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Linear regression




Linear Basis Function Models (1)

Example: Polynomial Curve Fitting

0 1

y(z, w) — wo + w1z + wox® + ... +wy™ = ijazj




Linear Basis Function Models (2)

Generally
M—1

w; (X WTCb(X)

7=0
Where ¢;(X) are known as basis functions.

Typically, do(X) = 1, so that wy acts as a bias.

In the simplest case, we use linear basis
functions : ¢4(X) = Xy.




Linear Basis Function Models (3)

Polynomial basis functions:

¢j(x) = .

These are global; a small
change in x affect all basis
functions.




Linear Basis Function Models (4)

Gaussian basis functions:

by (2) = exp { - 1L

252

These are local; a small change
in X only affect nearby basis
functions. y; and s control
location and scale (width).
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Linear Basis Function Models (5)

Sigmoidal basis functions:

¢j(z) =0 (x _S'uj>

where

o(a)

1
- 1+exp(—a)

Also these are local; a small
change in X only affect nearby
basis functions. u; and s
control location and scale
(slope).
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Curve Fitting Re-visited




Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function
with added Gaussian noise:

t=y(x,w)+e where p(elf) = N(E‘Oaﬁ_l)
which is the same as saying,
p(tlx, w, 3) = N(tly(x,w), 671).

Given observed inputs, X = {x1,...,xn}, and targets,
t=[t1,...,tx]", we obtain the likelihood function

p(t| X, w, §) = HN th|lWi(x,),571).




Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

N
Inp(tiw, 8) = > InN(ta|w e(x,),57")
n=1

_ % In g3 — gln(%) — BED(w)
where

1 N

Ep(w) =5 ) {ta =W ¢(xn)}’

n=1

is the sum-of-squares error.




Sum-of-Squares Error Function




Maximum Likelihood and Least Squares (3)

Computing the gradient and setting it to zero yields
N

Vwlnp(tlw,3) =8> {tn — W d(xs)} ¢(x,)" = 0.

n=1

0= tu(x,)T — wT (Z qb(xn)qs(xn)T)

|
I

The Moore-Penrose
pseudo-inverse, 3

Solving for w, we get ——
WL = <<I>T<I>> BT

where (%(Xl) p1(x1) - ¢M—1(X1>\
Po(x2) d1(x2) -+ dm-1(x2)

\ dolxn) di(xn) - duro1(xn)




Maximum Likelihood and Least Squares (4)

Maximizing with respect to the bias, wg, alone, we
see that 1

Wy = f—ijgb_j

We can also maximize with respect to f3, giving

Z{t — Wy (xn)




Geometry of Least Squares

Consider
y =®PwyL = [@1,- -, @] WML
yeSCT te7T

T\ ,tN—dimensionaI

M-dimensional

Sis spanned by ¢1,...,¢u.

W), minimizes the distance
between t and its orthogonal
projectionon S, i.e.y.




Sequential Learning

Data items considered one at a time (a.k.a.
online learning); use stochastic (sequential)
gradient descent:

wl ) = w7 _pVE,
= w4 (tn — W(T)Tqb(xn))qb(xn).

This is known as the least-mean-squares (LMS)
algorithm. Issue: how to choose 1?




Regularized Least Squares (1)

Consider the error function:
ED(W) + )\Ew<W)

Data term + Regularization term

With the sum-of-squares error function and a
guadratic regularizer we get

A
—Z{t —who(x,)} + §WTW
A is called the
which is minimized by regularization
coefficient.
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Regularized Least Squares (2)

With a more general regularizer, we have

—Z{t — W (xa)} + Z\wg\q




Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a
quadratic
regularizer.
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The Loss Function

Loss function: // (t, y(x))p(x,t) dx dt

Choose estimate y(x) of value of t for each x in order to
minimize total loss E[L].




The Squared Loss Function

_ / {y(x) — 1}p(x, t) dx dt

Define  Eft|x] = / p(t]x)dt

{y(x) — t}* = {y(x) — Eft|]x] + E[t[x] -t}
= {y(x) — Bt} + 2{y(x) — Eft|x| {E[t|x] — ¢t} + {E[t|]x] — ¢}’

£ = [y — Bltixl} pl) dx+ [ var [t () dx

y(x) = Elt[x]




Curve Fitting Re-visited




The Bias-Variance Decomposition (1)

Recall the expected squared loss,

/{y x)} p(x dx—l—//{h ) — t}2p(x, t)dxdt

where Lo |
h(x) = E[t|x] = /tp(t|x) dt. o |

The second term of E[L] corresponds to the noise
inherent in the random variable t.

What about the first term?




The Bias-Variance Decomposition (2)

Suppose we were given multiple data sets, each of
size N. Any particular data set, D, will give a
particular function y(Xx;D). We then have

{y(x; D) — h(x)}*
{y(x; D) — Eply(x; D)] + Eply(x; D)] — h(x)}
= {y(xD) — Eply(x; D)]}* + {Eply(x; D)] — h(x)
+2{y(; D) = Eply(x; D) HEp [y(x; D)] — h(x) ]

}2

X




The Bias-Variance Decomposition (3)

Taking the expectation over D yields

Ep [{y(x; D) — h(x)}’]
= {Enly(x D) — h(x)}" +Ep [{y(x D) —Enly(x D))}’ .

7/

"

(bias)? variance




The Bias-Variance Decomposition (4)

Thus we can write

expected loss = (bias)? 4 variance + noise

where
(bias)? = /{ED x; D) x) }°p(x) dx
variance = /ED {y(x; D) — Ep[y(x; D)]}?] p(x) dx

noise = / / {h(x) — t}*p(x,t) dx dt




The Bias-Variance Decomposition (5)

Example: 25 data sets from the sinusoidal, varying
the degree of regularization, A.

In\A=26




The Bias-Variance Decomposition (6)

Example: 25 data sets from the sinusoidal, varying
the degree of regularization, A.




The Bias-Variance Decomposition (7)

Example: 25 data sets from the sinusoidal, varying
the degree of regularization, A.
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The Bias-Variance Trade-off

From these plots, we note  0.15
that an over-regularized 0121
model (large A) will have a
high bias, while an under-
regularized model (small A) 0.06¢
will have a high variance.
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