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Radial basis functions
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Bayesian regression
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Predictive Distribution (1)

Predict t for new values of X by integrating
over W:

p(tlt, o, B) = / p(tlw, B)p(wlt, a, B) dw
—  N(tm5é(x), 0% (x))

where

% L $(x) Sy (x).
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Bayesian Linear Regression

Likelihood
p(t|X,w,5) = HN

A common choice for the prior is
p(w) = N(w|0,a7'T)

for which the posterior is
p(wlt) = N(w|mn, Sy)
my = [Sy®lt
Sy, = al+p3e'®.




Predictive Distribution (2)

Example: Sinusoidal data, 9 Gaussian basis functions,
1 data point
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Predictive Distribution (3)

Example: Sinusoidal data, 9 Gaussian basis functions,
2 data points

N (timyd(x), o3 (%))




Predictive Distribution (4)

Example: Sinusoidal data, 9 Gaussian basis functions,
4 data points




Predictive Distribution (5)

Example: Sinusoidal data, 9 Gaussian basis functions,
25 data points




Predictive Distribution

p(t|z, W, Bur) = N (tly(z, wr), 51\_41L>




Bayesian Predictive Distribution

p(tlz,x,t) = N (t|m(z), s*(z))




Equivalent Kernel (1)

The predictive mean can be written

y(Xv mN)

mNCb( ) = Bop(x)"SyP 't

Zﬁqﬁ Tqub (%0 )t

(Q—\

Zk (%, x5, )t
n=1

Equivalent kernel or
smoother matrix.

This is a weighted sum of the training data

target values, t,,.




Equivalent Kernel (2)

e T \
X X X

Weight of t, depends on distance between X and X;
nearby X, carry more weight.




Equivalent Kernel (3)

Non-local basis functions have local equivalent
kernels:
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Equivalent Kernel (4)

The kernel as a covariance function: consider

covly(x),y(x")] = COV[Cb(X) (X,>]
= ¢(x)'Sy ¢( ) B k(x,x).

We can avoid the use of basis functions and
define the kernel function directly, leading
to Gaussian Processes.




Equivalent Kernel (5)

N

Z k(x,x,) =1

n=1
for all values of X; however, the equivalent kernel
may be negative for some values of X.

Like all kernel functions, the equivalent kernel can be
expressed as an inner product:

k(x,2) = ¢(x) P(z)

where ¥(x) = /282 p(x).




Bayesian Model Comparison (1)

How do we choose the ‘right’ model?
Assume we want to compare models M, 1=1, ...,L,
using data D; this requires computing
p(M;|D) o< p(M;)p(DIM;).

Posterior Prior Model evidence or
marginal likelihood

Bayes Factor: ratio of evidence for two models
p(DIM;)
p(DIM;)




Bayesian Model Comparison (2)

Having computed p(M;|D), we can compute
the predictive (mixture) distribution

L
p(t|x, D) = Zp(t‘xa M, D)p(M;|D).
i—1

A simpler approximation, known as model
selection, is to use the model with the
highest evidence.




Bayesian Model Comparison (3)

For a model with parameters w, we get the
model evidence by marginalizing over w

p(D|M;) = /p(D|W,M¢>p(W|M7;)dW.
!
Note that

p(D|M;)
T

p(w|D, M) = 2




Bayesian Model Comparison (4)

For a given model with a

single parameter, w, con- AWposterior
sider the approximation 'f—\.

p(D) = / p(Dlw)p(w) dw

A'wposterior

~ p(D|lwmap)

A/wprior /
where the posterior is j

assumed to be sharply < .
peaked. AWprior

o\

WMAP w




Bayesian Model Comparison (5)

Taking logarithms, we obtain

A osterior
In p(D) ~ In p(D|wmap) + In ( “post ) .

Aprrior
Y

Negative

With M parameters, all assumed to have the same
ratio Aprosteriox‘/A/wplriort we gEt

Inp(D) ~ Inp(D|wnmap) + M In (

\

Negative and linear in M.




Bayesian Model Comparison (6)

Matching data and model complexity

p(D)




The Evidence Approximation (1)

The fully Bayesian predictive distribution is given by
p(t) = [ [ [ pltiw. Bp(wlt, o pa Blt) dwdads
but this integral is intractable. Approximate with

p(t[t) zp(t]t, a, B) _ /p(uwﬁ)p(wu, &, B) dw

where(@, 3) is the mode of p(a, 8|t), which is assumed to
be sharply peaked; a.k.a. empirical Bayes, type Il or gene-

ralized maximum likelihood, or evidence approximation.




The Evidence Approximation (2)

From Bayes’ theorem we have
p(a, BJt) o p(ta, B)p(a, B)
and if we assume p(o,p) to be flat we see that
pa, Blt) o p(tle, B)
— [ pltiw, Bp(wla) dw.

General results for Gaussian integrals give

M N 1 N
Inp(tja, ) = > Ina + 5} Ing — E(my) + 5 In |[Sn| — 5} In(27).




The Evidence Approximation (3)

Example: sinusoidal data, Mt degree polynomial,
a=>5x10""
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