

Machine Learning II: (Applications)

Prepared by: Prof. Dr. Visvanathan Ramesh

References and Sources: Nils Bertschinger (ML II lecture slides) Simon Prince (Learning and Vision)

Outline

- Approaches to Machine Learning
- Introduction to Probability, Bayes rule, Probability Distributions
- Bayesian Machine Learning
- Parametric/Non-parametric Bayesian methods
- Gaussian Processes
- Link to Neural Networks
- Bayesian Nonparametrics
 - Dirichlet Processes, Chinese Restaurant Process, Indian Buffet Process
- Inference by Sampling , MCMC Metropolis-Hastings, Gibbs Sampler, HMC sampler
- What is not covered yet? (And what is planned for the rest of the weeks)
 - Recap of past classes , discussion
 - Example application case studies in computer vision
 - Variational Methods

Brief Recap

- Data-driven
 - Very large data sets ... "Big Data"
 - Non-parametric models, e.g. k-NN
- Model-driven
 - Can be used for small data sets
 - Parametric models

Note: As models become more complex any data set is "small"

 \implies Recent rise of model based machine learning

General setup of model based ML:

REVISE MODEL

Fig. from: David M. Blei, Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models, Annu. Rev. Stat. Appl. 2014. 1:20332

- Supervised: Patterns whose class/output is known a-priori are used for training (*labelled training data*)
 - Regression: Real-valued output Typical examples: Interpolation, (Time-series) Prediction
 - Classification: Categorical output Typical examples: Face recognition, Identity authentification, Speech recognition
- Unsupervised: Number of classes is (in general) unknown and no labelled data are available Typical examples: Cluster analysis, Recommendation systems

Bayesian statistics:

- Especially useful when taking decisions or making predictions

Bayesian machine learning:

Statistical modeling:

Conceptually simple, but computationally challenging

Bayesian machine learning:

- Bayesian modeling requires prior assumptions:
 - Parametric models, e.g. linear regression
 - Bayesian non-parametrics:
 - Flexible models with infinite-dimensional parameter spaces
 - Effective number of parameters grow with amount of data

But, explicit about prior assumptions

- No free lunch theorem: Assumption-free learning is impossible!
- Takes uncertainty into account Bayesian Occam's razor: Automatic penalty for model complexity
- Computational challenge: Posterior $p(\mathbf{z}|\mathbf{x})$ often intractable
 - Sampling algorithms
 - Variational approximations

Machine Learning II course ... Focus on Bayesian methods

- Motivation: Bayesian vs frequentist statistics
- Decision theory: Handling uncertainty, loss functions
- Probability theory: Conjugate priors
- Modeling: Latent variables, hierarchical models, Bayesian non-parametrics
- Model selection: Marginal likelihood, sparsity priors
- Algorithms: Variational Bayes (ELBO), sampling methods

Potential applications

- Social data: Voting results, network models
- Economic data: GDP forecasting, volatility modeling
- Computer vision: Detection, tracking, recognition, segmentation

•

Computer vision: models, learning and inference

Source: Chapter 6, 7 Computer Vision: Models, Learning and Inference (Simon Prince)

Structure

Computer vision models

• Two types of model

Worked example 1: Regression Worked example 2: Classification Which type should we choose? Applications

Computer vision: models, learning and inference. ©2011 Simon J.D.

10

11

Examples:

- Observe adjacent frames in video sequence
- Infer camera motion
- Observe image of face
- Infer identity
- Observe images from two displaced cameras
- Infer 3d structure of scene

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

Observe measured data, x Draw inferences from it about world, w

When the world state w is continuous we'll call this regression

When the world state w is discrete we call this classification

> Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

Unfortunately visual measurements may be compatible with more than one world state w

- Measurement process is noisy
- Inherent ambiguity in visual data
- Conclusion: the best we can do is compute a probability distribution Pr(w|x) over possible states of world

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

Take observations x Return probability distribution Pr(w|x) over possible worlds compatible with data

(not always tractable – might have to settle for an approximation to this distribution, samples from it, or the best (MAP) solution for w)

We need

A model that mathematically relates the visual data x to the world state w. Model specifies family of relationships, particular relationship depends on parameters θ

A learning algorithm: fits parameters θ from paired training examples x_i, w_i

An inference algorithm: uses model to return Pr(w|x) given new observed data x.

