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Preface

Real world systems studied in sciences (e.g. physics, chemistry, and biology) and engineering (e.g.
vision, graphics and robotics) involve complex interactions between large numbers of components.
The representations for such systems are probabilistic models defined on graphs in high-dimensional
spaces, to which analytic solutions are often unavailable. As a result, Monte Carlo methods have
been used as a common tool for simulation, estimation, inference and learning in science and engi-
neering. It is of no surprise that Monte Carlo method was ranked no.1 in the top-ten list of mostly
used algorithms in the 20th century (Dongarra and Sullivan, 2000). With the ever-growing com-
puting capacities, people are tackling more complex problems and adopting more advanced models.
Monte Carlo methods will play an important role for sciences and engineering in the 21th century.

In history, several communities have contributed to the development of Monte Carlo methods.

• Physics and chemistry, for example, the early Metropolis algorithm (Metropolis, Rosenbluth,
Rosenbluth, Teller and Teller, 1953), simulated annealing (Kirkpatrick, Gelatt, and Vecchi,
1983) and cluster sampling (Swendsen and Wang, 1987; Edwards and Sokal 1988), and the
recent work on disconnectivity graph (Becker and Karpus, 1997) for visualizing the landscape
of spin-glass models.

• Probability and statistics, for example, stochastic gradient (Robin and Monro, 1951, Younes
1988), Hastings dynamics (Hastings, 1970), data augmentation (Tanner and Wong, 1987),
reversible jumps (Green, 1995), dynamic weighting (Wong and Liang, 1997) for studying bio-
informatics, and numerous analysis for bounding the convergence of Markov chain Monte
Carlo (Diaconis 1988, Diaconis and Stroock, 1991, and Liu, 1991).

• Theoretical computer science, for example, the convergence rate of clustering sampling by
(Jerrum and Sinclair, 1989, Cooper and Frieze, 1999).

• Computer vision and pattern theory, for example, the Gibbs sampler (Geman and Geman,
1984) for image processing, Jump-diffusion (Miller and Grenander, 1994) for segmentation,
the condensation algorithm for object tracking (Isard and Blake, 1996), to the recent work on
Data-driven Markov chain Monte Carlo (Tu and Zhu, 2002) and generalized Swendsen-Wang
cut (Barbu and Zhu, 2005) for image segmentation and parsing.

As these areas are very diverse and speak different languages, inter-disciplinary communication has
been rare. This poses a big challenge for people who want to use Monte Carlo methods, especially
people in computer science and engineering.

On one aspect, effective MC algorithms must explore the underlying structures of the problem,
thus they are domain or problem specific and hardly accessible to outsiders. For example, many
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important physics work, like (Swendsen and Wang, 1987), have only 2-3 pages without background
introduction, and appears utterly mysterious to people in computer science and engineering.

On the other hand, general MC algorithm invented by statisticians are well-explained, but are
usually found ineffective when they are implemented in generic ways by engineers without utilizing
the structures of the underlying models and representations. As a result, there is a wide-spread
misperception among engineers and graduate students that Monte Carlo methods are too slow and
usually do not work. This is unfair to the Monte Carlo methods and unfortunate for the innocent
students.

This book is written for researchers and graduate students in computer science and engineering.
It covers all the interesting topics with both theoretical foundations and intuitive ideas developed
in the four disciplines above, while leaving out small tricks which are less applicable or do not work
in practice.

It illustrates the arts of Monte Carlo design using classical problems in computer vision, graphics
and learning, and thus can be used as a reference book by researchers in these areas.

It can also be used as a textbook for teaching a graduate course in computer science and
engineering. A draft has been used as a textbook in statistics at the University of California, Los
Angeles.

The authors would like to thank many colleagues and friends, to mention a few names in al-
phabetic orders, Maria Pavlovskaia, Kewei Tu, Zhuowen Tu, Tianfu Wu, Yingnian Wu, Craig Yu,
Qing Zhou for discussions and for allowing us to use their materials as examples in the book. The
authors also like to acknowledge the support of a DARPA grant FA 8650-11-1-714, a MURI grant
ONR N00014-10-1-0933, and two NSF grants IIS 1018751 and IIS-1423305.
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Chapter 1

Introduction to Monte Carlo Methods

1.1 Motivation and Objectives

Monte Carlo, named after a casino in Monaco, stands for a business operation that simulates complex
probabilistic events using simple random events – tossing dice. In Monte Carlo computing, people
repeatedly call a pseudo-random number generator rand() which returns a real number in [0, 1], and
use them to generate samples, i.e. a population, as a fair representation of an arbitrary probability
distribution (a.k.a the target probability) under study.

In general, Monte Carlo methods are divided in two categories:

• Sequential Monte Carlo methods, which preserve and propagate a population of examples by
sequential sampling and importance reweighting, often in a low dimensional state space.

• Markov chain Monte Carlo method, which simulate Markov chains to explore the state space
with its stationary probability designed to converge to a given target probability.

In engineering applications, e.g. computer vision„ graphics and machine learning, the target
functions are defined on graph representations, and people often face the choices of three types of
modeling and computing paradigms that make trade-offs between model accuracy and computation
complexity.

• Approximate model with exact computing. One simplifies the representation by breaking the
loopy connections or removing certain energy terms. Once the underlying graph becomes
a tree or a chain, then algorithms like Dynamic programming, are applicable to find the
exact solution to the approximated problem. In the same class are problems for which a
convex approximation of the energy is found and a convex optimization algorithm is used to
find the global energy optimum. Examples include L1-penalized regression (lasso) [183] and
classification, where the non-convex L0 penalty on the number of nonzero model weights is
replaced with the convex L1 penalty.

• Exact model with local computing. One stays with the original representation and target
function, but use approximate algorithm, e.g. gradient descent, to find a local solution and
thus relies on heuristics to guide the initial states.

• Exact model with asymptotic global computing. This is the Monte Carlo methods, which
simulate large enough samples over time, and converge to the globally optimal solution with
high probability.
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Monte Carlo methods have been used in many different tasks, which we shall elaborate with
examples in the next section.

1. Simulating a system and its probability distribution π(x)

x ∼ π(x); (1.1)

2. Estimating a quantity through Monte Carlo integration

c = Eπ(f(x)] =

∫
π(x)f(x)dx; (1.2)

3. Optimizing a target function to find its modes (maxima or minima)

x∗ = arg maxπ(x); (1.3)

4. Learning parameters from a training set to optimize some loss functions. For example, the
maximum likelihood estimation from a set of examples {xi, i = 1, 2, ...,M}

Θ∗ = arg max
M∑
i=1

log p(xi; Θ); and (1.4)

5. Visualizing the energy landscape of a target function and thus quantifying the difficulty of
one of the tasks above and the efficiency of various algorithms. For example in biology people
are interested in the energy landscape of protein folding. Different proteins have different
landscapes and local minima of the energy landscape could be related to certain diseases (e.g.
Alzheimer’s disease). In computer vision the energy landscape of learning algorithms such
as Convolutional Neural Networks (CNN) are interesting to study to understand why they
seem to give good results independent of the initialization (are all the local minima equivalent
up to a permutation of the filters?), or for other learning algorithms to understand what are
the difficulties of learning the correct model and how the energy landscape changes with the
number of observations.

As one could see, Monte Carlo methods can be used for many complex problems.

1.2 Tasks in Monte Carlo computing

Real world systems studied in sciences (e.g. physics, chemistry, and biology) and engineering (e.g.
vision, graphics, machine learning and robotics) involve complex interactions between large numbers
of components. Such systems are often represented as graphs where the vertices represent compo-
nents and the edges the interactions. The behavior of the system is governed by a probabilistic
model defined on the graph.

For example, in statistical physics, ferro-magnetic materials are represented by the classical Ising
and Potts models [165]. These models are also used in computer vision to represent the dependency
between adjacent pixels in terms of Gibbs distributions and Markov random fields.

In general we are given a number of observations {x1, ...,xn} ∼ f(x) that represent samples
from the “true” probabilistic model f(x). In reality, f(x) is usually unknown and can only be
approximated by the empirical samples {x1, ...,xn}.
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Many times we are interested in learning the unknown “true” model f(x), which means ap-
proximating it with a parametric model P (x; θ). In many occasions, learning the model or even
finding how well the learned model P (x; θ) compares to the true model means obtaining samples
x ∼ P (x; θ) from it and computing some sufficient statistics on these samples. Thus sampling is
one of the fundamental tasks of Monte Carlo computing.

1.2.1 Task 1: Sampling and Simulation

We denote a 2D image lattice by

Λ = {(i, j) : 1 ≤ i, j ≤ N}. (1.5)

Each pixel is a vertex with image intensity I(i,j) ∈ {0, ..., 255}. An image, denoted by IΛ is a
microscopic state of the underlying system governed by a probability π(IΛ; Θ). In other words,
when the system reach a dynamic equilibrium, its state follow a Gibbs distribution

IΛ ∼ π(IΛ; Θ) (1.6)

where Θ is a vector of K parameters, and the Gibbs distribution can be written in the following
form,

π(IΛ; Θ) =
1

Z
exp{− < Θ, H(IΛ) >}. (1.7)

In the above formulas, Z is a normalizing constant, H(IΛ) is a vector of K sufficient statistics of
image IΛ and the inner product is called the potential function U(I) =< Θ, H(IΛ) >.

When the lattice is sufficiently large, the probability mass of π(IΛ; θ) will focus on a subspace,
called the micro-canonical ensemble in statistical physics [116]

ΩΛ(h) = {IΛ : H(IΛ) = h}. (1.8)

h = (h1, ..., hk) is a constant vector called the macroscopic state of the system.
Therefore, drawing fair samples from the distribution ΩΛ(h) ∼ π(IΛ; Θ) is equivalent to sampling

from the ensemble ΩΛ(h) ∈ ΩΛ(h). In plain language, the sampling process is to simulate the
"typical" microscopic state of the system. In computer vision, this is often called synthesis – a way
to verify the sufficiency of the underlying model.

Figure 1.1: Left: A typical image sampled from a Gaussian model. Right: a set of nested ensemble
spaces ΩΛ(h) with increasing number of constraints from K = 0, 1, 2, 3.
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Example 1.1. Simulating Gaussian noise images. In a large lattice, we define a “Gaussian
noise” pattern as an ensemble of images with fixed mean and variance.

Gaussian noise = ΩΛ(µ, σ2) = {IΛ :
1

N2

∑
(i,j)∈Λ

I(i, j) = µ,
1

N2

∑
(i,j)∈Λ

(I(i, j)− µ)2 = σ2}.

In this case, the model has K = 2 sufficient statistics. Figure 1.1 displays a typical noise image as
a sample from this ensemble or distribution.

Why is that the highest probability image IΛ is not a typical image from ΩΛ(µ, σ2)?
Note

(a) Iobs (b) Isyn
0 ∼ ΩΛ(h),K = 0 (c) Isyn

1 ∼ ΩΛ(h),K = 1

(d) Isyn
3 ∼ ΩΛ(h),K = 3 (e) Isyn

4 ∼ ΩΛ(h),K = 4 (f) Isyn
7 ∼ ΩΛ(h),K = 7

Figure 1.2: Simulating texture patterns from 5 different equivalence classes. Courtesy of Zhu, Wu
and Mumford [222]

Example 1.2. Simulating texture patterns. As we will discuss in later section 5.4, each texture
pattern is defined as an equivalence class,

a texture = ΩΛ(h) = {IΛ : H(IΛ) = h = (h1, ..., hK)}. (1.9)

In this example, the sufficient statistics Hk(IΛ), k = 1, 2, ...,K are the histograms of Gabor fil-
ters. That is, any two texture images will be perceptually equivalent if they share the same set
of histogram of Gabor filters. More detailed discussions are referred to chapter 5.4 and refer-
ences [208,222].

Figure 1.2 displays an example for texture modeling and simulation, and demonstrates the power
of the Markov chain Monte Carlo (MCMC) methods. Since the 1960s, a famous psycho-physicist
Julesz studied texture perception, raised a classical problem which was called the Julesz quest later:

What are the set of features and statistics such that two texture images sharing the
same feature statistics cannot be told apart in early vision?"
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While the psychological interest is to find the sufficient statistics h from an image image IΛ, the
Julesz quest posed a significant challenge technically: how do we generate fair samples for a given
statistics h. This was answered in the late 1990s by Zhu, Wu and Mumford using the Markov
chain Monte Carlo method [222]. Figure 1.2.(a) is an observed texture image Iobs, from which one
can extract any sufficient statistics h under consideration. To verify a statistics h, one needs to
draw typical samples drawn from the ensembles, or equivalently some Gibbs distributions, which
satisfy the K feature statistics. Figure 1.2.(b-f) are examples for K = 0, 1, 3, 4, 7 respectively.
Each statistics is a histogram of Gabor filtered responsed pooled over all pixels, and is selected
sequentially in a learning process [222]. As it demonstrated, with K = 7 selected statistics, the
generated texture images Isyn

7 is perceptually equivalent to the observed image Iobs, i.e.

hk(I
syn
7 ) = hk(I

obs), k = 1, 2, ..., 7. (1.10)

The MCMC method plays a key role in solving the Julesz quest.

1.2.2 Task 2: Estimating Quantities by Monte Carlo Simulation

In scientific computing, one common problem is to compute the integral of a function in a very high
dimensional space Ω,

c =

∫
Ω
π(x)f(x)dx. (1.11)

This is often estimated through Monte Carlo integration. By drawing M samples from π(x),

x1, x2..., xM ∼ π(x),

one can estimate c by the sample mean

c̄ =
1

M

M∑
i=1

f(xi). (1.12)

This is often done by the sequential Monte Carlo method. We briefly discuss three examples in the
following.

Figure 1.3: A self-avoiding walk of length 115.

Example 1.3. Approximate counting. In chemistry, an interesting problem is to calculate the
number of polymers in a unit area. This is abstracted into a Self-Avoiding-Walks (SAW) problem
in Monte Carlo computing. In an N ×N lattice, a SAW r is a path which does not go through any
site twice. An example of a SAW is given in Figure 1.3. Denote the set of SAWs by

ΩN2 = {r : SAW(r) = 1}. (1.13)
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where SAW () is a logic indicator. As we will discuss in Chapter 2, this quantity can be estimated
by Monte Carlo integration,

c =
∑

r∈Ωn2

1 =
∑

r∈Ωn2

1

p(r)
p(r) = Ep[

1

p(r)
] ≈ 1

M

M∑
i=1

1

p(ri)
. (1.14)

In the above formulas, the SAW paths are sampled from a reference model p(ri) through random
walks that grow the chain sequentially. For example, when N = 10, the estimated number of SAW
paths staring from the lower-left corner (0, 0) to the upper-right corner (10, 10) is (1.6±0.3)×1024.
The true number is 1.56875× 1024.

