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« Recap - Nil Bertschinger Lectures
» Approaches to Machine Learning
» Introduction to Probability, Bayes rule, Probability Distributions
« Bayesian Machine Learning
« Parametric/Non-parametric Bayesian methods
« Gaussian Processes
* Link to Neural Networks
« Bayesian Nonparametrics
« Dirichlet Processes, Chinese Restaurant Process, Indian Buffet Process
* Inference by Sampling , MCMC — Metropolis-Hastings, Gibbs Sampler, HMC sampler

* What is not covered yet? (And what is planned for the rest of the weeks)
 Recap of past classes, discussion
« Example application case studies in computer vision
* Variational Methods

04.07.2017 1
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Approaches to Machine Learning @

» Data-driven

» Very large data sets ... "“Big Data"
» Non-parametric models, e.g. k-NN

» Model-driven

» Can be used for small data sets
» Parametric models

Note: As models become more complex any data set is “small”
— Recent rise of model based machine learning
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General setup of model based ML:

DATA

|

Buildmodel Infer hidden quantities Criticize model

Moaures and mied-membershipmodels Markov chain Monte Carlo, — Performance ona task
time-series modeks, generalzed inear models, varational inference, prediction on unseen data,
factor models, Bayesian nonparametrics Laplace appraximation posternior predictive checks

l

Apply model

Predictive systems,
data exploration,
data summarization

REVISE MODEL

Fig. from: David M. Blei, Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models, Annu.

Rev. Stat. Appl. 2014. 1:20332
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Terminology

» Supervised: Patterns whose class/output is known a-priori
are used for training (/abelled training data)

» Regression: Real-valued output
Typical examples: Interpolation, (Time-series) Prediction

» (lassification: Categorical output
Typical examples: Face recognition, Identity authentification,
Speech recognition

» Unsupervised: Number of classes is (in general) unknown
and no labelled data are available
Typical examples: Cluster analysis, Recommendation systems
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Bayesian statistics:

» Principled and logically consistent way to reason under
uncertainty

Prior ==22— Posterior (belief update)
» Especially useful when taking decisions or making predictions
Bayesian machine learning:

» Statistical modeling:

Pl 2 )=plz) pix2)

Data  Latent wvariables
Parameters

prior likelihood

» Conceptually simple, but computationally challenging
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Bayesian machine learning:
» Bayesian modeling requires prior assumptions:

» Parametric models, e.g. linear regression
» Bayesian non-parametrics:

» Flexible models with infinite-dimensional parameter spaces
» Effective number of parameters grow with amount of data

But, explicit about prior assumptions
» No free lunch theorem: Assumption-free learning is impossible!

» Takes uncertainty into account
Bayesian Occam's razor: Automatic penalty for model
complexity
» Computational challenge: Posterior p(z|x) often intractable
» Sampling algorithms
» Variational approximations
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Machine Learning Il course ... Focus on Bayesian methods
» Motivation: Bayesian vs frequentist statistics
» Decision theory: Handling uncertainty, loss functions
» Probability theory: Conjugate priors
>

Modeling: Latent variables, hierarchical models, Bayesian
non-parametrics

» Model selection: Marginal likelihood, sparsity priors

» Algorithms: Variational Bayes (ELBO), sampling methods
Potential applications

» Social data: Voting results, network models

» Economic data: GDP forecasting, volatility modeling

» Computer vision: Detection, tracking, recognition,
segmentation
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Computer vision: models, learning and
Inference

Source: Chapter 6,7

Computer Vision: Models, Learning and Inference
(Simon Prince)
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Structure

Computer vision models

« Two types of model
Worked example 1. Regression
Worked example 2: Classification
Which type should we choose?
Applications

Computer vision: models, learning and inference. ©2011 Simon J.D. | |
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Observe measured data, X

Draw inferences from it about state of
world, w

Examples:

* Observe adjacent frames in video sequence
* Infer camera motion

« Observe image of face
 Infer identity

« QObserve images from two displaced cameras
* Infer 3d structure of scene

Computer vision: models, learning and inference. ©2011
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Observe measured data, x
Draw inferences from it about world, w

