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Linear	regression	



Linear	Basis	FuncDon	Models	(1)	

Example:	Polynomial	Curve	FiLng	



Linear	Basis	FuncDon	Models	(2)	

Generally	
	
	
Where	φj(x)	are	known	as	basis	func*ons.	
Typically,	φ0(x) = 1,	so	that	w0	acts	as	a	bias.	
In	the	simplest	case,	we	use	linear	basis	
funcDons	:	φd(x) = xd.	



Linear	Basis	FuncDon	Models	(3)	

Polynomial	basis	funcDons:	
	
	
These	are	global;	a	small	
change	in	x	affect	all	basis	
funcDons.	



Linear	Basis	FuncDon	Models	(4)	

Gaussian	basis	funcDons:	
	
	
	
These	are	local;	a	small	change	
in	x	only	affect	nearby	basis	
funcDons.	µj	and	s	control	
locaDon	and	scale	(width).	



Linear	Basis	FuncDon	Models	(5)	

Sigmoidal	basis	funcDons:	
	
	
where	
	
	
Also	these	are	local;	a	small	
change	in	x	only	affect	nearby	
basis	funcDons.	µj	and	s	
control	locaDon	and	scale	
(slope).	



Curve	FiLng	Re-visited	



Maximum	Likelihood	and	Least	Squares	(1)	

Assume	observaDons	from	a	determinisDc	funcDon	
with	added	Gaussian	noise:	

	
which	is	the	same	as	saying,	
	

Given	observed	inputs,																												,	and	targets,	
																						,	we	obtain	the	likelihood	funcDon			

	

where	



Maximum	Likelihood	and	Least	Squares	(2)	

Taking	the	logarithm,	we	get	
	
	
	
where	
	
	
is	the	sum-of-squares	error.	
	



Sum-of-Squares	Error	FuncDon	



CompuDng	the	gradient	and	seLng	it	to	zero	yields	
	
	
	

Solving	for	w,	we	get		
	
where	

Maximum	Likelihood	and	Least	Squares	(3)	

The	Moore-Penrose	
pseudo-inverse,							.	
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Setting this gradient to zero gives

0 =
N∑

n=1

tnφ(xn)T − wT

(
N∑

n=1

φ(xn)φ(xn)T
)

. (3.14)

Solving for w we obtain
wML =

(
ΦTΦ

)−1
ΦTt (3.15)

which are known as the normal equations for the least squares problem. Here Φ is an
N×M matrix, called the design matrix, whose elements are given by Φnj = φj(xn),
so that

Φ =

⎛

⎜⎜⎝

φ0(x1) φ1(x1) · · · φM−1(x1)
φ0(x2) φ1(x2) · · · φM−1(x2)

...
...

. . .
...

φ0(xN ) φ1(xN ) · · · φM−1(xN )

⎞

⎟⎟⎠ . (3.16)

The quantity
Φ† ≡

(
ΦTΦ

)−1
ΦT (3.17)

is known as the Moore-Penrose pseudo-inverse of the matrix Φ (Rao and Mitra,
1971; Golub and Van Loan, 1996). It can be regarded as a generalization of the
notion of matrix inverse to nonsquare matrices. Indeed, if Φ is square and invertible,
then using the property (AB)−1 = B−1A−1 we see that Φ† ≡ Φ−1.

At this point, we can gain some insight into the role of the bias parameter w0. If
we make the bias parameter explicit, then the error function (3.12) becomes

ED(w) =
1
2

N∑

n=1

{tn − w0 −
M−1∑

j=1

wjφj(xn)}2. (3.18)

Setting the derivative with respect to w0 equal to zero, and solving for w0, we obtain

w0 = t −
M−1∑

j=1

wjφj (3.19)

where we have defined

t =
1
N

N∑

n=1

tn, φj =
1
N

N∑

n=1

φj(xn). (3.20)

Thus the bias w0 compensates for the difference between the averages (over the
training set) of the target values and the weighted sum of the averages of the basis
function values.

We can also maximize the log likelihood function (3.11) with respect to the noise
precision parameter β, giving

1
βML

=
1
N

N∑

n=1

{tn − wT
MLφ(xn)}2 (3.21)



Maximum	Likelihood	and	Least	Squares	(4)	

Maximizing	with	respect	to	the	bias,	w0,	alone,	we	
see	that	

	
	
	

We	can	also	maximize	with	respect	to	β,	giving	



Geometry	of	Least	Squares	

Consider	
	
	
	
	
S	is	spanned	by																				.	
wML	minimizes	the	distance	
between	t	and	its	orthogonal	
projecDon	on	S,	i.e.	y.	

N-dimensional	
M-dimensional	



SequenDal	Learning	

Data	items	considered	one	at	a	Dme	(a.k.a.	
online	learning);		use	stochasDc	(sequenDal)	
gradient	descent:	

	
	
This	is	known	as	the	least-mean-squares	(LMS)	
algorithm.	Issue:	how	to	choose	η?	



Regularized	Least	Squares	(1)	

Consider	the	error	funcDon:	
	

With	the	sum-of-squares	error	funcDon	and	a	
quadraDc	regularizer,	we	get			

	
	
which	is	minimized	by	

Data	term	+	RegularizaDon	term	

λ	is	called	the	
regularizaDon	
coefficient.	



Regularized	Least	Squares	(2)	

With	a	more	general	regularizer,	we	have	
	

Lasso	 QuadraDc	



Regularized	Least	Squares	(3)	

Lasso	tends	to	generate	sparser	soluDons	than	a	
quadraDc		
regularizer.		



The	Loss	FuncDon	

Loss	funcDon:	

Choose	esDmate	y(x)	of	value	of	t	for	each	x	in	order	to	
minimize	total	loss	E[L].		



The	Squared	Loss	FuncDon	

E[t|x] =
Z

tp(t|x)dtDefine	



Curve	FiLng	Re-visited	



The	Bias-Variance	DecomposiDon	(1)	

Recall	the	expected	squared	loss,	
	

where	
	

The	second	term	of	E[L] corresponds	to	the	noise	
inherent	in	the	random	variable	t.	

What	about	the	first	term?	

	



The	Bias-Variance	DecomposiDon	(2)	

Suppose	we	were	given	mulDple	data	sets,	each	of	
size	N.	Any	parDcular	data	set,	D,	will	give	a	
parDcular	funcDon	y(x;D).	We	then	have	

	
	
	



The	Bias-Variance	DecomposiDon	(3)	

Taking	the	expectaDon	over	D	yields	



The	Bias-Variance	DecomposiDon	(4)	

Thus	we	can	write	
	
where		



The	Bias-Variance	DecomposiDon	(5)	

Example:	25	data	sets	from	the	sinusoidal,	varying	
the	degree	of	regularizaDon,	λ.	



The	Bias-Variance	DecomposiDon	(6)	

Example:	25	data	sets	from	the	sinusoidal,	varying	
the	degree	of	regularizaDon,	λ.	



The	Bias-Variance	DecomposiDon	(7)	

Example:	25	data	sets	from	the	sinusoidal,	varying	
the	degree	of	regularizaDon,	λ.	



The	Bias-Variance	Trade-off	

From	these	plots,	we	note	
that	an	over-regularized	
model	(large	λ)	will	have	a	
high		bias,	while	an	under-
regularized	model	(small	λ)	
will	have	a	high	variance.	