Example 1.4. Particle filtering. In computer vision, a well-known task is tracking objects in a
video sequence. Figure 1.4 is a simplified example, where the object (i.e. humans here) position is
represented by the horizontal axis x, and each row is a video frame I(t) at time t. Given an input
video I[0, t], the objective of online tracking is to approximately represent the posterior probability
by a set of samples,

S(t) = {(xi(t), ωi(t)) : i = 1, 2, ...,M} ≈ π(x(t) | I[0, t]), (1.15)

where ωi(t) is the weight for xi(t). S(t) encodes a non-parametric distribution as is illustrated by
each row in Figure 1.4, and is propagated in time through the following recursive integration,

π(x(t+ 1) | I[0, t+ 1]) =

∫
g(I(t+ 1) |x(t+ 1))p(x(t+ 1) |x(t)) · ·π(x(t) | I[0, t])dx(t). (1.16)

In this integration, p(x(t+1) |x(t)) is the dynamic model for object movement, and g(I(t+1) |x(t+
1)) is the image likelihood model measuring the fitness of position x(t + 1) to observation. Each
sample in the set S(t) is called a particle. By representing the whole posterior probability, the
sample set S(t) preserves the ambiguity for achieving robustness in object tracking.

Example 1.5. Monte Carlo Ray tracing. In computer graphics, Monte Carlo integration is used
to implement the ray-tracing algorithm for image rendering. Given a three-dimensional physical
scene with geometry, reflection, and illumination, the photons emit from light sources will bounce
between object surfaces, or go through transparant objects before they hit the imaging plane.
The ray tracing approach calculates the color and intensity of each pixel on the imaging plane by
summation (integration) over all the lights tracing a ray from the origin that passing this pixel.
This integration is computationally intensive and can be approximated by Monte Carlo method, as
we will elaborate in Chapter 2.

1.2.3 Task 3: Optimization and Bayesian Inference

A basic assumption in computational vision, since Helmholtz (1860), is that biological and machine
vision compute the most probable interpretation(s) from an input image. Denoting the interpreta-
tion by W , for the perceived world, one can pose it as an optimization problem that maximizes a
Bayesian posterior probability,

W ∗ = arg maxπ(W | I) = arg max p(I |W )p(W ), (1.17)

where p(W ) is the prior model for how the real world scene may be organized, and p(I |W ) is the
likelihood for generating image I from a given scene W .
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Figure 1.4: Tracking objects by Sequential Monte Carlo, courtesy of Isard and Blake [96].

Sometimes, images have multiple plausible interpretations, and thus in a more general setting,
one needs to keep multiple distinct interpretations to approximately represent the posterior

{(Wi, ωi) : i = 1, 2, ...,M} ≈ p(W | I). (1.18)

Markov Chain Monte Carlo can be used to obtain samples from the posterior p(W | I); however,
sampling the posterior is not the same thing as maximizing it. The posterior can also be maxi-
mized by simulated annealing, which means sampling p(W | I)1/T where T is a parameter called
temperature that is changed during the procedure. At the beginning of the annealing procedure,
the temperature T is high, which means p(W | I)1/T is close to uniform and the MCMC can freely
explore the solution space. During the annealing, the temperature T is slowly decreased according
to an annealing schedule. As the temperature T decreases, the probability p(W | I)1/T becomes
more and more peaked at the maximum locations and the MCMC explores these locations most.
When the temperature is very small, the MCMC will be near a maximum of the posterior p(W | I).

Example 1.6. Image segmentation and parsing. In computer vision, image segmentation
and parsing is a core problem. In such tasks, since the underlying scene complexity is unknown,
the number of variables in W is not fixed. Therefore the prior model π(W ) is distributed over
a heterogeneous solution space, which is a union of subspaces of varying dimensions. When the
objects in a scene is compositional, the solution W is a parse graph, and the structures of the
solution space then become more complicated. Seeking optimal solutions in such complex space
can be executed by Monte Carlo methods, which simulates Markov chains to traverse the solutions
spaces by mixing a number of dynamics: death and birth, split and merge, model switching, and
boundary diffusion. To improve computational efficiency, the Markov chains are guided by marginal
distributions computing using data-driven approaches. We will elaborate the details in Chapter 8.

Figure 1.5 illustrates two instances computed by the Data-driven Markov Chain Monte Carlo
method [193]. The left column shows the two input images, and segmentation results are in the
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Input image I Segmentation W Synthesis Isyn ∼ p(W | I)

Figure 1.5: Image segmentation by Data-driven Markov chain Monte Carlo, courtesy of Tu and
Zhu [193].

middle with each region being fitted to some likelihood model. To verify the world W ∗ computed
by the computer algorithm, we sample typical images from the likelihood Isyn ∼ p(W | I). In this
example, the likelihood does not include face models, and thus the human face is not constructed.

1.2.4 Task 4: Learning and Model Estimation

In statistical learning and machine learning, one needs to compute parameters that optimize some
loss functions, which are often highly non-convex, especially when hidden variables are involved. In
the following, we briefly discuss two examples.

Example 1.7. Learning Gibbs distributions. Consider the Gibbs model that we mentioned in
Example 1.2., we omit the lattice sign for clarity,

p(I; Θ) =
1

Z
exp{− < Θ, H(I) >}. (1.19)

Given an set of examples {Iobs
i , i = 1, 2, ...,M}, the objective of learning is to estimate the parameters

by maximizing the likelihood of the data,

Θ∗ = arg max `(Θ), with `(Θ) =
M∑
i=1

log p(Iobs
i ; Θ). (1.20)

The loss function `(Θ) is convex with respect to Θ. setting ∂`
∂Θ = 0, we derive the following constraint

equations, ∫
H(I)p(I; Θ)dI = h =

1

M

∑
i=1M

H(Iobs
i ). (1.21)

This usually has to be solved by stochastic gradient. Let t denote the time step, one sample a
set of typical examples {Isyn

i , i = 1, 2, ...,M} from the current model p(I; Θ(t)) using Markov chain
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Monte Carlo as in example 1.2, and use the sample mean ĥ(t) = 1
M

∑
i=1M H(Isyn

i ) to estimate the
expectation (i.e. Monte Carlo integration). The parameter is updated by gradient ascent,

dΘ

dt
= η(h− ĥ(t)), (1.22)

where η is a step size.
The intuition is that the parameters Θ are updated so that the distribution on the observed

data and the distribution obtained from the model cannot be told apart according to some sufficient
statistics represented by H(I).

Example 1.8. Restricted Bolzmann Machines. In deep learning, a Restricted Bolzmann
machine (RBM) is a neural network with binary inputs and outputs. It has a matrix of weights (i.e.
parameters) W = (Wij) connecting a vector of visible units (inputs) v with a vector of hidden units
(outputs) h. Note that this notation has different meaning from the h in the previous example. It
also has vectors a,b of biases for the visible units and hidden units respectively. The probability of
a RBM is a Gibbs distribution

p(v,h; Θ) =
1

Z
exp(−E(v,h))

based on the RBM energy function

E(v,h; Θ) = −aTv − bTh− vTWh.

Training the RBM with a set of training examples v1, ...,vn usually means maximizing the log
likelihood:

Θ∗ = (W,a,b)∗ = argmax

n∑
i=1

log

∫
p(vi,h; Θ)dh

This optimization is done using Monte Carlo methods in the same way as the previous example. A
variant method used in [94] is the so called by contrastive divergence.

1.2.5 Task 5: Visualizing the Landscape

In previous tasks, the Monte Carlo methods are used to draw fair examples from a target distribution
(task 1), then use the samples to estimate quantities by Monte Carlo integration (task 2), and to
optimize some posterior probability in the state space (task 3) or loss function in the model space
(task 4). The most ambitious task that uses Monte Carlo methods is to visualize the whole energy
landscape. This energy function can be the negative log-posterior probability − log p(W | I) on ΩX

for inference tasks, or the loss function L(Θ|Data) in the parameter space for learning tasks.
In real world applications, these functions are highly non-convex with complex, often horrific,

landscapes which are characterized by exponential number of local minima in high-dimensional
spaces. Figure 1.6 illustrates a simplified two-dimensional energy function in a K-mean clustering
and learning problem. This energy function has multiple local minima of varying depths and widths
denoted by letters A,B, ...H. The red curves are level sets consisting of points on the same energy
levels.

The objective of task 5 is to draw effective samples from the whole space use effective Markov
chain Monte Carlo methods, and to map all the local minima in their energy basins, and to locate
the saddle point connecting adjacency basins. The result is represented by a tree structure, which
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Figure 1.6: Visualizing the landscape. (left) An an energy function in 2D space. (right) the tree
representation. Dark color means lower energy.

physicist called disconnectivity graph [12] when they map the landscapes of Spin-glass models. In
this graph, each leaf node represents a local minimum and its depth represents the energy level.
The energy level at which two adjacent leave nodes meets is decided by their saddle point.

In the following, we show an example in the learning where the landscape is in the model space,
not the state space, and thus is more difficult to compute.

Figure 1.7: Visualizing the landscape of a clustering problem, from [157].

Example 1.9. Landscape of data clustering. K-mean clustering is a classical problem in
statuistical and machine learning. Given a finite number of points whose color indicates the true
labels, the learning problem is to find the parameters Θ that best fit the data. Here Θ includes the
means, variances, and weights of K = 3 Gaussian models. The energy function `(Θ) is a posterior
probability with likelihood and a prior for Θ. In the literature, the popular algorithms are K-mean
and EM algorithms which find only local minima. By exploring the models space where each point
is a model Θ, one can visualize the landscape in Figure 1.7. The input data is from the Iris dataset
in machine learning. twelve of the local minima A,B, ...L are illustrated on the two sides, where
each Gaussioan is an ellipse.

With this landscape, one can further visualize the behaviors of various algorithms, and quantize
the intrinsic difficulties of the target function, either for inference or learning. One can also use it
to study the key factors that affects the complexity of the landscape.
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Chapter 2

Sequential Monte Carlo

Let f(x) denote a probability distribution function and π(x) denote a target probability distribution,
based on a model. We want to find a model to make the target density function π(x) converge to
the true density function f(x). In order to find this model, we may use a trial probability density,
g(x), which is known to us. In the most trivial case, we can choose that g(x) = Unif[a, b]. In this
case, we can draw random samples with x ∼ g(x), e.g. x = rand() ∈ Unif[0, 1].

2.1 Sampling a 1-dimensional density

Suppose f(x) : R→ R is a one dimensional probability density function (pdf). Then the cumulative
density function (cdf) F (x) : R→ [0, 1] is defined as

F (x)
def
=

∫ x

−∞
f(x)dx

We can obtain samples from the pdf f(x) by taking uniform samples u back through the cdf
F (x) as x = F−1(u). More exactly we have

Lemma 2.1. Suppose U ∼ Unif[0, 1] and F is the cdf of a one dimensional pdf f . Then, X =
F−1(U) has the distribution f . Here we define F−1(u) = inf{x : F (x) ≥ u}.

Proof.

P (X 6 x) = P (F−1(u) 6 x) = P (U 6 F (x)) = F (x) =

∫ x

−∞
f(x)dx.

By definition, we know that du
dx = dF (x)

dx = f(x), thus P (x ∈ (x0, x0 + dx)) = P (u ∈ (uo, u0 +
du)) = f(x) · dx.

In higher dimensional space, as long as all the data sequence can be quantized/ordered, then
f(x) will be transferred to a one dimensional problem. However, we typically do not use this method
when d ≥ 3, since the computation increases exponentially.
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F (x)

Figure 2.1: Left: A pdf f(x). Right: Its corresponding cdf F (x). The shaded region on the left has
area f(x)dx = du

2.2 Importance Sampling and Weighted Samples

Suppose that we want to estimate a quantity

C =

∫
Ω
π(x) · h(x)dx = Eπ[h(x)] (2.1)

where π(x) is a probability density function.

x

f(x)

Figure 2.2: A multi-modal pdf f(x).

If we can draw samples from π(x), D = {x1, x2, · · · , xn} ∼ π(x), then θ can be easily estimated
by

Ĉ =
1

n

n∑
i=1

h(xi)

Since the information of π(x) is inherited in D, we do not need to write it in the formula.
However, if it is hard to draw samples directly from π(x), we could draw samples from a simpler

and easier trial distribution D′ = {x′1, x′2, · · · , x′n} ∼ g(x).
Then eq.(2.1) can be expressed as

C =

∫
Ω
π(x) · h(x)dx =

∫
Ω
g(x) ·

[π(x)

g(x)
· h(x)

]
dx (2.2)
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Suppose that the ratio π(x)
g(x) · h(x) is computable, we will have the estimation of C

Ĉ =
1

n

n∑
i=1

π(x′i)

g(x′i)
· h(x′i) =

1

n

n∑
i=1

ω(x′i)h(x′i) (2.3)

where ω(·) is the weight.

In Equ. (2.3), the weights {ω(xi), i = 1, 2, . . . ,m} depend on g(xi) in the denominator. Thus
we cannot let g(x) = 0 whenever π(x) 6= 0.

Note

Suppose that π(x) = 1
Z exp (−E(x)/T ), where Z is the normalizing constant but not computable.

So π(x) is represented by a weighted sample, {(x(i), ω(i), i = 1, · · · ,m}.

x

π(x)

Figure 2.3: A pdf π(x) is approximated by a weighted sample.

A special case: if

g(x) = Unif[a.b] =

{
1
b−a x ∈ [a, b]

0 otherwise.

then

Ĉ =
1

n

n∑
i=1

π(x′i)

g(x′i)
· h(x′i) =

b− a
n

n∑
i=1

π(x′i) · h(x′i)

In general, we will have the following three scenarios

1) We draw uniform samples, but the weights are different, i.e. we draw from Uniform distribution

2) We assign equal weight to all the samples, but the frequency are different, i.e. we draw from
π(x).

3) We draw samples from a easier distribution g(x), which is an approximation of π(x).

It is easy to understand that Unif()� g()� π(), here “�” denotes much worse than. Intuitively,
the best case is g(x) = π(x).

Since we need that
lim
n→∞

(Ĉ − C) = 0,

and all three scenarios satisfy it, the only difference lies in the need of data, or the convergence rate,
or the variance,

lim
n→∞

||Ĉ − C||2 = 0.
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The approximation distribution g(x) serves the purpose of a lever that can be used to handle
π(x). The Greek mathematician Archimedes (212 BC) is known for his famous remark:

“Give me a place to stand and with a lever I shall move the earth”.
Inspired by him, we could refer to the approximation distribution g(x) as an Archimedes lever

for π(x).

Example 2.1. For the third case above, here is an example of an Archimedes lever.