When the world state w is continuous we’ll call this
regression

When the world state w is discrete we call this
classification

Computer vision: models, learning and inference. ©2011

Simon J.D. Prince ii
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Ambiguity of visual world S kA

Unfortunately visual measurements may be compatible with more than one world
state w

* Measurement process is noisy
* Inherent ambiguity in visual data

Conclusion: the best we can do is compute a probability distribution Pr(w|x) over
possible states of world

Computer vision: models, learning and inference. ©2011
Simon J.D. Prince
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Refined goal of computer vision

Take observations x
Return probability distribution Pr(w|x) over possible worlds compatible with data

(not always tractable — might have to settle for an approximation to this distribution,
samples from it, or the best (MAP) solution for w)

Computer vision: models, learning and inference. ©2011

Simon J.D. Prince i l
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Components of solution

We need

A model that mathematically relates the visual data x to the world state w. Model
specifies family of relationships, particular relationship depends on parameters 6

A learning algorithm: fits parameters 06 from paired training examples x;,w;

An inference algorithm: uses model to return Pr(w|x) given new observed data x.
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Types of Model UNIVERSITAT

The model mathematically relates the visual data
X to the world state w. Two main categories of
model

1. Model contingency of the world on the data Pr(w|x)
2. Model contingency of data on world Pr(x|w)

Computer vision: models, learning and inference. ©2011 16
04.07.2017 Simon J.D. Prince 16
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1. Model contingency of the world on the data
Pr(w|x)

(DISCRIMINATIVE MODEL)

2. Model contingency of data on world Pr(x|w)
(GENERATIVE MODELYS)

Generative as probability model over data and
so when we draw samples from model, we
GENERATE new data

Computer vision: models, learning and inference. ©2011 17
04.07.2017 Simon J.D. Prince 17
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How to model Pr(w|x)?
1. Choose an appropriate form for Pr(w)
2. Make parameters a function of x
3. Function takes parameters 0 that define its shape

Learning algorithm: learn parameters 6 from training
data x,w

Inference algorithm: just evaluate Pr(w|x)

Computer vision: models, learning and inference. ©2011 18
04.07.2017 Simon J.D. Prince 18
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How to model Pr(x|w)?

1. Choose an appropriate form for Pr(x)

2. Make parameters a function of w

3. Function takes parameters 0 that define its shape

Learning algorithm: learn parameters 6 from training
data x,w

Inference algorithm: Define prior Pr(w) and then
compute Pr(w|x) using Bayes’ rule

~ Pr(x|w)Pr(w)
Priwlx) = [ Pr(x|w)Pr(w)dw

Computer vision: models, learning and inference. ©2011 19
04.07.2017 Simon J.D. Prince 19
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Summary

Two different types of model depend on the quantity of interest:
1.  Pr(w|x) Discriminative
2.  Pr(w|x) Generative

Inference in discriminative models easy as we directly model posterior Pr(w|x).
Generative models require more complex inference process using Bayes’ rule
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Structure

Computer vision models

* Two types of model
Worked example 1. Regression
Worked example 2: Classification
Which type should we choose?
Applications

Computer vision: models, learning and inference. ©2011 Simon J.D. I |
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Consider simple case where

e We make a univariate continuous
measurement X

e use this to predict a univariate continuous
State w

(regression as world state is continuous)

Computer vision: models, learning and inference. ©2011 22
04.07.2017 Simon J.D. Prince 22
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Regression application 2: % FAS ki nsiute () GOETHE ¥
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Head pose estimation N ERSTAT

2

Computer vision: models, learning and inference. ©2011___24
04.07.2017 Simon J.D. Prince 24
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Consider simple case where

e We make a univariate continuous
measurement X

e use this to predict a univariate continuous
State w

(regression as world state is continuous)

Computer vision: models, learning and inference. ©2011 25
04.07.2017 Simon J.D. Prince 25
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How to model Pr(w|x)?
1. Choose an appropriate form for Pr(w)
2. Make parameters a function of x
3. Function takes parameters 0 that define its shape

Learning algorithm: learn parameters 6 from training
data x,w

Inference algorithm: just evaluate Pr(w|x)

Computer vision: models, learning and inference. ©2011 26
04.07.2017 Simon J.D. Prince 26
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How to model Pr(w|x)?
1. Choose an appropriate form for Pr(w)
2. Make parameters a function of x
3. Function takes parameters 0 that define its shape

1. Choose normal distribution over w
2. Make mean p linear function of x
(variance constant)

Pr(w)

Pr(w|x,8) = Norm,, [f:ﬁo + ¢1, ‘772}

3. Parameters are ¢, ¢,, 6°.

This model is called linear regression.