The model mathematically relates the visual data x to the world state w. Two main categories of model

- 1. Model contingency of the world on the data Pr(w|x)
- 2. Model contingency of data on world Pr(x|w)

16

- Model contingency of the world on the data Pr(w|x)
 (DISCRIMINATIVE MODEL)
- 2. Model contingency of data on world Pr(x|w) (GENERATIVE MODELS)
- Generative as probability model over data and so when we draw samples from model, we GENERATE new data

Computer vision: models, learning and inference. ©2011 17 Simon J.D. Prince

How to model Pr(w|x)?

- 1. Choose an appropriate form for Pr(w)
- 2. Make parameters a function of **x**
- 3. Function takes parameters θ that define its shape

Learning algorithm: learn parameters θ from training data x,w

Inference algorithm: just evaluate Pr(w|x)

How to model Pr(x|w)?

- 1. Choose an appropriate form for Pr(**x**)
- 2. Make parameters a function of **w**
- 3. Function takes parameters θ that define its shape

Learning algorithm: learn parameters θ from training data x,w

Inference algorithm: Define prior Pr(w) and then compute Pr(w|x) using Bayes' rule

$$Pr(\mathbf{w}|\mathbf{x}) = \frac{Pr(\mathbf{x}|\mathbf{w})Pr(\mathbf{w})}{\int Pr(\mathbf{x}|\mathbf{w})Pr(\mathbf{w})d\mathbf{w}}$$

Computer vision: models, learning and inference. ©2011 19 Simon J.D. Prince

Two different types of model depend on the quantity of interest:

- 1. **Pr(w|x)** Discriminative
- 2. Pr(w|x) Generative

Inference in discriminative models easy as we directly model posterior Pr(w|x). Generative models require more complex inference process using Bayes' rule

Structure

Computer vision models

• Two types of model

Worked example 1: Regression Worked example 2: Classification Which type should we choose? Applications

Computer vision: models, learning and inference. ©2011 Simon J.D.

21

Consider simple case where

- we make a univariate continuous measurement x
- use this to predict a univariate continuous state w

(regression as world state is continuous)

Regression application 1: Pose from Silhouette

Computer vision: models, learning and inference. ©2011 23 Simon J.D. Prince

Regression application 2: Head pose estimation

Computer vision: models, learning and inference. ©2011 24 Simon J.D. Prince

Consider simple case where

- we make a univariate continuous measurement x
- use this to predict a univariate continuous state w

(regression as world state is continuous)

Type 1: Model Pr(w|x) - Discriminative

How to model Pr(w|x)?

- 1. Choose an appropriate form for Pr(w)
- 2. Make parameters a function of **x**
- 3. Function takes parameters θ that define its shape

FIAS Frankfurt Institute for Advanced Studies

Learning algorithm: learn parameters θ from training data x,w

Inference algorithm: just evaluate Pr(w|x)

Type 1: Model Pr(w|x) - Discriminativ

How to model Pr(w|x)?

- 1. Choose an appropriate form for Pr(w)
- 2. Make parameters a function of **x**
- 3. Function takes parameters θ that define its shape

1. Choose normal distribution over w

FIAS Frankfurt Institute for Advanced Studies

GOET

2. Make mean μ linear function of x (variance constant)

$$Pr(w|x, \theta) = \operatorname{Norm}_{w} \left[\phi_{0} + \phi_{1}x, \sigma^{2}\right]$$

3. Parameters are ϕ_0 , ϕ_1 , σ^2 .

This model is called *linear regression*.

