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Bayesian	probabiliNes	

	
	
	
	

posterior							likelihood	x	prior	
	

Likelihood	(funcNon):	viewed	as	funcNon	of	
parameters	µ

Expresses	how	probable	the	observed	data	set	
is	for	different	seVngs	of	the	parameter	µ		

	

/



Gaussian	Parameter	EsNmaNon	

Likelihood	funcNon	



Likelihood	for	the	Gaussian	

Assume	σ	is	known.	Given	i.i.d.	data	
																											,	the	likelihood	funcNon	for	
µ	is	given	by	

	
	
This	has	a	Gaussian	shape	as	a	funcNon	of	µ 
(but	it	is	not	a	distribuNon	over	µ).	



Maximum	(Log)	Likelihood	



Bayesian	Inference	for	the	Gaussian	(2)	

Combined	with	a	Gaussian	prior	over	µ,	
	
	

this	gives	the	posterior	
	
	

CompleNng	the	square	over	µ,	we	see	that	



Mixtures	of	Gaussians	(1)	

Old	Faithful	data	set	

Single	Gaussian	 Mixture	of	two	Gaussians	



Mixtures	of	Gaussians	(2)	

Combine	simple	models		
into	a	complex	model:	

Component	

Mixing	coefficient	
K=3 



Mixtures	of	Gaussians	(3)	



Mixtures	of	Gaussians	(4)	

Determining	parameters	µ,	Σ,	and	π using	
maximum	log	likelihood	

	
	
	

SoluNon:	use	standard,	iteraNve,	numeric	
opNmizaNon	methods	or	the	expecta)on	
maximiza)on	algorithm.		

	

Log	of	a	sum;	no	closed	form	maximum.	



Nonparametric	Methods	(1)	

Parametric	distribuNon	models	are	restricted	
to	specific	forms,	which	may	not	always	be	
suitable;	for	example,	consider	modelling	a	
mulNmodal	distribuNon	with	a	single,	
unimodal	model.	

Nonparametric	approaches	make	few	
assumpNons	about	the	overall	shape	of	the	
distribuNon	being	modelled.	



Nonparametric	Methods	(2)	

Histogram	methods	parNNon	
the	data	space	into	disNnct	
bins	with	widths	Δi	and	count	
the	number	of	observaNons,	
ni,	in	each	bin.	

• O^en,	the	same	width	is	used	
for	all	bins,	Δi	=	Δ.	
• Δ acts	as	a	smoothing	
parameter.	

	
	
	
	
	
	
	

• In	a	D-dimensional	space,	
using	M	bins	in	each	dimen-
sion	will	require	MD	bins!	



Curse	of	Dimensionality	(1)	



Curse	of	Dimensionality	(2)	

Polynomial	curve	fiVng,	M = 3	
	
	
	
	
Gaussian	DensiNes	in		
higher	dimensions 



Nonparametric	Methods	(3)	

Assume	observaNons	drawn	
from	a	density	p(x)	and	
consider	a	small	region	R	
containing	x	such	that	
	
	
The	probability	that	K	out	of	N	
observaNons	lie	inside	R	is		
Bin(K|N,P )	and	if	N	is	large	

If	the	volume	of	R,	V,	is	
sufficiently	small,	p(x)	is	
approximately	constant	
over	R	and	

	
	
Thus	

V		small,	yet	K>0,	therefore	N	large?	



Nonparametric	Methods	(4)	

Kernel	Density	Es4ma4on:	fix	V,	esNmate	K	from	
the	data.	Let	R	be	a	hypercube	centred	on	x	and	
define	the	kernel	funcNon	(Parzen	window)	
	
	

	It	follows		that		

																																and	hence	



Nonparametric	Methods	(5)	

To	avoid	disconNnuiNes	in	p(x),	
use	a	smooth	kernel,	e.g.	a	
Gaussian	
	
	
	
	
Any	kernel	such	that	
	
	
	
will	work.	

	
	
	
	
	
	
	

h	acts	as	a	smoother.	



Nonparametric	Methods	(6)	

Nearest	Neighbour	
Density	Es4ma4on:	fix	K,	
esNmate	V	from	the	data.	
Consider	a	hypersphere	
centred	on	x	and	let	it	
grow	to	a	volume,	V*,	
that	includes	K	of	the	
given	N data	points.	Then	

K	acts	as	a	smoother.	



Nonparametric	Methods	(7)	

Nonparametric	models	(not	histograms)	
requires	storing	and	compuNng	with	the	
enNre	data	set.		

Parametric	models,	once	figed,	are	much	
more	efficient	in	terms	of	storage	and	
computaNon.	



Linear	Basis	FuncNon	Models	(1)	

Example:	Polynomial	Curve	FiVng	



Linear	Basis	FuncNon	Models	(2)	

Generally	
	
	
Where	φj(x)	are	known	as	basis	func)ons.	
Typically,	φ0(x) = 1,	so	that	w0	acts	as	a	bias.	
In	the	simplest	case,	we	use	linear	basis	
funcNons	:	φd(x) = xd.	



Linear	Basis	FuncNon	Models	(3)	

Polynomial	basis	funcNons:	
	
	
These	are	global;	a	small	
change	in	x	affect	all	basis	
funcNons.	



Linear	Basis	FuncNon	Models	(4)	

Gaussian	basis	funcNons:	
	
	
	
These	are	local;	a	small	change	
in	x	only	affect	nearby	basis	
funcNons.	µj	and	s	control	
locaNon	and	scale	(width).	



Linear	Basis	FuncNon	Models	(5)	

Sigmoidal	basis	funcNons:	
	
	
where	
	
	
Also	these	are	local;	a	small	
change	in	x	only	affect	nearby	
basis	funcNons.	µj	and	s	
control	locaNon	and	scale	
(slope).	



Curve	FiVng	Re-visited	



Maximum	Likelihood	and	Least	Squares	(1)	

Assume	observaNons	from	a	determinisNc	funcNon	
with	added	Gaussian	noise:	

	
which	is	the	same	as	saying,	
	

Given	observed	inputs,																												,	and	targets,	
																						,	we	obtain	the	likelihood	funcNon			

	

where	



Maximum	Likelihood	and	Least	Squares	(2)	

Taking	the	logarithm,	we	get	
	
	
	
where	
	
	
is	the	sum-of-squares	error.	
	



Sum-of-Squares	Error	FuncNon	