π(x) =
1

Z
exp {−

K∑
i=1

βihi(x)}, g(x) =
1

Z ′
exp {−

K′<K∑
i=1

βihi(x)}

Example 2.2. In the Gaussian case, we can use the following scheme

π(x) =
1

Z
exp {−(ax2 + bx+ c)}, g(x) =

1

Z ′
exp {−ax2}

Usually, we use a set of weighted samples, {(xi, ωi), i = 1, 2, . . . ,m}, which is called “empirical
distribution” to represent π(x).

When x = (x1, x2, . . . , xn) ∈ Rn is high-dimensional, we can use two ways to simplify.

g(x) = g(x1, x2, . . . , xn)
∼= g(x1) · g(x2) · · · · · g(xn) (by factorization) (2.4)
∼= g(x1) · g(x2) · g(x3|x2) · g(x4|x1, x2) · · · · (by factorization) (2.5)

In (2.4), we are assuming that each xi are independent, and we sample each dimension inde-
pendently, however, the truth is they are always dependent. So we need to use (2.5) to simplify the
problem.

Since Ĉ = 1
m

∑m
i=1w(xi)h(xi), varm(Ĉ) = 1

mvar1(Ĉ). This shows that when we have sufficiently
many samples, the total variance will go to zero, and the rate of convergence is 1

m , regardless of the
dimension n! The three plots in Figure 2.4 illustrate the story. The convergence of the left figure is
quick while the convergence rate of the middle one can be slow. The right plot might have problems
with weights blowing up to ∞.

x

f(x)

x

f(x)

x

f(x)

Figure 2.4: Left: when g(x) and π(x) are close, convergence is fast. Middle: when g(x) and π(x)
are far, convergence is much slower. Right: In general, g(x) should be nonzero wherever π(x) is
nonzero, which might not happen in this case.

The heuristics for measuring the effectiveness of samples from g(x) is to measure the variance
of the “weights”. A useful “rule of thumb” is to use the effective sample size (ESS) to measure how
different the trial distribution is from the target distribution. Suppose m independent samples are
generated from g(x); then, the ESS is defined as

ESS(m) =
m

1 + var[ω(x)]
(2.6)
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In the ideal case of g(x) = π(x), then ω(x) = 1, varg[ω(x)] = 0, thus the whole samples are
effective.

Since the target distribution π is known only up to a normalizing constant in many problems,
the variance of the normalized weight needs to be estimated by the coefficient of variation of the
unnormalized weight:

cv2(ω) =
1

m− 1

m∑
i=1

(ωi − ω)2

ω2
(2.7)

Generalization: Stratified sampling – a method to reduce var(Ĉ). Suppose the space Ω is the
union of a number of disjoint subspaces Ω = ∪Mj=1Ωj . In each subspace, Ωj , we can define different
gj(x) as trial distributions. Thus, we will have

C =

M∑
j=1

∫
Ωj

gi(x) · π(x)

gi(x)
· h(x)dx (2.8)

In the computation process, we can ignore the overlap of gi(x)’s in higher dimensional space.

2.3 Sequential Importance Sampling(SIS)

In high-dimensinal space, it is usually very hard to find an effective g(x). Suppose we can decompose
x as x = (x1, . . . , xn) by chain rule. Then, our trial density can be constructed as

g(x) = g1(x1) · g2(x2|x1) · · · gn(xn|x1, . . . , xn−1). (2.9)

Usually this is impractical, but in some cases it can be done if the π(x) is similarly factorized.
Corresponding to the decomposition of x, we can rewrite the target density as

π(x) = π1(x1) · π2(x2|x1) · · ·πn(xn|x1, . . . , xn−1). (2.10)

and the importance weight as

ω(x) =
g(x) = g1(x1) · g2(x2|x1) · · · gn(xn|x1, . . . , xn−1)

π(x) = π1(x1) · π2(x2|x1) · · ·πn(xn|x1, . . . , xn−1)
(2.11)

In the following, we will discuss two examples.

1) Self-Avoid-Walk – growing polymer problem;

2) Non-linear/particle filtering for tracking.

2.3.1 Application: the number of self-avoiding walks

The self-avoiding random walk (SAW) in a two- or three-dimensional lattice space is the problem
of finding how many self-avoiding walks exist in a given domain.

We can use a “hard-core” model to describe it. A chain of atoms x = (x1, x2, · · · , xN ) is connected
by bonds (covalent). For clarity, we assume each molecule to be a point in 2D/3D space/lattice,
and a bond has length = 1, so the potential is “hard-core”. In the 2D or 3D space, the chain is not
allowed to intersect itself.
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Figure 2.5: The self avoiding walk.

In this section we will focus on the 2D domain {0, 1, ..., n} × {0, 1, ..., n}. Suppose we always
start from position (0, 0), i.e. lower-left corner, as illustrated in Figure 2.5.

Representing the moves to left/right/up/down by the numbers 1,2,3,4 respectively, the Gibbs/Boltzmann
distribution for the chain of a SAW is

π(x) = unif[Ω], Ω = {x : SAW(x) = 1}, x ∈ {1, 2, 3, 4}n

We are interested in the total number of SAWs. To solve this problem, we use Monte Carlo inte-
gration. We design a trial probability g(x) for a SAW x that is easier to sample. Then we sample
a number M of SAWs from g(x), and we estimate the total count by

||Ω|| = θ =
∑
x∈Ω

1 =
∑
x∈Ω

1

g(x)
g(x) ∼=

1

M

M∑
i=1

1

g(xi)
(2.12)

where 1
g(xi)

serves as the weight ω(xi) of xi.
The trial probability g(x) covers all possible paths, so we can use it to compute the size of many

subsets of the set of SAWs, such as the set of all SAW that start in a corner and end in another
corner, or the set of SAWs of length n. We don’t need to worry about the normalization constant
under this new subset.

Therefore, the problem lies in how to design g(x) and there are several ways to do that. We try
three different types of g(x) in a 2D grid with n = 10 to generate M = 107 samples, respectively.

a) Design 1. As an initial method, we use

g1(x) =

m∏
j=1

1

kj

where m is the total length of the path, and kj is the number of possible choices at j-th step.
With M = 107 samples, the estimated number of SAWs is K1 = 3.3844 · 1025. The length
distribution of sampled walks and the longest walk is visualized in Figure 2.6. Since we do
not constrain the length of the walk, the distribution obtained resembles a Gaussian shape.

b) Design 2. As an alternative design of the trial distribution, we introduce an early termination
rate ε = 0.1 at each step. So

g2(x) = (1− ε)m
m∏
j=1

1

kj
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Figure 2.6: Left: distribution of SAW lengths for design 1. Right: longest SAW (length 114).

Figure 2.7: Left: distribution of SAW lengths for design 2. Right: longest SAW (length 87).

Clearly, in this case we are expected to get shorter walks than in previous situation. The length
distribution of sampled walks and the longest walk are shown in Figure 2.7. The estimated
number of SAWs is K2 = 6.3852 · 1025.

c) Design 3. As the third design, we want to favor long walks. For any walk that longer than 50,
we generate u = 5 more children based on it and reweigh each of the children by w0 = w/u.
The length distribution of sampled walks and the longest walk are shown in Figure 2.8. The
estimated number of SAWs is K3 = 7.3327 · 1025.

The log-log plot for the estimated number of SAWs K against the sample size m is shown in
Figure 2.9. It is obvious that the design 3 converges the fastest and design 2 converges the slowest
among the three.

Other ways to design the trial probability g(x) are:

• Stop at any time (see design 2)

• Fix the length N

• Enrich. Encourage longer samples – begin with a certain length (see design 3)

• Global guidance? (0, 0)→ (n, n)

• Other heuristics to define the trial probability g(x)?
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Figure 2.8: Left: distribution of SAW lengths for design 3. Right: longest SAW (length 115).

Figure 2.9: Convergence rate comparison of the three designs.

SAW from (0, 0) to (n, n). To get samples that reach (n, n), for those samples that don’t reach
the target, we resample until a desired one is obtained and then reweigh it by w0 = w/u, where u
is number of attempts. This means the more attempts we tried, the less weight this sample get.
Generating 106 samples, we estimate the total number of SAWs from (0, 0) to (n, n) to be about
1.7403 · 1024 (which is very close to the true value 1.5687 · 1024).

2.3.2 Application: particle filtering for tracking objects in video

Assume we have an object tracking problem where the state at time t is denoted by xt and the
observed image features are denoted by zt. Denote the state history by Xt = {x1, ...,xt} and the
feature history by Zt = {z1, ..., zt}.

Figure 2.10: The observations zt are independent with each other and with respect to the dynamical
process xt. The dynamical process xt has a Markov dependency on only the previous state xt−1.
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We assume that the object dynamics follows a Markov chain, i.e. the current state depends only
on the preceding state, independent of the state history, as illustrated in Figure 2.10.

p(xt+1|Xt) = p(xt+1|xt)

The observations zt are assumed independent with each other and with respect to the dynamical
process, as illustrated in Figure 2.10. We need to estimate p(xt+1|Zt+1), i.e. the distribution of the
state xt+1 given all the data received so far. We have:

p(xt+1|Zt+1) = p(xt+1|zt+1,Zt) =
p(xt+1, zt+1|Zt)
p(zt+1|Zt)

∝ p(zt+1|xt+1,Zt)p(xt+1|Zt) = p(zt+1|xt+1)p(xt+1|Zt)

because zt+1 is independent of Zt. We can compute

p(xt+1|Zt) =

∫
p(xt+1,xt|Zt)dxt =

∫
p(xt+1|xt)p(xt|Zt)dxt

so we get
p(xt+1|Zt+1) ∝

∫
p(zt+1|xt+1)p(xt+1|xt)p(xt|Zt)dxt

The probability p(zt+1|xt+1) can be considered the bottom-up probability of detection, while the
product p(xt+1|xt)p(xt|Zt) is the prediction based on the dynamic model.

Figure 2.11: One time step of the CONDENSATION algorithm [96].
The CONDENSATION algorithm [96] represents the distribution of p(xt|Zt) using importance

sampling as a weighted sample set {s(n)
t , n = 1, ..., N} with weights π(n)

t . One step of the algorithm
is illustrated in Figure 2.11 and described in Figure 2.12.
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Input: Sample set {(s(n)
t−1, π

(n)
t−1), n = 1, ..., N}

Compute the cumulative distribution values c(k)
t−1 =

∑k
i=1 π

(i)
t−1.

for n = 1, . . . , N do
Drift: sample s

,(n)
t from the cumulative distribution c(k)

t−1, k = 1, ..., N .
Diffuse: Sample s

(n)
t from the dynamical model s(n)

t ∼ p(xt|xt−1 = s
,(n)
t ).

Measure and weight the sample s
(n)
t as π(n)

t = p(zt|xt = s
(n)
t ).

end for
Normalize π(n)

t such that
∑N

n=1 π
(n)
t = 1.

Output: Sample set {(s(n)
t , π

(n)
t ), n = 1, ..., N}

Figure 2.12: One time step of the CONDENSATION algorithm [96].

Application: Curve Tracking

The curve at time t is represented as a curve r(s, t) parameterized as a B-spline:

r(s, t) = (B(s)Qx(t), B(s)Qy(t)), s ∈ [0, L]

where B(s) = (B1(s), ..., BNB (s))T is a vector of B-spline basis functions. The vector Xt =
(Qx, Qy)T contains the coordinates of the spline control points.

The dynamical mode is a first order autoregressive model:

xt − x̄ = A(xt−1 − x̄) +Bwt

where wt are independent vectors of i.i.d N (0, 1) and xt =

(
Xt−1

Xt

)
.

Figure 2.13: 1D projection of the state density across multiple frames of a video, from [96].
The dynamical model can also be expressed as:

p(xt|xt−1) ∝ exp(−1

2
‖(xt − x̄)−A(xt−1 − x̄)‖2)
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The observation model for 2D curves can be for example:

p(z|x) ∝ exp

(
−

M∑
m=1

1

2rM
f(zi(

m

M
)− r(

m

M
);µ)

)

where r, µ are constants, M is the number of points for curve discretization, f(x;µ) = min(x2, µ2),
and z1(s) is the closest image feature to r(s):

zi(s) = z(s′) where s′ = argmin
s′∈g−1(s)

|r(s)− z(s′)|

An example of a tracking result obtained using this model is shown in Figure 2.13.

2.3.3 Summary of the SMC Framework

In Sequential Monte Carlo, the term "sequential" has two meanings:

1. Unfold a joint state x = (x1, x2, · · · , xd) by component, as in the Self-Avoiding Walks from
Section 2.3.1.

2. Update Xt in time as in the particle filter from Section 2.3.2.

The following issues arise in the design of SMC/SIS:

1. Choice of the trial probability. For example, in particle filtering

p(xt+1|Zt+1) =

∫
xt

p(zt+1|xt+1)p(xt+1|xt)p(xt|Zt)dxt

one may generate particles using

a) A data-driven approach by sampling from p(zt+1|xt+1) (tracking by detection). This is im-
portant when the target is lost.

b) A dynamics-driven approach by sampling from p(xt+1|xt)p(xt|Zt) and reweighing by the evi-
dence p(zt+1|xt+1).

An even better alternative is to generate particles using both the data-driven and the dynamics
driven approaches as different channels, which can complete each other depending on the data
quality at each time step.

2. How to rejuvenate the sample – punning, enriching, re-sampling/reweighing.

Example 2.3. In the Self Avoiding Walk, suppose we have a partial sample x(j) of length n, with
n large enough and with trial probability g1(x(j)) = 1

k1

1
k2
... 1
kn
, which is very small, contributing

w(j) = k1...kn to the final summation, which is very large. One idea is to make k copies of x(j),
each copy with weight 1

kw
(j). This is equivalent to changing the proposal probability g(x) so that

g(x(j)) is k times larger.

Example 2.4. Similarly in particle filtering, we resampled the weighted sample set Ŝ = {(x̂(j), w(j)), j =
1, ...,m} with an equal-weight set S = {x(j), j = 1, ...,m} containing repeated copies of the strong
samples,so that in the next step, the strong samples have many offsprings.
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In both cases, the idea significantly improves performance.
Criterion for resampling. In SMC we can monitor the sample S = {x(j), w(j)), j = 1, ...,m} by
the var(w) of the weight vector w = (w(1), . . . , w(m)), or the coefficient of variation

CV (w) =

√∑m
j=1(w(j) − w)2

(m− 1)w2

When CV (w) is too large, CV (w) > c0, a resampling step is necessary.
Reweighing. When resampling S = {x(j), w(j)), j = 1, ...,m}, we may not always have to use
the weight vector w = (w(1), . . . , w(m)) to generate weights proportionally. Instead, we can chose
an arbitrary vectors with nonzero entries a = (a(1), . . . , a(m)), ai > 0 and reweigh the samples as
w∗(j) = w(j)/a(j). The weights a should be designed to penalize redundant samples and to encourage
distinctive samples.