Computer vision: models, learning and inference. ©2011 27

Simon J.D. Prince

Computer vision: models, learning and inference. ©2011 28 Simon J.D. Prince

Inference algorithm: just evaluate Pr(w|x) for new data

Computer vision: models, learning and inference. ©2011 30 Simon J.D. Prince

How to model Pr(x|w)?

- 1. Choose an appropriate form for $Pr(\mathbf{x})$
- 2. Make parameters a function of **w**
- 3. Function takes parameters θ that define its shape

Learning algorithm: learn parameters θ from training data x,w

Inference algorithm: Define prior Pr(w) and then compute Pr(w|x) using Bayes' rule

$$Pr(\mathbf{w}|\mathbf{x}) = \frac{Pr(\mathbf{x}|\mathbf{w})Pr(\mathbf{w})}{\int Pr(\mathbf{x}|\mathbf{w})Pr(\mathbf{w})d\mathbf{w}}$$

Computer vision: models, learning and inference. ©2011 31 Simon J.D. Prince

How to model Pr(x|w)?

- 1. Choose an appropriate form for Pr(**x**)
- 2. Make parameters a function of w
- 3. Function takes parameters θ that define its shape

- 1. Choose normal distribution over x
- 2. Make mean μ linear function of w (variance constant)

$$Pr(x|w, \theta) = \operatorname{Norm}_{x} \left[\phi_{0} + \phi_{1}w, \sigma^{2}\right]$$

3. Parameter are ϕ_0 , ϕ_1 , σ^2 .

Computer vision: models, learning and inference. ©2011 32

Learning algorithm: learn θ from training data **x**,**w**. e.g. MAP

Computer vision: models, learning and inference. ©2011 33 Simon J.D. Prince

04.07.2017

Can get back to joint probability Pr(x,y)

Computer vision: models, learning and inference. ©2011 34

Simon J.D. Prince

04.07.2017

Inference algorithm: compute $Pr(\mathbf{w}|\mathbf{x})$ using Bayes rule $Pr(\mathbf{w}|\mathbf{x}) = \frac{Pr(\mathbf{x}|\mathbf{w})Pr(\mathbf{w})}{\int Pr(\mathbf{x}|\mathbf{w})Pr(\mathbf{w})d\mathbf{w}}$

> Computer vision: models, learning and inference. ©2011 35 Simon J.D. Prince

Structure

Computer vision models

• Three types of model

Worked example 1: Regression

Worked example 2: Classification

Which type should we choose? Applications

Computer vision: models, learning and inference. ©2011 Simon J.D.

36

Worked example 2: Classification

Consider simple case where

- we make a univariate continuous measurement x
- use this to predict a discrete binar $\in \{0, 1\}$ w

(classification as world state is discrete)

Computer vision: models, learning and inference. ©2011 37 Simon J.D. Prince

Classification Example 1: Face Detection

Computer vision: models, learning and inference. ©2011 38 Simon J.D. Prince

Classification Example 2: Pedestrian Detection

Classification Example 3: Face Recognition

Observed dimension 1

Computer vision: models, learning and inference. ©2011 40

Classification Example 4: Semantic Segmentation

Computer vision: models, learning and inference. ©2011 41 Simon J.D. Prince **Worked example 2: Classification**

Consider simple case where

- we make a univariate continuous measurement x
- use this to predict a discrete binary world $w \in \{0,1\}$

(classification as world state is discrete)

Computer vision: models, learning and inference. ©2011 42 Simon J.D. Prince

How to model Pr(w|x)?

- Choose an appropriate form for Pr(**w**)
- Make parameters a function of **x**
- Function takes parameters θ that define its shape

Learning algorithm: learn parameters θ from training data x,w

Inference algorithm: just evaluate Pr(w|x)

How to model Pr(w|x)?