Computer vision: models, learning and inference. ©2011 27
04.07.2017 Simon J.D. Prince 27
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°0 10
L

Parameterd) = {¢o. 01,0°} are y-offset, slope and
variance

Computer vision: models, learning and inference. ©2011 28
04.07.2017 Simon J.D. Prince 28
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0 T 10
Learning algorithm: learn 0 from training data x,y. E.g.
0 = argIHg.XPT‘(Q‘u:‘L__I;:Ifl___[) I

arg ma Pr(w;|lx;,0)Pr(8),
ngmeixlj[l r(w;|z;, 0)Pr(8),

= argmax Pr(wy. rlxy..7,0)Pr(0)

Computer vision: models, learning and inference. ©2011 29
04.07.2017 Simon J.D. Prince 29
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Inference algorithm: just evaluate Pr(w|x) for new date

Computer vision: models, learning and inference. ©2011 30
04.07.2017 Simon J.D. Prince 30
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Type 2: Pr(x|w) - Generative

How to model Pr(x|w)?

1. Choose an appropriate form for Pr(x)
2. Make parameters a function of w
3. Function takes parameters 0 that define its shape

Learning algorithm: learn parameters 6 from training
data x,w

Inference algorithm: Define prior Pr(w) and then
compute Pr(w|x) using Bayes’ rule
Pr(x|w)Pr(w)
P —
riwlx) | Pr(x|w)Pr(w)dw

Computer vision: models, learning and inference. ©2011 31
04.07.2017 Simon J.D. Prince 31
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Type 2: Pr(x|w) - Generative

How to model Pr(x|w)?

1. Choose an appropriate form for Pr(x)
2. Make parameters a function of w
3. Function takes parameters 0 that define its shape

1. Choose normal distribution over x
2. Make mean u linear function of w
(variance constant)

Pr(zx)

Pr(z|w,0) = Norm, |¢o + ¢1w, 02}

3. Parameter are ¢, ¢,, 6°.

Computer vision: models, learning and inference. ©2011 32
04.07.2017 Simon J.D. Prince 32
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0 T 10

Learning algorithm: learn 0 from training data x,w. e.g.
MAP

Computer vision: models, learning and inference. ©2011 33
04.07.2017 Simon J.D. Prince 33
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Pr(z|w) = Normg[¢g + d1w, 02] Pr(w) Pr(z; w)

10

Pr(x|w) X Pr(w)

I
U
=
S

Can get back to joint probability Pr(x,y)

Computer vision: models, learning and inference. ©2011 34
04.07.2017 Simon J.D. Prince 34
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Inference algorithm: compute Pr(w|x) using Bayes

rule Pr(x|w)Pr(w)
Prwlx) = [ Pr(x|w)Pr(w)dw

Computer vision: models, learning and inference. ©2011 35
04.07.2017 Simon J.D. Prince 35
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Structure

Computer vision models

* Three types of model
Worked example 1. Regression
Worked example 2: Classification
Which type should we choose?
Applications

Computer vision: models, learning and inference. ©2011 Simon J.D. I |
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Consider simple case where

e we make a univariate continuous
measurement X
 use this to predict a discrete binare {0, 1}
W

(classification as world state is discrete)

Computer vision: models, learning and inference. ©2011 37
04.07.2017 Simon J.D. Prince 37
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Frame 1  Frame 2

b)
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Classification Example 3: @ FAS Fanktut nstue €3 GOETHE, 4K
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Observed dimension 2

Observed dimension 1
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Semantic Segmentation ONIVERSITAT
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Worked example 2: Classification E ONIVERSITAT

Consider simple case where

* we make a univariate continuous
measurement X
* use this to predict a discrete binary world
w € {0,1}

(classification as world state is discrete)

Computer vision: models, learning and inference. ©2011 42
04.07.2017 Simon J.D. Prince 42
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How to model Pr(w|x)?