2.4 Application: Ray Tracing by SMC

Another application of SMC is in ray tracing [197] for calculating the radiance of a surface given
the description of the light sources.

Given the incident radiance function Li(x, ωi) at point x, the reflected radiance follows the
reflectance equation:

Lr(x, ωr) =

∫
S2

fr(x, ωi ↔ ωr)Li(x, ωi)| cos(θi)|dσ(ωi) (2.13)

where fr is the bidirectional reflectance distribution function (BRDF), S2 is the unit sphere in 3D,
σ is the solid angle measure, θi is the angle between ωi and the surface normal at x.

Figure 2.14: Illustration of the reflectance equation.

If we want to use only points in the scene, we could also write the reflectance equation as follows:

Lr(x→ x”) =

∫
M
fr(x

′ ↔ x↔ x′′)Li(x
′ → x)G(x↔ x′)dA(x′) (2.14)

where G(x ↔ x′) = V (x ↔ x′)
cos(θ′r) cos(θi)

‖x− x′‖2
and A is the measure of surface area, θ′r and θi are

the angles between x↔ x′ and the surface normals at x and x′. The function V (x↔ x′) is 1 if x
and x′ are mutually visible and 0 else.
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We arrive at the global illumination problem of finding the equilibrium radiance distribution L
that satisfies:

L(x→ x”) = Le(x→ x”) +

∫
M
fr(x

′ ↔ x↔ x′′)L(x′ → x)G(x↔ x′)dA(x′)

where the emitted radiance distribution Le is given. This is the three point rendering equation [98].
It can be written concisely as L = Le + T L where T is the light transport operator. Under weak
assumptions, the solution is the Neumann series:

L =
∞∑
i=1

T iLe

2.4.1 Example: glossy highlights

Consider the ray tracing problem of rendering the highlight produced by an area light source S on a
nearby glossy surface, as illustrated in Figure 2.15. There are two obvious strategies to use MC to
approximate the reflected radiance, using eq. (2.13) and (2.14) respectively. For both strategies we
use importance sampling, where the samples are x1, ..., xn obtained from a distribution p(x). Then
the integral is approximated as: ∫

Ω
f(x)dµ(x) ≈ 1

n

n∑
i=1

f(xi)

p(xi)

With area sampling we randomly choose points on the surface to approximate (2.14). The points
could for example be chosen uniformly on S with respect to the surface area or the emitted power.

With directional sampling we approximate (2.13) using random samples of the direction ωi.
usually p(ωi)dσ(ωi) is chosen proportional to fr(xωi ↔ ωr) or to fr(xωi ↔ ωr)| cos(θi)|.

In Figure 2.15 are shown examples of renderings using different sampling methods. The scene
contains four spherical light sources of different radii and color, and a spotlight overhead. All
spherical light sources emit the same total power. There are also four shiny rectangular plates of
varying surface roughness, tilted so that the reflected light sources are visible. Given a viewing ray
that strikes a glossy surface, images (a), (b), (c) use different techniques for the highlight calculation.
All images are 500 by 450 pixels. The MC techniques are:

(a) Area sampling. A sample direction ωi is chosen uniformly (with respect to solid angle) within
the cone of directions of each light source, using 4 samples per pixel.

(b) Directional sampling. The direction ωi is chosen with probability proportional to the BRDF
fr(xωi ↔ ωr)dσ(ωi), with 4 samples per pixel.

(c) A weighted combination of the samples from (a) and (b) is computed, using the power heuristic
with β = 2.

The glossy BRDF is a symmetric, energy-conserving variation of the Phong model. The Phong
exponent is n = 1/r− 1,where r ∈ (0, 1) is a surface roughness parameter. The glossy surfaces also
have a small diffuse component.
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a) Area sampling. b) Directional sampling.

c) Weighted combination of the samples from (a) and (b)

Figure 2.15: Sampling of glossy highlights from area light sources [197].

2.5 Preserving Sample Diversity in Importance Sampling

For simplicity of notation, we denote by p(x) an arbitrary distribution in space Ω. For segmentation
problems with Bayesian Inference, we observe that p(x) has two important properties.

1. p(x) has an enormous number of local maxima (called modes in statistics). A significant
mode corresponds to a distinct interpretation of the image, and the cloud surrounding a mode
is local small perturbation of the region boundaries or model parameters. These significant
modes of p(x), denoted by xi, i = 1, 2, ..., are well separated from each other due to the high
dimensions.

2. Each mode xi has a weight ωi = p(xi), and its energy is defined as E(xi) = − log p(xi).
The energies of these modes are uniformly distributed in a broad range [Emin, Emax], say,
[1000, 10, 000]. For example, it is normal to have solutions (or local maxima) whose energies
differ in the order of 500 or more. Thus their probability (weights) differ in the order of
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exp−500, and our perception is interested in those “trivial” local modes!

Intuitively, it helps to imagine that p(x) in Ω is distributed like the mass of the universe. Each
star is a mode as local maximum of the mass density. The significant and developed stars are well
separated apart from each other and their masses could differ in many orders of magnitudes. The
above metaphor leads us to a mixture of Gaussian representation of p(x). For a large enough N ,
we have,

p(x) =
1

ω

N∑
j=1

ωjG(x− xj , σ
2
j ), ω =

N∑
j=1

ωj .

We denote by

So = {(ωj ,xj), j = 1, 2, ..., N},
N∑
j=1

ωj = ω,

the set of weighted particles (or modes). Thus our task is to select K << N particles S from So.
We define a mapping from the index in S to the index in So,

τ : {1, 2, ...,K} −→ {1, 2, ...., N}.

Therefore,
S = {(ωτ(i),xτ(i)); i = 1, 2, ...,K}

S encodes a non-parametric model for approximating p(x) by

p̂(x) =
1

α

K∑
i=1

ωτ(i)G(x− xτ(i), σ
2
τ(i)), α =

K∑
i=1

ωτ(i).

Our goal is to compute
S∗ = arg min

|S|=K
D(p||p̂).

For notational simplicity, we assume all Gaussians have the same variance in approximating
p(x), σj = σ, j = 1, 2, ..., N . By analogy, all “stars” have the same volume, but differ in weight.
With the two properties of p(x), we can approximately compute D(p||p̂) in the following. We start
with an observation for the KL-divergence for Gaussian distributions.

Let p1(x) = G(x − µ1;σ2) and p2(x) = G(x − µ2;σ2) be two Gaussian distributions, then it is
easy ti check that

D(p1||p2) =
(µ1 − µ2)2

2σ2
.

We partition the solution space Ω into disjoint domains

Ω = ∪Ni=1Di, Di ∩Dj = ∅, ∀i 6= j.

Di is the domain where p(x) is decided by a particle (ωi,xi). The reason for this partition is that
the particles in S are far apart from each other in high dimensional space and their energy varies
significantly as the two properties state. Within each domain Di, it is reasonable to assume that
p(x) is dominated by one term in the mixture and the other N − 1 terms are neglectable.

p(x) ≈ ωi
ω
G(x− xi;σ

2), x ∈ Di, i = 1, 2, ..., N.
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The size of Di is much larger than σ2. After removing N −K particles in the space, a domain Di

is dominated by a nearby particle that is selected in S.
We define a second mapping function

c : {1, 2, ..., N} → {1, 2, ...,K},

so that p̂(x) in Di is dominated by a particle xτ(c(i)) ∈ SK ,

p̂(x) ≈
ωc(i)

α
G(x− xτ(c(i));σ

2), x ∈ Di, i = 1, 2, ..., N.

Intuitively, the N domains are partitioned into K groups, each of which is dominated by one particle
in SK . Thus we can approximate D(p||p̂).

D(p||p̂) =

N∑
n=1

∫
Dn

p(x) log
p(x)

p̂(x)
dx

=
N∑
n=1

∫
Dn

1

ω

N∑
i=1

ωiG(x− xi;σ
2) log

1
ω
∑N

i=1 ωiG(x− xi;σ
2)

1
α
∑k

j=1 ωτ(j)G(x− µτ(j);σ
2)
dx

≈
N∑
n=1

∫
Dn

ωn
ω
G(x− xn;σ2)[log

α

ω
+ log

ωnG(x− xn;σ2)

ωτ(c(n))G(x− xτ(c(n));σ2)
]dx

=
N∑
n=1

ωn
ω

[log
α

ω
+ log

ωn
ωτ(c(n))

+
(xn − xτ(c(n)))

2

2σ2
] (2.15)

= log
α

ω
+

N∑
n=1

ωn
ω

[(E(xτ(c(n)))− E(xn)) +
(xn − xτ(c(n)))

2

2σ2
] = D̂(p||p̂).

Equation (2.15) has some intuitive meanings. The second term suggests that each selected
xτ(c(i)) should have large weight ωτ(c(i)). The third term is the attraction forces from particles in So
to particles in S. Thus it helps to pull apart the particles in Sk and also plays the role of encouraging
to choose particles with big weight like the second term.

To demonstrate the goodness of approximation D̂(p||p̂) to D(p||p̂), we show two experiments
below.

(a) (b) (c) (d)

Figure 2.16: (a) A 1D dist. p(x) with four particles xi, i = 1, 2, 3, 4. (b) A 2D dist p(x) with 50
particles, we show log p(x) in the image for visualization. (c) p̂1(x) with 6 particles that minimizes
D(p||p̂) or D(p||p̂). (d) p̂2(x) with 6 particles that minimizes |p− p̂|.
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Figure 2.16.a displays a 1D distribution p(x) which is a mixture of N = 4 Gaussians (particles).
We index the centers from left to right x1 < x2 < x3 < x4. Suppose we want to choose K = 3
particles for SK and p̂(x). Table 2.1 displays the distances between p(x) and p̂(x) over the four
possible combinations. The second row shows the KL-divergence D(p||p̂) and the third row is
D̂(p||p̂). The approximation is very accurate given the particles are well separable.

Both measures choose (x1, x3, x4) as the best S. Particle x2 is not favored by the KL-divergence
because it is near x1, although it has much higher weight than x3 and x4. The fourth row shows
the absolute value of the difference between p(x) and p̂(x). This distance favors (x1, x2, x3) and
(x1, x2, x4). In comparison, the KL-divergence favors particles that are apart from each other and
picks up significant peaks in the tails.

chosen S3: {x1, x2, x3} {x1, x2, x4} {x1, x3, x4} {x2, x3, x4}
D(p||p̂): 3.5487 1.1029 0.5373 2.9430

D̂(p||p̂): 3.5487 1.1044 0.4263 2.8230

|p− p̂|: 0.1000 0.1000 0.3500 1.2482

Table 2.1: Distances between p(x) and p̂(x) for different particle set S3.

This idea is better demonstrated in figure 2.16. Figure 2.16.a shows log p(x) = −E(x) which is
renormalized for displaying. p(x) consists of N = 50 particles whose centers are shown by the black
spots. The energies E(xi), i = 1, 2, ..., N are uniformly distributed in an interval [0, 100]. Thus their
weights differ in exponential order. Figure 2.16.b shows log p̂(x) with k = 6 particles that minimize
both D(p||p̂) and D̂(p||p̂). Figure 2.16.c shows the 6 particles that minimize the absolute difference
|p− p̂|. Figure 2.16.b has more disperse particles.

For segmentation, a remaining question is: how do we measure the distance between two solu-
tions x1 and x2? This distance measure is to some extent subjective. We adopt a distance measure
which simply accumulates the differences for the number of regions in x1,x2, and the types ` of
image models used at each pixel by x1 and x2.

2.6 Monte Carlo Tree Search
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Chapter 3

Markov Chain Monte Carlo - the Basics

A Markov Chain is a mathematical model for stochastic systems whose states, discrete or con-
tinuous, are governed by a transition probability P . The current state in a Markov Chain only
depends on the most recent previous states, e.g. for a 1st order Markov Chain

Xt|Xt−1, . . . , X0 ∼ P (Xt|Xt−1, . . . , X0) = P (Xt|Xt−1)

The Markovian property means “locality” in space or time, such as for Markov random fields
and Markov Chain. Indeed, a discrete time Markov chain can be viewed as a special case of a
Markov random field (causal and 1-dimensional).

A Markov Chain is often denoted by

MC = (Ω, ν,K)

where Ω is the state space, ν : Ω → R is the initial probability distribution over the states,
K : Ω× Ω→ R is the transition probability.

Suppose that Ω is countable (better finite), then K is the matrix of transition probabilities
K(Xt+1|Xt). At time n, the MC state will follow a probability,

νn = ν0K
n

Example 3.1. Suppose we have a finite state space, |Ω| = N ∼ 1030, then the transition probability
K would be represented by a N ×N transition matrix

K(Xt+1|Xt) =

 k11 · · · kN1
...

. . .
...

k1N · · · kNN


(N×N)

The transition matrix is usually sparse, but not always.
Thus, in SMC we try to design the trial probability g(x), and in MCMC we will try to design

the transition matrix K(Xt+1|Xt). Therefore,

Xn ∼ (· · · )(1×N)︸ ︷︷ ︸
νn

= (· · · )(1×N)︸ ︷︷ ︸
νn−1

 k11 · · · kN1
...

. . .
...

k1N · · · kNN


(N×N)
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MCMC is a general purpose technique for generating fair samples from a probability in
a high-dimensional space, driven by random numbers drawn from a uniform probability in [a, b]. A
Markov Chain is designed to have a p.d.f. π(x) as its stationary (invariant) probability.

Many stochastic systems in physics, chemistry, economics can be simulated by MCMC.

Example 3.2. Suppose there are 5 families in an island. There are 1,000,000 tokens as their
currency, and we normalize them to 1. Let x be a 5× 1 vector for the wealth of the 5 families over
the years. Each family will trade with other families for goods. For example, family 1 will spend
60% of their income to buy from family 2, and save 40% income, and so on, as shown in Figure 3.1.
The question is: how will the fortune be distributed among the families after a number of years?
To ask in a different way, suppose we mark one token in a special color (say, red), after m years,
who will own this token?

Figure 3.1: Trade diagram for five families.
We convert this to a mathematical model. Denote the state space for the red token to be

Ω = {1, 2, 3, 4, 5}.
Then the transition Kernel is

K =


0.4 0.6 0.0 0.0 0.0
0.5 0.0 0.5 0.0 0.0
0.0 0.3 0.0 0.7 0.0
0.0 0.0 0.1 0.3 0.6
0.0 0.3 0.0 0.5 0.2


Computing the distribution of wealth starting from different initial conditions we get:
Under certain conditions for the finite state Markov chains, the Markov chain state converges

to an invariant probability.
lim
n→∞

ν0K
n = π

In Bayesian inference, we are given a target probability π, our objective is to design a Markov chain
kernel K, so that K has a unique invariant probability π.