- 1. Choose an appropriate form for Pr(w)
- 2. Make parameters a function of **x**
- 3. Function takes parameters θ that define its shape

- 1. Choose Bernoulli dist. for Pr(w)
- 2. Make parameters a function of **x**

 $Pr(w|x) = \operatorname{Bern}_{w} \left[\operatorname{sig}[\phi_{0} + \phi_{1}x]\right]$ $= \operatorname{Bern}_{w} \left[\frac{1}{1 + \exp[-\phi_{0} - \phi_{1}x]}\right]$

FIAS Frankfurt Institute for Advanced Studies

3. Function takes parameters ϕ_0 and ϕ_1 This model is called *logistic regression*.

Two parameters $\boldsymbol{\theta} = \{\phi_0, \phi_1\}$

Learning by standard methods (ML,MAP, Bayesian) Inference: Just evaluate Pr(w|x)

> Computer vision: models, learning and inference. ©2011 45 Simon J.D. Prince

How to model Pr(x|w)?

- 1. Choose an appropriate form for Pr(**x**)
- 2. Make parameters a function of **w**
- 3. Function takes parameters θ that define its shape

Learning algorithm: learn parameters θ from training data x,w

Inference algorithm: Define prior Pr(w) and then compute Pr(w|x) using Bayes' rule

$$Pr(\mathbf{w}|\mathbf{x}) = \frac{Pr(\mathbf{x}|\mathbf{w})Pr(\mathbf{w})}{\int Pr(\mathbf{x}|\mathbf{w})Pr(\mathbf{w})d\mathbf{w}}$$

Computer vision: models, learning and inference. ©2011 46 Simon J.D. Prince

How to model Pr(x|w)?

- 1. Choose an appropriate form for Pr(**x**)
- 2. Make parameters a function of w
- 3. Function takes parameters θ that define its shape

- 1. Choose a Gaussian distribution for Pr(**x**)
- 2. Make parameters a function of discrete binary \mathbf{w} $Pr(x|w) = \operatorname{Norm}_{x}[\mu_{w}, \sigma_{w}^{2}]$
- 3. Function takes parameters μ_0 , μ_1 , σ^2_0 , σ^2_1 that define its

Computer vision: models, learning and inference. ©2011 47

04.07.2017

Learn parameters μ_0 , μ_1 , σ^2_0 , σ^2_1 that define its shape

Computer vision: models, learning and inference. ©2011 48 Simon J.D. Prince

Computer vision: models, learning and inference. ©2011 49

Simon J.D. Prince

Structure

Computer vision models

Three types of model
Worked example 1: Regression
Worked example 2: Classification
Which type should we choose?

Applications

Computer vision: models, learning and inference. ©2011 Simon J.D.

50

Which type of model to use?

1. Generative methods model data – costly and many aspects of data may have no influence on world state

Computer vision: models, learning and inference. ©2011 51 Simon J.D. Prince

- 2. Inference simple in discriminative models
- 3. Data really is generated from world generative matches this
- 4. If missing data, then generative preferred
- 5. Generative allows imposition of prior knowledge specified by user

Structure

Computer vision models

Three types of model
Worked example 1: Regression
Worked example 2: Classification
Which type should we choose?
Applications

Computer vision: models, learning and inference. ©2011 Simon J.D.

53

Application: Skin Detection

Figure 6.7 Skin detection. For each pixel we aim to infer a label $w \in \{0, 1\}$ denoting the absence or presence of skin based on the RGB triple **x**. Here we modeled the class conditional density functions $Pr(\mathbf{x}|w)$ as normal distributions. a) Original image. b) Log likelihood (log of data assessed under class-conditional density function) for non-skin. c) Log likelihood for skin. d) Posterior probability of belonging to skin class. e) Thresholded posterior probability $Pr(w|\mathbf{x}) > 0.5$ gives estimate of w.

Computer vision: models, learning and inference. ©2011 Simon J.D.

51

Application: Background subtraction

Computer vision: models, learning and inference. ©2011 Simon J.D.

Prince

But consider this scene in which the foliage is blowing in the wind. A normal distribution is not good enough! Need a way to make more complex distributions

Computer vision: models, learning and inference. ©2011 Simon J.D.

