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Bayesian probabilities

p(p]x) o< p(x|p)p()-

posterior &< likelihood x prior

Likelihood (function): viewed as function of
parameters u

Expresses how probable the observed data set
is for different settings of the parameter u




Gaussian Parameter Estimation

p(x) Likelihood function

N($n|ﬂ, 02)




Likelihood for the Gaussian

Assume o is known. Given i.i.d. data
x ={z1,...,2nx}, the likelihood function for
uis given by
p(x|p) = Hp T |p) = 1)N/2 eXp{% Z(:vnu)z}-

n—

p—t

This has a Gaussian shape as a function of u
(but it is not a distribution over u).




Maximum (Log) Likelihood
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Bayesian Inference for the Gaussian (2)

Combined with a Gaussian prior over u,
p(p) = N (plpo, 05) -
this gives the posterior

p(p|x) o< p(x|p)p(pe).

Completing the square over u, we see that

p(plx) =N (ulun, o%)




Mixtures of Gaussians (1)

Old Faithful data set
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Mixtures of Gaussians (2)

Combine simple models p(z)a
into a complex model:

K
p(x) = ZMN(XWka 2/@,)

k=1 J
Component

Mixing coefficient

K
Vk :m >0 Zwkzl
k=1




Mixtures of Gaussians (3)




Mixtures of Gaussians (4)

Determining parameters u, 2, and 5 using
maximum log likelihood

lnp X”Tl',[l,, ZIH{ZTFkN Xn|”k,2k)}

Log of a sum; no closed form maximum.

Solution: use standard, iterative, numeric
optimization methods or the expectation
maximization algorithm.




Nonparametric Methods (1)

Parametric distribution models are restricted
to specific forms, which may not always be
suitable; for example, consider modelling a
multimodal distribution with a single,
unimodal model.

Nonparametric approaches make few
assumptions about the overall shape of the
distribution being modelled.




Nonparametric Methods (2)

Histogram methods partition
the data space into distinct
bins with widths A; and count
the number of observations,
n,, in each bin.

T
~ NA,

Pi

*Often, the same width is used
for all bins, A; = A.

*A acts as a smoothing
parameter.

A =0.04
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*In a D-dimensional space,
using M bins in each dimen-
sion will require MP bins!




Curse of Dimensionality (1)
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Curse of Dimensionality (2)

Polynomial curve ﬁtting, M = 3
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Gaussian Densities in
higher dimensions




Nonparametric Methods (3)

Assume observations drawn
from a density p(x) and
consider a small region ‘R
containing X such that

P = /R p(x) dx.

The probability that K out of N
observations lie inside ‘R is
Bin(K|N,P ) and if N is large

K ~ NP.

If the volume of R, V, is
sufficiently small, p(x) is
approximately constant
over ‘R and

P ~ p(x)V

Thus
(x) = 2
PR =Ny

V small, yet K>0, therefore N large?




Nonparametric Methods (4)

Kernel Density Estimation: fix V, estimate K from
the data. Let ‘R be a hypercube centred on X and
define the kernel function (Parzen window)

. ]., |($Z—$nz)/h‘<1/2, 1=1,..., D,
b((x = xn)/h) = { 0, otherwise.

It follows that

:ik<x_hx

n=1

v (7))
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”) and hence p(x




Nonparametric Methods (5)

To avoid discontinuities in p(x),
use a smooth kernel, e.g. a
Gaussian

Mz

27Th2 D/2

== x|
exp 57,2

Any kernel such that

0 0.5 1
/k(u> du = 1 h acts as a smoother.

will work.




Nonparametric Methods (6)

Nearest Neighbour
Density Estimation: fix K,

estimate V from the data.

Consider a hypersphere
centred on X and let it

grow to a volume, V¥,
that includes K of the
given N data points. Then

K
- NV*

p(x)

0.5 1
K acts as a smoother.




Nonparametric Methods (7)

Nonparametric models (not histograms)
requires storing and computing with the
entire data set.

Parametric models, once fitted, are much
more efficient in terms of storage and
computation.




Linear Basis Function Models (1)

Example: Polynomial Curve Fitting

0 1

y(z, w) — wo + w1z + wox® + ... +wy™ = ijazj




Linear Basis Function Models (2)

Generally
M—1

w; (X WTCb(X)

7=0
Where ¢;(X) are known as basis functions.

Typically, do(X) = 1, so that wy acts as a bias.

In the simplest case, we use linear basis
functions : ¢4(X) = Xy.




Linear Basis Function Models (3)

Polynomial basis functions:

¢j(x) = .

These are global; a small
change in x affect all basis
functions.




Linear Basis Function Models (4)

Gaussian basis functions:

by (2) = exp { - 1L

252

These are local; a small change
in X only affect nearby basis
functions. y; and s control
location and scale (width).
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Linear Basis Function Models (5)

Sigmoidal basis functions:

¢j(z) =0 (x _S'uj>

where

o(a)

1
- 1+exp(—a)

Also these are local; a small
change in X only affect nearby
basis functions. u; and s
control location and scale
(slope).
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Curve Fitting Re-visited




Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function
with added Gaussian noise:

t=y(x,w)+e where p(elf) = N(E‘Oaﬁ_l)
which is the same as saying,
p(tlx, w, 3) = N(tly(x,w), 671).

Given observed inputs, X = {x1,...,xn}, and targets,
t=[t1,...,tx]", we obtain the likelihood function

p(t| X, w, §) = HN th|lWi(x,),571).




Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

N
Inp(tiw, 8) = > InN(ta|w e(x,),57")
n=1

_ % In g3 — gln(%) — BED(w)
where

1 N

Ep(w) =5 ) {ta =W ¢(xn)}’

n=1

is the sum-of-squares error.




Sum-of-Squares Error Function