In general, there are infinitely many K’s that have the same invariant probability.

X1 −→ X2 −→ · · · −→ Xn −→

∼ ∼ ∼ ∼

ν1 ν2 · · · νn π

Suppose we are given Ω and a target probability π = (π1, · · · , πN )(1×N), our goal is to design
ν0 and K so that
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Table 3.1: Final wealth distribution after convergence in Example 3.2 when starting from different
initial distributions.

Year A B
1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
2 0.4 0.6 0.0 0.0 0.0 0.0 0.3 0.0 0.7 0.0
3 0.46 0.24 0.30 0.0 0.0 0.15 0.0 0.22 0.21 0.42
4 . . . . . .
5 . . . . . .
6 0.23 0.21 0.16 0.21 0.17 0.17 0.16 0.16 0.26 0.25
... . . . . . .
Final 0.17 0.20 0.13 0.28 0.21 0.17 0.20 0.13 0.28 0.21

1) πK = π;

This is a necessary condition for the Markov chain to have the stationary probability π.

2) Fast convergence. Fast convergence can be obtained using a:

– good initial probability ν0

– good transition matrix K

Usually the transition matrix is sparse (zero almost everywhere) due to the local connectivity, since
the new state of a MCMC move is usually near the current state. There are some isolated examples
where this is not the case, such as the Swendsen-Wang algorithm from Chapter 6.

3.1 Topology of Transition Matrix: Communication and Period

Now, we check the conditions for MC design.

1. Stochastic Matrix. The kernel matrix K should be a stochastic matrix, i.e.

N∑
j=1

Kij = 1, ∀i ∈ Ω, Kij > 0

or in matrix form:
K1 = 1

where 1 is the N × 1 matrix of 1’s: 1 = (1, ..., 1)T .

2. Global Balance. Another necessary condition is global balance:

πK = π →
N∑
i=1

πiKij = πj ∀j ∈ Ω

These conditions can be replaced by the detailed balance condition (a sufficient but not necessary
condition):

π(i)Kij = π(j)Kji, ∀ i, j ∈ Ω (3.1)
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Indeed, detailed balance implies stationarity:

πK =
∑
i

π(i)Ki =
∑
i

π(i)
(
Ki1, . . . ,KiN

)
=
∑
i

(
π(1)K1i, . . . , π(N)KNi

)
= π

and in particular global balance∑
i

π(i)Kij =
∑
i

π(j)Kji = π(j)
∑
i

Kji = π(j)

A kernel that satisfied the detailed balance condition is called reversible.
Going back to Example 3.2 we can get the intuition that the global balance equation represents

the total wealth conservation. Indeed, the total amount received by family j is
∑

i π(i)Kij and it
is equal to family j’s wealth π(j), which is the amount spent by family j .

There are infinite ways to construct K given a π. In global balance, we have 2N equations with
N ×N unknowns, in detailed balance we have N2

2 +N equations with N ×N unknowns.
3. Irreducibility. A state j is said to be accessible from state i if there exists M such (KM )ij > 0

i→ j (KM )ij =
∑

i1,...,iM−1

Kii1 · · ·KiM−1j > 0

If i and j are accessible to each other then we write i↔ j. The communication relation↔ generates
a partition of the state space into disjoint equivalence classes called communication classes.

Ω = ∪Ci=1Ωi

Definition 3.1. A Markov Chain is irreducible if its transition matrix K has only C = 1 commu-
nication class.

Example 3.3. Irreducible MC:

1 2

3

4

5

6

7

Example 3.4. Reducible MC:

1 2

3

4

5

6

7

⇓
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1 2

3

4

5

6

7

In general a greedy optimization algorithm gets stuck in a local optimum and is an example of
a reducible chain.

Given a distribution π, the ideal transition kernel would be K =


π
π
...
π

, which always converges

in one step no matter where it starts. However, in general it is difficult to sample the distribution
π directly so this kernel is not very useful in practice.
4. Aperiodicity. To define aperiodicity, we first need to define what is a periodic Markov chain.

Definition 3.2. An irreducible Markov chain with transition matrix K has period d if one can find
a (unique) partition of graph G into d cyclic classes:

C1, . . . , Cd,
∑
j∈Ck

Kij = 1, ∀i ∈ Ck−1,

Remark 3.1. In a periodic Markov chain there is no connection between states within each indi-
vidual cyclic class. The transition matrix is a block matrix of the following form.

K =




Then, the transition matrix of Kd becomes a diagonal block matrix

Kd =




This means that K has one communication class, but Kd has d communication classes.

Example 3.5. Consider the Markov chain with the following transition kernel: K =

0 1 0
0 0 1
1 0 0


1

23
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It has period 3 and alternates three distributions: (1 0 0)→ (0 1 0)→ (0 0 1).

Definition 3.3. An irreducible Markov chain with transition matrix K is aperiodic if it’s largest
period is d = 1.

5. Stationary distribution. A Markov chain with transition kernel K has stationary distribution
π if

πK = π

There may be many stationary distributions w.r.t K. Even there is a stationary distribution, a
Markov chain may not always converge to it.

Example 3.6. Consider the Markov chain with the transition kernel: K =

0 1 0
0 0 1
1 0 0

 . It has

π = (1
3

1
3

1
3) as stationary distribution but it might never converge to it, as seen in Example 3.5.

3.2 The Perron-Frobenius Theorem

Theorem 3.4 (Perron-Frobenius). For any primitive (irreducible and aperiodic) N ×N stochastic
matrix K, K has eigenvalues

1 = λ1 > |λ2| > · · · > |λr|

with multiplicities m1, ...,mr and left and right eigenvectors (ui,vi) respectively. Then u1 = π,v1 =
1, and

Kn = 1 · π +O(nm2−1|λ2|n).

We define λslem = |λ2|, which is the second largest eigenvalue modulus. Then obviously, the
convergence rate is decided by λslem.

Remark 3.2. If K is not irreducible, and has C communication classes, then K is block diagonal
with C blocks. Consequently the eigenvalue 1 has at least C distinct eigenvectors, and K does not
have a unique invariant probability.

Remark 3.3. If K is irreducible but has period d > 1, then there it has at least d distinct
eigenvalues with modulus 1, namely, the dth roots of unity. This is because its characteristic
polynomial is det(tI −K) = det(tdI −K1...Kd) as it can be proved by induction, where K1, ...,Kd

are the non-zero blocks. But K1, ...,Kd all have eigenvalue 1, so U = K1...Kd has eigenvalue 1, so
its characteristic polynomial det(tI −U) is divisible by t− 1, therefore det(tI −K) = det(tdI −U)
is divisible by td − 1.
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Suppose K is a N ×N positive non-symmetric matrix, and has N eigenvalues.

λ1

u1 v1

· · · · · · · · · λN

uN vN

Each eigenvalue has a corresponding right and left eigenvector. λ, u, v are all complex numbers.

uiK = λiui, ui : 1×N
Kvi = λivi, vi : N × 1

Therefore,
K = λ1v1u1 + λ2v2u2 + · · ·+ λNvNuN

K ·K =

N∑
i=1

λiviui ·
N∑
j=1

λjvjuj =

N∑
i=1
j=1

λiλjviuivjuj ,

{
if i 6= j uivj = 0
if i = j uivj = 1

Thus,
Kn = λn1 v1u1 + λn2 v2u2 + · · ·+ λnNvNuN

Review

Since we have global balance,

πK = π =⇒ λ1 = 1, u1 = π
K1 = 1 =⇒ λ1 = 1, v1 = 1

}
=⇒ λ1 · v1 · u1 =


π
π
. . .
π


Thus,

Kn =


π
π
. . .
π

+ ε︸︷︷︸
→0

if |λi| < 1,∀i > 1

so Kn approaches the ideal kernel


π
π
. . .
π

 as n→∞.

3.3 Convergence Measures

One thing we are interested in is the state i which is the global optimum of the probability,

i∗ = argmaxπ(x)

Definition 3.5. Given a Markov chain (x0, ..., xn, ...) with transition kernel K and invariant prob-
ability π we define

i) The first hitting time of a state i (in the finite state case)

τhit(i) = inf{n > 1;xn = i, x0 ∼ ν0}, ∀i ∈ Ω

E[τhit(i)] is the mean first hitting time of i for the Markov chain governed by K.
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ii) First return time of a state i

τret(i) = inf{n > 1;xn = i, x0 = i}, ∀i ∈ Ω

iii) Mixing time
τmix = min

n
{‖ν0K

n − π‖TV 6 ε, ∀ν0}

where the total variation is defined as

‖µ− ν‖TV =
1

2

∑
i∈Ω

|µ(i)− ν(i)| =
∑
A

(
µ(i)− ν(i)

)
, A = {i : µ(i) > ν(i), i ∈ Ω}

Definition 3.6. The contraction coefficient for K is the maximum TV-norm between any two rows
in the transition kernel and is calculated by

C(K) = max
x,y
‖K(x, ·)−K(y, ·)‖TV

Example 3.7. Consider the Markov kernel for the five families living in an island, where the values
are different than in example 3.2

K =


0.3, 0.6, 0.1, 0.0, 0.0
0.2 0.0, 0.7, 0.0, 0.1
0.0, 0.5, 0.0, 0.5, 0.0
0.0, 0.0, 0.4, 0.1, 0.5
0.4, 0.1, 0.0, 0.4, 0.1


1) We plot in Figure 3.2, left, the five complex eigenvalues, in a 2D plane. The invariant

Figure 3.2: The five families kernel of Example 3.7.Left: the five complex eigenvalues. Right: the
TV norm and KL divergence between µn = ν ·Kn and the invariant probability π.
probability is π = (0.1488 0.2353 0.2635 0.2098 0.1427). The second largest eigenvalue has λslem =
‖λ2‖ = 0.7833.

2) Suppose we start with an initial probabilities ν = (1, 0, 0, 0, 0) i.e. we know for sure that the
initial state is at x0 = 1. So, at step n, the Markov chain state follows a distribution µn = ν ·Kn.
We compute the distance between µn and π using the TV-norm,

dTV(n) = ||π − µn||TV =
1

2

5∑
i=1

|π(i)− µn(i)|;
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or KL-divergence,

dKL(n) =
5∑
i=1

π(i) log
π(i)

µn(i)
.

The plot of the two distances dTV(n) and dKL(n) for the first 1000 steps is shown in Figure 3.2,
right.

Figure 3.3: The TV norm between µn = ν ·Kn and the invariant probability π and the two bounds
A(n) and B(n) from Eq. (3.2) and (3.3) respectively. Left: original scale. Center: log-scale. Right:
zoom-in of the first 120 iterations.

3) We calculate the contraction coefficient for K. Note that contraction coefficient is the maxi-
mum TV-norm between any two rows in the transition kernel,

C(K) = max
x,y
||K(x, ·)−K(y, ·)||TV.

One can prove that
||ν1 ·K − ν2 ·K||TV ≤ C(K)||ν1 − ν2||TV

As ||ν1 − ν2||TV ≤ 1, if C(K) < 1 then the convergence rate could be upper bounded by

||ν1 ·Kn − ν2 ·Kn||TV ≤ Cn(K)||ν1 − ν2||TV ≤ Cn(K) = A(n), ∀ν1, ν2. (3.2)

But for this example, we can see that C(K) = 1 so the bound is not very good.
4) There is another bound – the Diaconis-Hanlon bound below,

||π − νKn||TV ≤

√
1− π(x0)

4π(x0)
λnslem = B(n) (3.3)

where x0 = 1 is the initial state and π(x0) is a target probability at x = 1. The real convergence
rate dTV(n) is plotted in comparison with A(n) and B(n) in Figure 3.3, left on the original scale
and center on the log-scale. The bound only holds until the machine precision is attained. In Figure
3.3, is shown a zoom-in of the log-scale for the first 120 iterations.

3.4 Markov Chains in Continuous or Heterogeneous State spaces

In continuous case, the target π : Ω → R is a p.d.f. π(x) and the transition kernel is a conditional
p.d.f. K(x, y) = K(y|x), so

∫
ΩK(x, y)dy = 1.
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The global balance equation must be satisfied for any event A ⊆ Ω,

πK(A) =

∫
A

∫
Ω
π(x)K(x, y)dxdy =

∫
A
π(x)dx = π(A)

The detailed balance equation in the continuous case is∫
A

∫
B
π(x)K(x, y)dxdy =

∫
A

∫
B
π(y)K(y, x)dxdy

In practice, Ω is a mixed/heterogeneous space: discrete/finite and continuous variables.

N = 1 N = 2 N = 3

diffusions jumps

Ω

•

Figure 3.4: Illustration of jump-diffusion processes for the heterogeneous space from Example 3.8.

Example 3.8. The heterogeneous space of X = {N, (xi, yi), i = 1, . . . , N}, where N is the number
of people in a picture and (xi, yi) are their positions.

In such a case there are many different MC processes, as illustrated in Figure 3.4. Irreducible
MCMC will have many dynamics(sub chains) such as: Jumps

{
Death/Birth
Split/Merge

}
process

Diffusions

3.5 Ergodicity Theorem

Definition 3.7. A state i is said to be a recurrent state if it has

P (τret(i) <∞) = 1,

otherwise it is a transient state. The quantity τret(i) is the “return” time, the total steps to return
from x to x.

Definition 3.8. A state i that satisfies

E[τret(i)] <∞

is called a positively recurrent state, otherwise it is a null-recurrent state. A Markov chain is
positively recurrent if all of its state are positively recurrent.

Usually, positive recurrence is a condition for spaces with infinite states.
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Theorem (Ergodicity theorem). For an irreducible, positively recurrent Markov Chain with sta-
tionary probability π, in a state space Ω, let f(x) be any real valued function with finite mean with
respect to π, then for any initial probability, almost surely we have

lim
N→∞

1

N

N∑
i=1

f(xi) =
∑
x∈Ω

f(x)π(x) = Eπ[f(x)], ∀ function f

where xi ∼ MC states (but do not need to be i.i.d.).

3.6 MCMC for Optimization by Simulated Annealing

An MCMC algorithm is designed to obtain samples from a posterior distribution π, X ∼ π. We saw
that under certain conditions (detailed balance, irreducibility and aperiodicity) the Markov chain
invariant probability will converge to the stationary distribution π after a burn-in period.

MCMC can also be used for optimization by slowly changing the stationary distribution π while
running the Markov chain. Suppose we want to minimize a function f(x) : Ω → R. Then we
consider the posterior probability

π(x;T ) =
1

Z(T )
exp(−f(x)/T )

that depends on a parameter T which is called “temperature”. When T is large, the probability
π(x, T ) will have smaller peaks and local maxima and it will be easier to sample from it. When T
is very small, the probability π(x, T ) will be concentrated at its global maximum, as illustrated in
Figure 3.5.

