\right\}.$$

This has a Gaussian shape as a function of μ (but it is *not* a distribution over μ).

Bayesian Inference for the Gaussian (2)

Combined with a Gaussian prior over μ ,

$$p(\mu) = \mathcal{N}\left(\mu|\mu_0, \sigma_0^2\right).$$

this gives the posterior

 $p(\mu|\mathbf{x}) \propto p(\mathbf{x}|\mu)p(\mu).$

Completing the square over μ , we see that $p(\mu|\mathbf{x}) = \mathcal{N}\left(\mu|\mu_N, \sigma_N^2\right)$

Bayesian Inference for the Gaussian (3)

... where

$$\mu_{N} = \frac{\sigma^{2}}{N\sigma_{0}^{2} + \sigma^{2}}\mu_{0} + \frac{N\sigma_{0}^{2}}{N\sigma_{0}^{2} + \sigma^{2}}\mu_{ML}, \qquad \mu_{ML} = \frac{1}{N}\sum_{n=1}^{N}x_{n}$$
$$\frac{1}{\sigma_{N}^{2}} = \frac{1}{\sigma_{0}^{2}} + \frac{N}{\sigma^{2}}.$$

Note:

	N = 0	$N \to \infty$
μ_N	μ_0	$\mu_{ m ML}$
σ_N^2	σ_0^2	0

Bayesian Inference for the Gaussian (4)

Example: $p(\mu|\mathbf{x}) = \mathcal{N}(\mu|\mu_N, \sigma_N^2)$ for N = 0, 1, 2 and 10.

Bayesian Inference for the Gaussian (5)

Sequential Estimation

$$p(\mu|\mathbf{x}) \propto p(\mu)p(\mathbf{x}|\mu)$$

$$= \left[p(\mu)\prod_{n=1}^{N-1}p(x_n|\mu)\right]p(x_N|\mu)$$

$$\propto \mathcal{N}\left(\mu|\mu_{N-1},\sigma_{N-1}^2\right)p(x_N|\mu)$$

The posterior obtained after observing N -1 data points becomes the prior when we observe the Nth data point.