 Choose an appropriate form for Pr(w)
« Make parameters a function of x
* Function takes parameters 0 that define its shape

Learning algorithm: learn parameters 6 from training
data x,w

Inference algorithm: just evaluate Pr(w|x)

Computer vision: models, learning and inference. ©2011 43
04.07.2017 Simon J.D. Prince 43
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How to model Pr(w|x)?

1. Choose an appropriate form for Pr(w)
2. Make parameters a function of x
3. Function takes parameters 0 that define its shape

1 1. Choose Bernoulli dist. for Pr(w)
2. Make parameters a function of x
= A Pr(w|z) = Bern,, [sig[do + é12]]
= 1
ol - .
A St prpes e
3. Function takes parameters ¢, and ¢,
O R This model is called logistic regression.

Computer vision: models, learning and inference. ©2011 44
04.07.2017 Simon J.D. Prince 44
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Pr(w|z)

g oo

Two parameters

0 = {¢07 ¢1}

Learning by standard methods (ML,MAP, Bayesian)
Inference: Just evaluate Pr(w|x)
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Type 2: Pr(x|w) - Generative

How to model Pr(x|w)?

1. Choose an appropriate form for Pr(x)
2. Make parameters a function of w
3. Function takes parameters 0 that define its shape

Learning algorithm: learn parameters 6 from training
data x,w

Inference algorithm: Define prior Pr(w) and then
compute Pr(w|x) using Bayes’ rule
Pr(x|w)Pr(w)
P —
riwlx) | Pr(x|w)Pr(w)dw

Computer vision: models, learning and inference. ©2011 46
04.07.2017 Simon J.D. Prince 46
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How to model Pr(x|w)?

1. Choose an appropriate form for Pr(x)
2. Make parameters a function of w
3. Function takes parameters 0 that define its shape

1. Choose a Gaussian
distribution for Pr(x)
2. Make parameters a function

of discrete binary w
Pr(z|w) = Normg [y, 02)]

3. Function takes parameters p,,
L, 6%, 02, that define its

0 T 1

Computer vision: models, learning an§ihfgpn§e. ©2011_ 47
04.07.2017 Simon J.D. Prince 47



Pr(xz|w) = Normg |tty,, 02

UNIVERSITAT

N
0 5 FRANKFURT AM MAIN

Learn parameters p,, K, 62, 62, that define its shape
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—_—

Pr(w|x)

Inference algorithm: Define prior Pr(w) and then
compute Pr(w|x) using Bayes’ rule

©co

 Pr(x|w)Pr(w)
Priw}x) = | Pr(x|w)Pr(w)dw v
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Structure

Computer vision models

* Three types of model
Worked example 1. Regression
Worked example 2: Classification
Which type should we choose?
Applications

Computer vision: models, learning and inference. ©2011 Simon J.D. il
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Which type of model to use?

1. Generative methods model data — costly and many aspects of data may have no
influence on world state
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Which type of model to use? S kA

Inference simple in discriminative models

Data really is generated from world — generative matches this

If missing data, then generative preferred

Generative allows imposition of prior knowledge specified by user

a bk W
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Structure

Computer vision models

* Three types of model
Worked example 1. Regression
Worked example 2: Classification
Which type should we choose?
Applications

Computer vision: models, learning and inference. ©2011 Simon J.D. il
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Application: Skin Detection

04.07.2017

Figure 6.7 Skin detection. For each pixel we aim to infer a label w €
{0, 1} denoting the absence or presence of skin based on the RGB triple x.
Here we modeled the class conditional density functions Pr(x|w) as normal
distributions. a) Original image. b) Log likelihood (log of data assessed
under class-conditional density function) for non-skin. c¢) Log likelihood for
skin. d) Posterior probability of belonging to skin class. e) Thresholded
posterior probability Pr(w|x) > 0.5 gives estimate of w.