Figure 3.5: The influence of the temperature on a probability distribution. At temperature T = 10
the probability is close to uniform, while at T = 0.1 the global optimum is clearly visible.

The annealing procedure means running the Markov chain at a high temperature and slowly
decreasing the temperature while running the MC until a very small temperature is reached. This
procedure is inspired from the annealing method for producing crystalline structures in metals or
other materials. There the material is heated to a high temperature where it melts, then the tem-
perature is slowly decreased to allow the atoms to position themselves in a low energy configuration,
which gives the crystalline structure. If the material is cooled too quickly, it will develop cracks or
other defects and it will have small crystals. If the material cooling is slow enough, larger crystals
with fewer defects can be obtained.
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Similarly, for optimization one needs to select an annealing schedule Tk that specifies the tem-
perature used at each step of the Markov chain. The schedule starts with a high T0 and decreases to
0 as k →∞, so limk→∞ Tk = 0. Through this annealing schedule, the probability π(x, T ) becomes
π(x, Tk), a time varying probability. The simulated annealing algorithm is described in Algorithm
1 below, where for any x ∈ Ω, N(x) is the set of possible states that are accessible from state x in
one Markov chain step.

input: Initial solution x ∈ Ω
input: Temperature cooling schedule, Tk
input: Initial temperature T = T0 > 0
input: Repetition schedule Mk, the number of iterations executed at each temperature Tk
set the temperature change counter k = 0
repeat
for m = 0 to Mk do
generate a solution x′ ∈ N(x)
calculate ∆x,x′ = f(x′)− f(x)
if ∆x,x′ ≤ 0 then
x← x′

else
x← x′ with probability exp(−∆x,x′/Tk)

end if
end for
k=k+1

until stopping criterion is met
Algorithm 1: Simulated Annealing

There are two types of convergence results, based on modeling Algorithm 1 as a sequence of
homogeneous Markov chains or as a single inhomogeneous Markov chain.

The following is an inhomogeneous Markov chain result due to Mitra [141].

Theorem 3.4. (Mitra 1986) The Markov chain associated with simulated annealing with the fol-
lowing update function

Tk =
γ

log(k + k0 + 1)

for any parameter k0 ≥ 1 and γ sufficiently large converges to a global optimum starting from any
initial solution x ∈ Ω.

In reality, one cannot wait so long to find a solution and faster annealing schedules are used
in practice, decreasing linearly or even exponentially in t. With these schedules, the optimization
algorithm finds a local optimum that can be good or bad depending on the annealing schedule
and the MCMC algorithm used. Some MCMC algorithms such as the Gibbs sampler need slow
annealing schedules to obtain good solutions while other algorithms such as the Swendsen-Wang
Cut allow faster colling schedules to obtain similar solutions.

Remark 3.5. In many computer vision problems finding the global optimum of π(x) can be NP
hard, which means a polynomial optimization algorithm should not be expected to be found. In
these cases, the annealing schedule will have to decrease logarithmically in t so the global optimum
will be found in exponential time on the problem size (e.g. dimensionality of Ω).
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Chapter 4

Metropolis Methods and Variants

4.1 The Metropolis-Hastings Algorithm

The Metropolis Algorithm [139,140] has been declared number 1 in the list of top ten algorithms of
the 20th century by Dongarra and Sullivan [57]. The original algorithm [139] has been proposed for
equations of state in chemical physics and has been generalized to its current form by Hastings [91].

The Metropolis-Hastings algorithm is a simple method to take any algorithm that tries to jump
from a current state X to a new state Y and slightly modify it by accepting the move with a
probability in order for the resulting algorithm to satisfy the detailed balance equation (3.1).

Example 4.1. The idea of Metropolis-Hasting algorithm is illustrated in Figure 4.1. Suppose
that there is a "proposed" algorithm that tries to move between states X and Y according to the
probabilities displayed in Figure 4.1,left.

Figure 4.1: Illustration of the Metropolis-Hastings algorithm. Left: the proposed move between
states X and Y does not satisfy detailed balance. Right: the transition probabilities are rectified to
satisfy the detailed balance equation.

Since π(X) = 1/3 and π(Y ) = 2/3, the detailed balance equation is

K(X,Y )
1

3
= K(Y,X)

2

3

and it is easy to check that it is not satisfied under the proposed transition probabilities.

The move between X and Y is rectified with an acceptance probability, α =
0.5× 1

3

0.9× 2
3

= 5
18 . Only 5

18

of the proposal from Y to X is allowed, and all proposals from X to Y are allowed. The acceptance
probability rectifies the proposal probability, so that the MC follows the target distribution. The
rectified probabilities are shown in Figure 4.1, right.
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4.1.1 The original Metropolis-Hastings algorithm

The Metropolis Hastings algorithm resembles importance sampling in the sense that it uses a simpler
distribution Q(x, y) to generate proposal samples, which are then reweighed by an acceptance
probability. In general the proposal distribution Q(x, y) is simple and samples of y conditional on
x can be obtained easily.

Input: Target probability distribution π(x), current state x(t) ∈ Ω, and proposal probability
distribution Q(x, y).
Output: New state x(t+1) ∈ Ω
1. Propose a new state y by sampling from Q(x(t), y).
2. Compute the acceptance probability:

α(x, y) = min
(

1,
Q(y, x)

Q(x, y)
· π(y)

π(x)

)
(4.1)

3. With probability α(x, y) accept the move and make x(t+1) = y, otherwise x(t+1) = x(t).
Figure 4.2: One step of the Metropolis-Hastings Algorithm

Theorem 4.1 (Metropolis-Hastings). The Metropolis-Hastings algorithm from Figure 4.2 satisfies
the detailed balance equation.

Proof. We have

K(x, y)︸ ︷︷ ︸
transition probability

=


Q(x, y)︸ ︷︷ ︸
proposal

· α(x, y)︸ ︷︷ ︸
acceptance rate

= Q(x, y) ·min
(

1,
Q(y, x)

Q(x, y)︸ ︷︷ ︸
proposal

· π(y)

π(x)︸ ︷︷ ︸
verification

)
, ∀y 6= x

1−
∑

y 6=xQ(x, y)α(x, y), y = x

Since,

α(x, y) = min
(

1,
Q(y, x)

Q(x, y)
· π(y)

π(x)

)
α(y, x) = min

(
1,
Q(x, y)

Q(y, x)
· π(x)

π(y)

)
we will have either α(x, y) = 1 or α(y, x) = 1. Thus, for detailed balance, the left hand side will be

π(x)K(x, y) = π(x)Q(x, y)α(x, y) = π(x)Q(x, y) min
(

1,
Q(y, x)

Q(x, y)
·π(y)

π(x)

)
= min

(
π(x)Q(x, y), π(y)Q(y, x)

)
and the right hand side will be

π(y)K(y, x) = π(y)Q(y, x)α(y, x) = π(y)Q(y, x) min
(

1,
Q(x, y)

Q(y, x)
·π(x)

π(y)

)
= min

(
π(x)Q(x, y), π(y)Q(y, x)

)
therefore, the detailed balance equation is satisfied.�
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4.1.2 Another version of the Metropolis-Hastings algorithm

In many cases the target probability is written as a Gibbs distribution:

π(x) =
1

Z
e−E(x)

and the normalization constant is hard to compute. Suppose the proposal probability is symmetric:
Q(x, y) = Q(y, x). Then the acceptance probability becomes:

α(x, y) = min
(

1,
π(x)

π(y)

)
= min

(
1, e−(E(x)−E(y))

)
= min(1, e−∆E)

Thus,

α(x, y) = 1, if ∆E < 0, i.e. y is a lower energy state (better) than x

α(x, y) = e−∆E < 1, if ∆E > 0, i.e. y is a higher energy state (worse) than x

∆E is often computed locally as the two states x and y share most of the elements. When the
proposal is rejected (with probability 1− α), the MC stays at state x.

•

•

•

x

y

y

Energy Landscape

e−∆E < 1

e−∆E = 1

Figure 4.3: Illustration of the Metropolis-Hastings algorithm variant for Gibbs distributions.

The procedure is illustrated in Figure 4.3. Note that Q(y, x) is designed to make informed
proposals that could guide the Markov chain in the right direction.

Remark 4.1. We must be careful with the assumption Q(x, y) = Q(y, x), since it is usually violated
at the boundary of the domain Ω.

4.1.3 Other acceptance probability designs

There exist other designs for the acceptance rate that guarantee the detailed balance equation, such
as

α(x, y) =
π(y)Q(y, x)

π(y)Q(y, x) + π(x)Q(x, y)

or more generally

α(x, y) =
s(x, y)

π(x)Q(x, y)

where s(x, y) is any symmetric function.
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Remark 4.2. Going back to the Example 3.2, one could think of the π(x) as the equilibrium
distribution of wealth among a number of families that frequently trade with each other. The
proposals Q(x, y) can be regarded as trade proposals between the families. In this context, the
Metropolis-Hastings choice of acceptance probability maximizes the trade between families among
all designs based on Q(x, y) that satisfy detailed balance.

4.1.4 Key issues in Metropolis design

Intuitively, the MH method allows a probability to climb out of the local minima. The key issue in
designing the Metropolis algorithm is the design of the proposal probability Q(x, y). Some desirable
properties of Q(x, y) are:

i. For any x, the set of reachable states, {y,Q(x, y) > 0} is large, so K(x, y) is more connected.

ii. For any x, the probability Q(x, y) if far from uniform (i.e. well-informed).

4.2 The Independence Metropolis Sampler

The IMS is a Metropolis-Hastings type algorithm with the proposal independent of the current
state of the chain. It has also been called Metropolized Independent Sampling (Liu [122]). The
goal is to simulate a Markov chain {Xm}m≥0 taking values in Ω and having stationary distribution
π = (π1, π2, ..., πN ) (the target probability), with a very largeN , e.g. N = 1020, when it’s practically
impossible to enumerate all the states. In this case, at each step a new state j ∈ Ω is sampled from
the proposal probability q = (q1, q2, . . . , qN ) according to j ∼ qj , which is then accepted with
probability

α(i, j) = min{1, qi
πi

πj
qj
}.

Therefore, the transition from Xm to Xm+1 is decided by the transition kernel having the form

K(i, j) =

{
qjα(i, j), j 6= i,
1−

∑
k 6=iK(i, k), j = i.

The initial state could be either fixed or generated from a distribution whose natural choice in this
case is q. In section 4.2.3, we show why it is more efficient to generate the initial state from q instead
of choosing it deterministically.

It is easy to show that π is the invariant (stationary) distribution of the chain. In other words,
π K = π. Since from q > 0 it follows that K is ergodic, then π is also the equilibrium distribution
of the chain. Therefore, the marginal distribution of the chain at step m, for m large enough, is
approximately π.

However, instead of trying to sample from the target distribution π, one may be interested in
searching for a state i∗ with maximum probability: i∗ = arg maxi∈Ω πi. Here is where the mean
first hitting time can come into play. E[τ(i)] is a good measure for the speed of search in general.
As a special case we may want to know E[τ(i∗)] for the optimal state.

As it shall become clear later, a key quantity to the analysis is the probability ratio wi = qi/πi.
It measures how much knowledge the heuristic qi has about πi, or in other words how informed is
q about π for state i. Therefore we define the following concepts.

Definition 4.2. A state i is said to be over-informed if qi > πi and under-informed if qi < πi.
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There are three special states defined below.

Definition 4.3. A state i is exactly-informed if qi = πi. A state i is most-informed (or least-
informed) if it has the highest (or lowest) ratio wi = qi/πi: imax = arg maxi∈Ω{ wi }, imin =
arg mini∈Ω{ wi }.

Liu [122] noticed that the transition kernel can be written in a simpler form by reordering the
states increasingly according to their informedness. Since for i 6= j, Kij = qj min{1, wi/wj}, if
w1 ≤ w2 ≤ . . . ≤ wn it follows that

Kij =


wiπj i < j,
1−

∑
k<i qk − wi

∑
k>i πk i = j,

qj = wjπj i > j.

Without loss of generality, we shall assume for the rest of the paper that the states are indexed such
that w1 ≤ w2 ≤ . . . ≤ wn, to allow for this more tractable form of the transition kernel.

4.2.1 The eigenstructure of the IMS

In the last two decades a considerable amount of work has been devoted to studying properties
of the IMS. Without trying to be comprehensive, we shall briefly review some of the results that
were of interest to us. For finite state spaces, Diaconis and Hanlon [54] and Liu [122] proved various
upper bounds for the total variation distance between updated and target distributions for the IMS.
They showed that the convergence rate of the Markov chain is upper bounded by a quantity that
depends on the second largest eigenvalue:

λslem = 1−min
i
{ qi
πi
}.

Remark 4.3. In the continuous case, denoting by λ∗ = 1−infx{ q(x)
p(x)}, Mengersen and Tweedie [138]

showed that if λ∗ is strictly less than 1, the chain is uniformly ergodic, while if λ∗ is equal to
1, the convergence is not even geometric anymore. Similar results were obtained by Smith and
Tierney [176]. These results show that the convergence rate of the Markov chain for the IMS is
subject to a worst-case scenario. For the finite case, the state corresponding to the least probability
ratio qi/πi determines the rate of convergence. That is just one state from a potentially huge state
space decides the rate of convergence of the Markov chain, and this state might be irrelevant to all
the tasks of MCMC! A similar situation occurs in continuous spaces.

To illustrate this phenomenon, consider the following simple example.

Example 4.2. Let q and π be two Gaussians having equal variances and the means slightly shifted.
Then q, as proposal distribution, will approximate the target π very well. However, it is easy to see
that infx{q(x)/p(x)} = 0 and therefore the IMS will not have a geometric rate of convergence.

This dismal behavior motivated our interest for studying the mean first hitting time as a mea-
sure of "speed" for Markov chains. This is particularly appropriate when dealing with stochastic
search algorithms, when the focus could be on finding individual states rather than on the global
convergence of the chain. For instance, in computer vision problems, one is often searching for the
most probable interpretation of a scene and, to this end, various Metropolis-Hastings type algo-
rithms can be employed. See Tu and Zhu [193] for examples and discussions. In such a context,
it is of interest to find the behavior of the first hitting time of some states, like the modes of the
posterior distribution of a scene given the input images.
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4.2.2 General first hitting time for finite spaces

Consider an ergodic Markov chain {Xm}m on the finite space Ω = {1, 2, . . . , n}. Let K be the
transition kernel, π its unique stationary probability, and q the starting distribution. For each state
i ∈ Ω, the first hitting time τhit(i) has been defined in section 3.3.

