
Slides	modified	from:		
PATTERN	RECOGNITION		
AND	MACHINE	LEARNING	
CHRISTOPHER	M.	BISHOP	

and:		
Computer	vision:	models,	
learning	and	inference.		
©2011	Simon	J.D.	Prince	



Radial	basis	funcMons	
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Bayesian	regression	
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PredicMve	DistribuMon	(1)	

Predict	t	for	new	values	of	x	by	integraMng	
over	w:	

	
	
	
where	



Bayesian	Linear	Regression	

Likelihood	
	
A	common	choice	for	the	prior	is	 
	
for	which	the	posterior	is	
	
	



PredicMve	DistribuMon	(2)	

Example:	Sinusoidal	data,	9	Gaussian	basis	funcMons,	
1	data	point	



PredicMve	DistribuMon	(3)	

Example:	Sinusoidal	data,	9	Gaussian	basis	funcMons,	
2	data	points	



PredicMve	DistribuMon	(4)	

Example:	Sinusoidal	data,	9	Gaussian	basis	funcMons,	
4	data	points	



PredicMve	DistribuMon	(5)	

Example:	Sinusoidal	data,	9	Gaussian	basis	funcMons,	
25	data	points	



PredicMve	DistribuMon	



Bayesian	PredicMve	DistribuMon	



Equivalent	Kernel	(1)	

The	predicMve	mean	can	be	wri[en	
	
	
	
	

This	is	a	weighted	sum	of	the	training	data	
target	values,	tn.	

	
	
	
	
	

Equivalent	kernel	or	
smoother	matrix.	



Equivalent	Kernel	(2)	

Weight	of	tn	depends	on	distance	between	x	and	xn;	
nearby	xn	carry	more	weight.	



Equivalent	Kernel	(3)	

Non-local	basis	funcMons	have	local	equivalent	
kernels:	

Polynomial	 Sigmoidal	



Equivalent	Kernel	(4)	

The	kernel	as	a	covariance	funcMon:	consider	
	
	
We	can	avoid	the	use	of	basis	funcMons	and	
define	the	kernel	funcMon	directly,	leading	
to		Gaussian	Processes.	



Equivalent	Kernel	(5)	

	
	
for	all	values	of	x;	however,	the	equivalent	kernel	
may	be	negaMve	for	some	values	of	x.	

Like	all	kernel	funcMons,	the	equivalent	kernel	can	be	
expressed	as	an	inner	product:	
	

where																																		.	



Bayesian	Model	Comparison	(1)	

How	do	we	choose	the	‘right’	model?	
Assume	we	want	to	compare	models	Mi, i=1, …,L,	
using	data	D;	this	requires	compuMng	

	
	
	

Bayes	Factor:	raMo	of	evidence	for	two	models	

Posterior	 Prior	 Model	evidence	or	
marginal	likelihood	



Bayesian	Model	Comparison	(2)	

Having	computed	p(Mi|D),	we	can	compute	
the	predicMve	(mixture)	distribuMon	

	
	
A	simpler	approximaMon,	known	as	model	
selec<on,	is	to	use	the	model	with	the	
highest	evidence.	



Bayesian	Model	Comparison	(3)	

For	a	model	with	parameters	w,	we	get	the	
model	evidence	by	marginalizing	over	w	

	
	
Note	that		



Bayesian	Model	Comparison	(4)	

For	a	given	model	with	a	
single	parameter,	w,	con-
sider	the	approximaMon	
	
	
	
	
where	the	posterior	is	
assumed	to	be	sharply	
peaked.		



Bayesian	Model	Comparison	(5)	

Taking	logarithms,	we	obtain	
	
	
	
With	M	parameters,	all	assumed	to	have	the	same	
raMo																																			,	we	get	

NegaMve	

NegaMve	and	linear	in	M.	



Bayesian	Model	Comparison	(6)	

Matching	data	and	model	complexity	



The	Evidence	ApproximaMon	(1)	

The	fully	Bayesian	predicMve	distribuMon	is	given	by	
	
	
but	this	integral	is	intractable.	Approximate	with	
	
	
where											is	the	mode	of														,	which	is	assumed	to	
be	sharply	peaked;	a.k.a.	empirical	Bayes,	type	II	or	gene-
ralized	maximum	likelihood,	or	evidence	approxima<on.	



The	Evidence	ApproximaMon	(2)	

From	Bayes’	theorem	we	have		
	

and	if	we	assume	p(α,β)	to	be	flat	we	see	that	
	

	

General	results	for	Gaussian	integrals	give		 
	



The	Evidence	ApproximaMon	(3)	

Example:	sinusoidal	data,	M	th	degree	polynomial,		
	