Computer vision: models, learning and inference. ©2011 Simon J.D.
Prince
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XN

04
54
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Application: Background subtractio%
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04.07.2017
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Application: Background subtractio% N ERSTAT

Pr(z|w = 0)

Intensity,

But consider this scene in which the foliage is blowing in the wind. A normal
distribution is not good enough! Need a way to make more complex
distributions

Computer vision: models, learning and inference. ©2011 Simon J.D.
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Computer vision: models, learning and inference. ©2011 Simon J.D.
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How to model Pr(x|w)?
 Choose an appropriate form for Pr(x)
« Make parameters a function of w
* Function takes parameters 0 that define its shape

Learning algorithm: learn parameters 6 from training
data x,w

Inference algorithm: Define prior Pr(w) and then
compute Pr(w|x) using Bayes’ rule
Pr(x|lw=1)Pr(w =1)

Z};:o Pr(x|w = k)Pr(w = k)

Computer vision: models, learning and inference. ©2011 Simon J.D.

Prince =
04.07.2017 58

Pr(w =1|x) =
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Classification Model

Pr(x|w) = Normy |, 2]

Or writing in terms of class conditional density functions
Pr(xjw =0) = Normy|pg, 20|
Pr(xjlw=1) = Normy|p,, 3]

Parameters p,, Z, learnt just from data S, where w=0

fLo. X0 = argmax H Pr(x;|pg, Xo)
“’D?EO _'iGSO

= argmax H Normy, (g, o]

Similarly, parameters u,, , learnt just from data S; where w=1

Computer vision: models, learning and inference. ©2011 Simon J.D. o

04.07.2017 Prince 59
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Pr(w|x)

Inference algorithm: Define prior Pr(w) and then
compute Pr(w|x) using Bayes’ rule

©co

 Pr(x|w)Pr(w)
Priw}x) = | Pr(x|w)Pr(w)dw v
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1000 non-faces
1000 faces

60x60x3 Images =10800 x1
vectors

Equal priors Pr(y=1)=Pr(y=0) =
0.5

75% performance on test set. Not '™ |
very good! ‘

Computer vision: models, learning and inference. ©2011 Simon J.D.
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Figure 7.2 Class conditional density
a) C) functions for normal model with diag-
onal covariance. Maximum likelihood
fits based on 1000 training examples
per class. a) Mean for background
data p (reshaped from 10800 x 1 vec-
tor to 60 x 60 RGB image). b) Re-
shaped square root of diagonal co-
variance for background data Xg. c)
Mean for face data p, d) Covariance
for face data ;. The background
model has little structure: the mean
is uniform and the variance is high ev-
erywhere. The mean of the face model
clearly captures class-specific informa-
tion. The covariance of the face is
diag larger at the edges of the image which
4 usually contain hair or background.

diag
20

Computer vision: models, learning and inference. ©2011 Simon J.D.
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Means of face/non-face model

e)
0.089
0.060

Classification = 84% (9% improvement!)

Computer vision: models, learning and inference. ©2011 Simon J.D.
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Computer vision: models, learning and inference. ©2011 Simon J.D.




model

To generate:

Choose factor loadings, h; from standard normal distribution
Multiply by factors, ®

Add mean, p

(should add random noise component g; w/ diagonal cov X)

Computer vision: models, learning and inference. ©2011 Simon J.D.
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b)
Problem 1 Mixture e)
Unimodal models
Mixture of
t-distributions
N 1 distributi mixture of Gaussians
ormal distribution
a) C) Mixture of factor
Problem 2 Robust analyzers
Sensitive models
to outliers .
Mixture of robust
t-distributions subspace models
d)
Robust subspace
Problem 3 Subspace -# models
Too many parameters models
in high dimensions

PPCA, factor z;nalysis

Computer vision: models, learning and inference. ©2011 Simon J.D.
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Conclusion E

e To do computer vision we build a model
relating the image data x to the world state
that we wish to estimate w

* Three types of model
* Model Pr(w|x) -- discriminative
* Model Pr(w|x) — generative

Computer vision: models, learning and inference. ©2011

Simon J.D. Prince
67
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