For any i, let us denote by K−i the (n− 1)× (n− 1) matrix obtained from K by deleting the ith

column and row, that is, K−i(k, j) = K(k, j), ∀k 6= i, j 6= i. Also let q−i = (q1, ..., qi−1, qi+1, ..., qn).
Then, it is immediate that P (τ(i) > m) = q−iKm−1

−i 1, where 1 := (1, 1, ..., 1)′. This leads to the
following formula for the expectation:

Eq[τ(i)] = 1 + q−i(I−K−i)−11, (4.2)

where I denotes the identity matrix. The existence of the inverse of I − K−i is implied by the
sub-stochasticity of K−i and the irreducibility of K (Bremaud [25]).

More generally, the mean f.h.t of a subset A of Ω is given by

Eq[τ(A)] = 1 + q−A(I−K−A)−11, ∀A ⊂ Ω. (4.3)

4.2.3 Hitting time analysis for the IMS

Here, we shall capitalize on the previous result to compute the mean f.h.t for the IMS and provide
bounds for it, by making use of the eigen-structure of the IMS kernel.

Theorem 4.4. (Maciuca and Zhu, 2006) Assume a Markov chain starting from q is simulated
according to the IMS transition kernel having proposal q and target probability π. Then, using
previous notations:

i) E[τ(i)] =
1

πi(1− λi)
, ∀i ∈ Ω,

ii)
1

min{qi, πi}
≤ E[τ(i)] ≤ 1

min{qi, πi}
1

1− ‖π − q‖TV
,

where we define λn to be equal to zero and ‖π − q‖TV denotes the total variation distance between
π and q. Equality is attained for the three special states from Definition 4.3.

The proof is in [127]. Theorem 4.4 can be extended by considering the first hitting time of some
particular sets. The following corollary holds true, proved in [127].

Corollary 4.5. Let A ⊂ Ω of the form A = {i + 1, i + 2, . . . , i + k}, with w1 ≤ w2 ≤ . . . ≤ wn.
Denote πA := πi+1 + πi+2 + . . . + πi+k, qA := qi+1 + qi+2 + . . . + qi+k, wA := qA/πA and λA :=
(qi+1 + . . . + qn) − (πi+1 + . . . + πn)wA. Then i) and ii) from Theorem 4.4 hold ad-literam with i
replaced by A.

In the introduction part we hinted at showing why generating the initial state from q is preferable
to starting from a fixed state j 6= i. The following result attempts to clarify this issue.

Proposition 4.6. Assuming that w1 ≤ w2 ≤ . . . ≤ wn, the following inequalities hold true:

E1[τ(i)] ≥ E2[τ(i)] ≥ . . . ≥ Ei−1[τ(i)] ≥ Ei+1[τ(i)] = . . . = En[τ(i)] = E[τ(i)], ∀i ∈ Ω.
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(a) π (solid) vs q (dashed) (b) lnE[τ(i)] and bounds (c) zoom in for (b)
Figure 4.4: Mean first hitting time and bounds for Example 4.3

Example 4.3. We can illustrate the main results in Theorem 4.4 through a simple example. We
consider a space with n = 1000 states. Let π and q be mixtures of two discretized Gaussians
with tails truncated and then normalized to one. They are plotted as solid (π), dashed (q) curves
in Fig.4.4a. Fig.4.4b plots the logarithm of the expected first hitting-time lnE[τ(i)]. The lower
and upper bounds from Theorem 4.4 are plotted in logarithm scale as dashed curves which almost
coincide with the hitting-time plot. For better resolution we focused on a portion of the plot around
the mode, the three curves becoming more distinguishable in Fig.4.4c. We can see that the mode
x∗ = 333 has π(x∗) ≈ 0.012 and it is hit in E[τx∗ ] ≈ 162 times on average for q. This is much
smaller than n/2 = 500 which would be the average time for exhaustive search. In comparison, for
an uninformed (i.e uniform) proposal the result is E[τx∗ ] = 1000. Thus, it becomes visible how a
"good" proposal q can influence the speed of such a stochastic sampler.

Theorem 4.7. (Maciuca and Zhu, 2006) Let p and Q be the target probability and the proposal
matrix respectively for a Metropolis-Hasting sampler. LetM = maxi,j Qij/pj andm = mini,j Qij/pj.
We assume m > 0. Then for any initial distribution q, the expected f.h.ts are bounded by

pi +
1− qi
M

≤ piEQq [τ(i)] ≤ pi +
1− qi
m

,∀i.

Equality is attained if Qij = pj ,∀i, j.

The proof is again in [127].

4.3 Reversible Jumps and Trans-Dimensional MCMC

There are many cases when ones needs to sample a posterior probability that is defined over a
union of spaces of different dimensions. For example, one could define Bayesian models for objects
in images, with a variable number of parameters, and are interested in sampling from such models
to estimate the most likely observation for a give image.

It was first proposed in Grenander and Miller 1994 [88] for image analysis and in Green 1995 [87]
for Bayesian model selection.

4.3.1 Reversible Jumps

Let Ω = ∪∞i=1Ωi be the solution space as a union of subspaces of different dimensions dim(Ωi) = di
and π be a probability distribution defined on Ω. The reversible jumps are MCMC moves from one
space Ωi to another one Ωj that satisfy the detailed balance equation with respect to π.
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x x′

(x,u)

(x′,u′)

f1(x,u)

f2(x′,u′)

General case. The reversible jump move q(x → x′) from x ∈ Ωi to x′ ∈ Ωj is obtained by
first sampling j from a probability q(j|i,x) and sampling an auxiliary vector u ∈ Rm (for some
dimension m that needs to be specified) with p.d.f. q(u|x) and then obtaining x′ as a deterministic
function x′ = f1(x,u). A reverse move q(x′ → x) can be defined in a similar way, sampling i
with probability q(i|j,x′) and an auxiliary vector u′ ∈ Rm′ from p.d.f. q(u′|x′). There must be a
bijection f : Ωi × Rm → Ωj × Rm′ such that f(x,u) = (x′,u′), therefore the dimension matching

condition di +m = dj +m′ must be satisfied and
dx′du′

dxdu
=
∂f(x,u)

∂(x,u)
. To satisfy detailed balance,

the proposed move q(x→ x′) is accepted with probability:

α(x→ x′) = min

(
1,
q(i|j,x′)q(u′|x′)π(x′)

q(j|i,x)q(u|x)π(x)

∣∣∣∣det
∂f(x,u)

∂(x,u)

∣∣∣∣) (4.4)

Expansion-contraction. A special case of reversible jumps are expansion-contraction moves
where Ωj = Ωi×Z. Starting from x ∈ Ωi one could choose u ∈ Z and f as the identity function, thus
obtaining the expansion move q(x → x′) = (x,u). Starting from x′ = (x,u) ∈ Ωj the contraction
move just drops the u, thus q(x′ → x) = x. The acceptance probability for the expansion move is
then

α(x→ x′) = min

(
1,

π(x′)

π(x)q(u|x)

)
(4.5)

and for the contraction is

α(x′ → x) = min

(
1,
π(x)q(u|x)

π(x′)

)
(4.6)

4.3.2 Toy Example: 1D Range image segmentation

In Figure 4.5 is shown an example of a simulated 1D range image I(x), x ∈ [0, 1]. It is generated by
adding Gaussian noise N(0, σ2) to the original surfaces Io from Fig. 2b. Io consists of an unknown
number of k surfaces which could be either straight lines or circular arcs, separated by k− 1 change
points,

0 = x0 < x1 < ... < xk = 1.

Let li ∈ {line, circle} index the surface type in interval [xi−1, xi) with parameters θi, i = 1, ...k. For
a straight line, θ = (s, ρ) represents the slope s and intercept ρ. For a circular arc, θ = (u, v,R)
represents the center (u, v) and radius R. Thus, the 1D “world scene” is represented by a vector of
random variables,

W = (k, {xi, i = 1, ..., k − 1}, {(li, θi), i = 1, ..., k}).

The surface Io is fully determined by W with Io(x) = Io(x, li, θi), x ∈ [xi−1, xi), i = 1, ..., k.
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Figure 4.5: (a) A 1D range image I(x), x ∈ [0, 1] (b) The true segmentation Wth. (c) Edgeness
measure b(x), x ∈ [0, 1]. A large value b(x) indicates a high probability for x being a change point.
(d) The best solution W ∗ (dark gray) found by the algorithm plotted against Wth (light gray).

By the standard Bayesian formulation, we have the posterior probability

p(W |I) ∝ exp

{
− 1

2σ2

k∑
i=1

∫ xi

xi−1

(I(x)− Io(x, li, θi))2dx

}
· p(k)

k∏
i=1

p(li)p(θi|li). (4.7)

The first factor above is the likelihood and the rest are prior probabilities p(k) ∝ exp(−λ0k) and
p(θi|li) ∝ exp(−λ#θi which penalizes the number of parameters #θi. p(li) is a uniform probability
on the lines and arcs. Thus, an energy function is defined,

E(W ) =
1

2σ2

k∑
i=1

∫ xi

xi−1

(I(x)− Io(x, li, θi))2dx+ λok + λ

k∑
i=1

#θi. (4.8)

The problem is that W does not have a fixed dimension. The probability p(W |I) (or the energy
E(W )) is thus distributed over a countable number of subspaces of varying dimension. The next
subsection briefly introduces the jump diffusion process for exploring such solution spaces.
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Jump-diffusion

The solution space is Ω = ∪∞n=1Ωn where the subspace indexes n = (k, l1, ..., lk) contain the discrete
variables of the model. To traverse the solution space Ω = ∪∞n=1Ωn, the algorithm needs two
types of moves: reversible jumps between different subspaces and stochastic diffusions within each
continuous subspace.

1. Reversible jumps. Let W = (i,x), be the state of a Markov chain at time t, where x ∈ Ωi

represents the continuous variables for the solution. In an infinitesimal time interval dt, the
Markov chain jumps to a new stateW ′ = (j,x′) in another subspace Ωj , j 6= i. There are three
types of moves: 1) switching a line to a circular arc or vice versa, 2) merging two adjacent
intervals to a line or a circle, and 3) splitting an interval into two intervals (lines or circles).
The jump is realized by a Metropolis move [139] that proposes to move from W to W ′ by a
forward proposal probability q(W ′|W ) = q(i→ j)q(x′|j). The backward proposal probability
is q(W |W ′) = q(j → i)q(x|i). The forward proposal is accepted with probability

α(W →W ′) = min

(
1,
q(j → i)q(x|i)π(W ′)

q(i→ j)q(x′|j)π(W )

)
. (4.9)

The dimension is matched in the above probability ratio.

2. Stochastic diffusions. Within each subspace Ωn with n = (k, l1, ..., lk) fixed, the energy
functional E(x) is

E(x) = E(x1, ..., xk−1, θ1, ..., θk) =
1

2σ2

k∑
i=1

∫ xi

xi−1

(I(x)− Io(x, li, θi))2dx+ const.

We adopt a stochastic diffusion (or Langevin) equation to explore the subspace. The Langevin
equations are the steepest descent PDE (partial differential equations) driven by Brownian
motions dB(t) with temperature T . Let x(t) denote the variables at time t,

dx(t) = −dE(x)

dx
dt+

√
2T (t)dwt, dwt ∼ N(0, (dt)2). (4.10)

For example, the motion equation of a change point xi is

dxi(t)

dt
=

1

2σ2
[(I(x)− Io(x, li−1, θi−1))2 − (I(x)− Io(x, li, θi))2] +

√
2T (t)N(0, 1).

This is the 1D version of the region competition equation [224]. The movement of the point
xi is driven by the fitness of data I(xi) to the surface models of the two adjacent intervals
plus a Brownian motion. In practice, the Brownian motion is found to be useful in avoiding
local pitfalls.

For computing the parameters θi, i = 1, ..., k running the diffusion is more robust and often
faster than fitting the best θi for each interval [xi−1, xi) deterministically since the determin-
istic fit is an “overcommitment.” It is especially true when the current interval contains more
than one objects.

It is well-known [77] that the continuous Langevin equations in (4.10) simulate Markov chains
with stationary density p(x) ∝ exp(−E(x)/T ). This is the posterior probability within sub-
space Ωn at temperature T .
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3. The coordination of jumps and diffusions. The continuous diffusions are interrupted by
jumps at time instances t1 < t2 < ... < tM ... as Poisson events. In practice, the diffusion always
runs at a discrete time step δt. Thus, the discrete waiting time τj between two consecutive
jumps is

w =
tj+1 − tj

δt
∼ p(w) = e−τ

τw

w!
,

where the expected waiting time E(w) = τ controls the frequency of jumps. Both jump and
diffusion processes should follow an annealing scheme for lowering the temperature gradually.

Figure 4.6: (a) Diffusion with jumps. Energy plots for two trials (MCMC II—thin curve and
MCMC III—thick curve) of the jump-diffusion processes. Continuous energy changes in diffusion
are interrupted by energy jumps. (b) Average energy plot. Comparison of the energy curves in the
first 10,000 steps of three Markov chains MCMC I, II, and III averaged over 100 randomly generated
signals. (c) Zoomed-in view of MCMC II and III for the first 2,000 steps. Note the energy scale is
different from (b).

For illustration, Fig. 4.6a shows two trials (thin and thick curves respectively) of the jump-
diffusion process running on the input 1D range data in Fig. 4.5a. The energy plots go up
and down (i.e., the algorithm is not greedy) and the continuous energy curves (diffusion) are
interrupted by jumps.

4. Reversibility and global optimization. From an engineering point of view, the most
important property of the jump-diffusion process is that it simulates Markov chain to traverse
the complex solution space. This property distinguishes it from greedy and local methods.
In theory, this Markov chain samples from the posterior probability p(W |I) over the solution
space Ω [88]. With an annealing scheme, it can theoretically achieve the globally optimal
solution with probability close to one. The reversibility of the jumps may not be a necessary
condition; however, it is a useful tool for achieving irreducibility of the Markov chain in the
complex solution space.

5. The speed bottlenecks. Conventional jump-diffusion designs are limited by their computing
speed. However, this problem can be overcome by better design of the proposal probabilities
as we shall show in the next section. We observed that the bottlenecks are in the jumps
affected by the design of the proposal probabilities. In (4.9), a proposal probability q(x′|j) in
interval [xi−1, xi) can be divided into three cases: 1) switching to a new model with x′ = θi,
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2) merging to form a new interval xi−2, xi) with type l and parameter x, and 3) splitting to
form two new intervals with models (la, θa) and (lb, θb) respectively.

q(x|m) =


q(θi|li, [xi−1, xi)) switch [xi−1, xi) to model (li, θi)

q(θ|l, [xi−2, xi)) merge to a model (l, θ)

q(x|[xi−1, xi))q(θa|la, [xi−1, x))q(θb|lb, [x, xi)) split [xi−1, xi) into (la, θa) and (lb, θb) at x.