56

Prince

56

Face Detection

Computer vision: models, learning and inference. ©2011 Simon J.D.

Prince

How to model Pr(x|w)?

- Choose an appropriate form for Pr(**x**)
- Make parameters a function of **w**
- Function takes parameters θ that define its shape

Learning algorithm: learn parameters θ from training data x,w

Inference algorithm: Define prior Pr(w) and then compute Pr(w|x) using Bayes' rule

$$Pr(w=1|\mathbf{x}) = \frac{Pr(\mathbf{x}|w=1)Pr(w=1)}{\sum_{k=0}^{1} Pr(\mathbf{x}|w=k)Pr(w=k)}$$

Computer vision: models, learning and inference. ©2011 Simon J.D.

58

$$Pr(\mathbf{x}|w) = \operatorname{Norm}_{\mathbf{x}}[\boldsymbol{\mu}_w, \boldsymbol{\Sigma}_w]$$

Or writing in terms of class conditional density functions $Pr(\mathbf{x}|w=0) = \operatorname{Norm}_{\mathbf{x}}[\boldsymbol{\mu}_0, \boldsymbol{\Sigma}_0]$ $Pr(\mathbf{x}|w=1) = \operatorname{Norm}_{\mathbf{x}}[\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1]$

Parameters μ_0 , Σ_0 learnt just from data S_0 where w=0

$$\hat{\boldsymbol{\mu}}_{0}, \hat{\boldsymbol{\Sigma}}_{0} = \operatorname{argmax}_{\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}} \left[\prod_{i \in \mathcal{S}_{0}} Pr(\mathbf{x}_{i} | \boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}) \right]$$
$$= \operatorname{argmax}_{\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}} \left[\prod_{i \in \mathcal{S}_{0}} \operatorname{Norm}_{\mathbf{x}_{i}}[\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{0}] \right]$$

Similarly, parameters μ_1 , Σ_1 learnt just from data S_1 where w=1

Computer vision: models, learning and inference. ©2011 Simon J.D.

59

Computer vision: models, learning and inference. ©2011 60

Simon J.D. Prince

Experiment

1000 non-faces 1000 faces

60x60x3 Images =10800 x1 vectors

Equal priors Pr(y=1)=Pr(y=0) = 0.5

75% performance on test set. Not very good!

Computer vision: models, learning and inference. ©2011 Simon J.D.

Prince

Results (diagonal covariance)

Figure 7.2 Class conditional density functions for normal model with diagonal covariance. Maximum likelihood fits based on 1000 training examples per class. a) Mean for background data μ_0 (reshaped from 10800×1 vector to 60×60 RGB image). b) Reshaped square root of diagonal covariance for background data Σ_0 . c) Mean for face data μ_1 d) Covariance for face data Σ_1 . The background model has little structure: the mean is uniform and the variance is high everywhere. The mean of the face model clearly captures class-specific information. The covariance of the face is larger at the edges of the image which usually contain hair or background.

Computer vision: models, learning and inference. ©2011 Simon J.D.

Prince

62

Means of face/non-face model

Classification \rightarrow 84% (9% improvement!)

Computer vision: models, learning and inference. ©2011 Simon J.D.

Prince

Face model

Computer vision: models, learning and inference. ©2011 Simon J.D.

Prince

Sampling from 10 parametersität model

To generate:

- Choose factor loadings, h_i from standard normal distribution
- Multiply by factors, Φ
- Add mean, μ
- (should add random noise component ϵ_i w/ diagonal cov Σ)

Computer vision: models, learning and inference. ©2011 Simon J.D.

Probability Density Models

Computer vision: models, learning and inference. ©2011 Simon J.D.

66

- To do computer vision we build a model relating the image data x to the world state that we wish to estimate w
- Three types of model
 - Model Pr(w|x) -- discriminative
 - Model Pr(w|x) generative

Backup