4.4 Application: Counting People

An application of the Metropolis-Hastings algorithm is presented in [72] for detecting and count-
ing people in crowded scenes. The representation of the problem is in the framework of Marked
Point Processes, where each person is represented as a marked point consisting of a spatial process
representing the image location p ∈ R2 and a marked process denoted by m = (w, h, θ, j) repre-
senting the width, height, orientation and shape of the person, together forming the marked point
s = (p, (w, h, θ, j)).

4.4.1 Marked point process model

The model assumes the marked part depends on the spatial location from the marked process,
therefore

π(s) = π(p)π(w, h, θ, j|p)

for every marked point s = (p, (w, h, θ, j)).
The prior for the point process π(p) is a homogeneous Poisson point process, i.e. the total

number of points follows a Poisson distribution and given the number of points, their location is
uniform inside the region. A simulation of the prior model is shown in Figure 4.7.

Figure 4.7: Samples from the Poisson point process prior π(s).

The conditional mark process π(w, h, θ, j|p) is represented as independent Gaussians for the
width, height and orientation, depending on the image location p, and a uniform distribution for
the shape j from a set of possible shapes. The values of the spatially dependent means and variances
are stored as look-up tables. The set of possible shapes are learned by Expectation Maximization
as a mixture of Bernoulli templates from a set of manually segmented boxes.

The input image is processed so that a foreground mask data y is obtained where pixel i has
yi = 1 if the pixel is a foreground pixel and yi = 0 for background.

Given the current point configuration s1, ..., sn, a label image is constructed where the pixels are
labeled foreground if any of the shapes corresponding to the n marked points covers it and zero
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otherwise. In reality both the mask and label images have soft labels and contain values in the
interval [0, 1].

The likelihood is
logL(Y |X) =

∑
(xi log yi + (1− xi) log(1− yi))

4.4.2 Inference by MCMC

Given an input image with a foreground mask y, the most likely marked point configuration is
obtained by Maximum A Posteriori (MAP) estimation, i.e. maximization of the posterior probability
function π(s|y) = π(y|x(s))π(s).

This is achieved using three types of reversible moves:

• Birth proposal. A point with mark are proposed at uniform locations according to the fore-
ground mask. The width, height and orientation are sampled from the respective Gaussians
conditional on the point location. The type of the shape is chosen uniformly at random from
the set of learned shape prototypes. The reverse of this mode is the death proposal.

• Death proposal. One point at random is removed.

• Update proposal. One marked point is selected at random and its position or mark parameters
are modified. The position is modified as a random walk. The mark is modified by selecting
one of the three parameters and sampling it from the conditional distribution given the current
position, or selecting the shape type at random from the possible shapes.

The three types of moves are used with probability 0.4,0.2,0.4 respectively. About 500-3000 moves
are needed for one image, starting from an empty configuration. More moves are needed for more
crowded scenes.

count=4 count=4 count=4 count=4 count=3 count=4 count=4

Figure 4.8: Results on seven frames of the VSPETS sequence. The counting is precise until there
is significant overlap.

4.4.3 Results

The MCMC method was tested on two benchmark sequences with ground truth annotation: the
EU CAVIAR dataset 1 and the VSPETS soccer sequence 2.

Examples of results are shown in Figures 4.8 and 4.9.
1http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
2http://www.cvg.cs.rdg.ac.uk/VSPETS/vspets-db.html
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Figure 4.9: Results on images of the CAVIAR dataset.

4.5 Application: Furniture Arrangement

One application of the Metropolis-Hastings algorithm is furniture arrangement [214], illustrated in
Figure 4.10. The approach consists of two stages: (1) the extraction of spatial, hierarchical, and
pairwise relationships from positive examples and (2) the synthesis of novel furniture arrangements
through optimization.

Figure 4.10: Left: Arbitrary initialization of the furniture layout. Middle and right: Two synthesized
furniture arrangements optimized according to ergonomic criteria such as unobstructed accessibility
and visibility.

1. Object representation. Optimizing furniture arrangement into a realistic and functional
configuration relies on modeling various interaction factors, such as pairwise furniture relationships,
spatial relationships with respect to the room, and other human factors.
Bounding surfaces: Each object in the scene is represented by a set of bounding surfaces. Fig-
ure 4.11 shows an example object (television) represented by a bounding box whose six surfaces are
labeled 1 to 6. Apart from the top and bottom surfaces, there is a “back” surface for every object,
which is the surface closest to a wall. Other surfaces are labeled as “non-back” surfaces. The back
surface is used to define a reference plane for assigning other attributes.
Center and orientation: Figure 4.12(a) shows the key attributes of an object—center and ori-
entation, denoted by (pi, θi), where pi denotes the (x, y) coordinates and θi is the angle relative to
the nearest wall (defined as the angle between the nearest wall and the back surface).
Accessible space: For each surface of the object, a corresponding accessible space is assigned (see
Figure 4.12(b)). We define aik to be the center of coordinates of accessible space k of object i. The
diagonal of the region is measured by adik, which is used to measure how deep other objects can
penetrate into the space during optimization. The size of the accessible space is set from available
examples or given as input related to the size of a human body. If the space is very close to the
wall in all the examples, the corresponding surface need not be accessible; otherwise, it is set to be
the dimension of an average-sized adult if such a measurement is not given.
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Figure 4.11: Left: A television, its bounding box, and six surfaces; Right: A candelabrum on a
table; the table is a first-tier object and the candelabrum is a second-tier object.

(a) (b) (c)
Figure 4.12: An example object i. (a) di is the distance of the object center pi to the nearest wall,
θi is the orientation of the object relative to the nearest wall, bi is the diagonal of the bounding box.
(b) The object has 4 accessible spaces centered at ai1, ai2, ai3, and ai4 respectively. (c) A viewing
frustum associated with the object is represented by 3 rectangles centered at vi1, vi2, vi3, adik and
vdik are the corresponding diagonal lengths of the rectangles.

Viewing frustum: For some objects, such as the television and painting, the frontal surface
must be visible. A viewing frustum is assigned to this particular surface, which for an object i, is
approximated by a series of rectangles with center coordinates vik, where k is the rectangle index.
vdik is the diagonal of the rectangle, which is useful in defining the penetration cost akin to that
for the accessible space. Figure 4.12(c) provides an example.
Other attributes: Other attributes involved in the optimization process are the distance from pi
to its nearest wall is defined as di; the diagonal bi from pi to the corner of the bounding box, as
shown in Figure 4.12(a). Also recorded is the z-position zi of the object.
2. Cost function. The goal of the optimization process is to minimize a cost function that
characterizes realistic, functional furniture arrangements. Although it is often difficult to quantify
the “realism” or “functionality” of a furniture arrangement, the following basic criteria should not
be violated.
Accessibility: A furniture object must be accessible in order to be functional [35, 142]. To favor
accessibility, the cost increases whenever any object moves into the accessible space of another
object. Suppose object i overlaps with the accessible space k of object j, the accessibility cost is
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(a) Initial random arrangement (b) Including all ergonomic terms (c) No accessibility term (wa = 0)

(d) No visibility term (wv = 0) (e) No pairwise distance (wdpair = 0) (f)No pairwise orientation (wθpair = 0)

(g) No pathway term (wpath = 0) (h) No prior distance (wdpr = 0) (i) No prior orientation (wθpr = 0)
Figure 4.13: The effect on the automatic arrangement (b) of the furniture in (a) resulting from the
omission of individual cost terms: Disregarding human ergonomics results in unrealistic synthesized
arrangements that that are not livable in several ways; e.g., (c) the furniture objects are colliding,
(d) a potted plant is blocking the television and the armchair, (e) the work-chair is too far from the
desk, (f) the armchair is facing away from the television, (g) the desk and work-chair are blocking
the door, (h) furniture objects are too far from the wall, (i) objects are randomly oriented.

defined as

Ca(φ) =
∑
i

∑
j

∑
k

max

[
0, 1−

‖pi − ajk‖
bi + adjk

]
. (4.11)

There are other cost terms for visibility, pathway connecting doors, pairwise constraints between
certain furniture objects (eg. TV facing a sofa), and a prior to encourage configurations seen in the
training examples. The effect of omitting individual cost terms is depicted in Figure 4.13.
3. Furniture arrangement optimization.

The search space of the problem is highly complex as objects are interdependent in the opti-
mization process. The furniture positions and orientations depend on numerous factors, such as
whether the object should be visible or accessible. It is very difficult to have a global optimization
scheme or a closed-form solution that yields a unique optimum.

To tackle this problem, we resort to simulated annealing [101] with a Metropolis-Hastings state-
search step [91, 139] to search for a good approximation to the global optimum. Note, however,
that given a room, a set of furniture objects, and the prior spatial and hierarchical relationships,
numerous acceptably-good configurations will be possible. This is the rationale for finding a good
approximation in a reasonably short time, rather than searching exhaustively over the complex
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Initialization 5000 iterations 25000 iterations
Figure 4.14: Furniture arrangement optimization from a random initial configuration (left). As the
optimization process proceeds, the furniture configuration is iteratively updated until it achieves an
optimized final arrangement φ∗ in 25,000 iterations (right).

search space in order to find the global optimum of the cost function.
To explore the space of possible arrangements effectively, the proposed moves φ → φ′ involve

both local adjustment, which modify the current arrangement, and a global reconfiguration step
that swaps objects, thereby altering the arrangement significantly. There are three types of moves:
translation and rotation, swapping objects and moving pathway control points. More details are
given in [214].

Synthesis 1 Synthesis 2 Synthesis 3
Figure 4.15: Selected views of synthesized results. Top to bottom: Gallery, Resort, Restaurant.

With the aforementioned moves, given a floor-plan and a fixed number of furniture objects that
define the solution space, the configuration of a furniture object (pi, θi) has a positive probability to
move to any other configuration (p′i, θ

′
i). Given the annealing schedule, the solution space is explored

more extensively with larger moves early in the optimization, and the furniture configuration is more
finely tuned with smaller moves towards the end.
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Time
Objects Pairwise Relationships Iterations (sec)

Living Room 20 television & sofa 20000 22
Bedroom 24 television & armchair, desk & work chair 20000 48
Restaurant 54 chair & dish set, chair & table 25000 219
Resort 30 easel-stool, drum-chair, guitar-chair, couch-tea table 42000 126
Factory 51 work desk & chair, supervisor’s desk & chair 42000 262
Flower Shop 64 none 22000 376
Gallery 35 chair & chair 18000 88

Table 4.1: Computation times are measured on a 3.33GHz Intel Xeon PC. Spatial and hierarchical
relationships are extracted automatically from positive examples. Each pairwise relationship can
be set by clicking the corresponding objects in the UI, whereupon the mean relative distance and
angle are extracted from the examples for use as pairwise constraints.
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Chapter 5

Gibbs Sampler and its Variants

The Gibbs sampler [75] is a MCMC algorithm for obtaining samples from distributions that are
difficult to sample.

Usually the distributions are written in Gibbs form:

π(x) =
1

Z
e−E(x), x = (x1, ..., xd) ∈ Ω.

Such distributions appear when solving constrained(hard, soft) satisfaction problems (e.g. im-
age denoising) or in Bayesian inference. In such cases one would want to find the mode of the
distribution, or certain distribution parameters such as mean, standard deviation, etc.

Before the Gibbs sampler, finding the mode was done by relaxation, using an algorithm similar
to the one described in Figure 5.1.

Input: Energy function E[x], current state x(t) = (x1, ..., xd) ∈ Ω
Output: New state x(t+1) ∈ Ω
1. Select a variable i ∈ {1, ..., d} at random
2. Compute:

u = argmin
(
E[xi = 1|x−i], · · · , E[xi = L|x−i]

)
3. Set

x
(t+1)
−i = x

(t)
−i, x

(t+1)
i = u

Figure 5.1: Relaxation Algorithm
The problem with such a greedy algorithm is that it has no guarantees for finding the global

optimum. In fact it very often gets stuck in local optima.

5.1 Gibbs Sampler

The goal of Gibbs Sampler is to sample a joint probability,

X = (x1, x2, · · · , xd) ∼ π(x1, x2, · · · , xd)

It samples in each dimension according to the conditional probability,

xi ∼ π(xi| x−i︸︷︷︸
fixed

) =
1

Z
exp(−E[xi|x−i]), ∀i
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where π(xi|x−i) is the conditional probability at a site (variable) i conditional of the other variables.
Suppose Ω is d-dimensional, and each dimension is discretized into L finite states, thus the total

number of states is Ld. The procedure of Gibbs Sampler is shown in Figure 5.2.

Input: Probability function π(x), current state x(t) = (x1, ..., xd) ∈ Ω
Output: New state x(t+1) ∈ Ω
1. Select a variable i ∈ {1, ..., d} at random, taking L values y1, ..., yL.
2. Compute the conditional probability vector u = (u1, ..., uL) with:

uk = π(xi = vk|x−i)

3. Sample j ∼ u and set
x

(t+1)
−i = x

(t)
−i, x

(t+1)
i = yj

Figure 5.2: Gibbs Sampler
The order in which the variables are selected at step 1 above can be either randomized or follow

a predefined scheme (e.g. 1, 2, ..., d).

Definition 5.1. A sweep of the Gibbs sampler is a sequential visit of all the sites (variables) once.

Although each the transition matrix Ki for one Gibbs step may not be irreducible and aperiodic,
it is easy to show that the total transition matrix K = K1 ·K2 · · ·Kd is irreducible and aperiodic
after one sweep. Thus, the contraction coefficient C(K) < 1.

If x(t) ∼ π(x) at time t and x(t+1) ∼ π(x), then K has π as its invariant probability.

x(t) = (x1, · · · , xi, xi+1, · · · , xd) ∼ π(x)

x(t+1) = (x1, · · · , yj , xi+1, · · · , xd)

The only difference between the two is the xi and yj . However, we know that

x(t+1) ∼ π(x1, · · · , xi−1, xi+1, · · · , xn) · π(yj |x1, · · · , xi−1, xi+1, · · · , xn) =⇒ x(t+1) ∼ π(x)

In fact, one can show that the Gibbs sampler has a geometric rate of convergence:

‖µKn − π‖TV 6
1

2
(1− eN∆)n‖µ− π‖TV

5.1.1 A major problem with the Gibbs sampler

The problem is illustrated in the following example.

Example 5.1. For a probability π(x1, x2) whose probability mass is focused on a 1D line segment,
as illustrated in Figure 5.3, sampling the two dimensional iteratively is obviously inefficient. i.e. the
chain is “jagging”.

This is because the two variables are tightly coupled. It is best if we move along the direction
of the line.

In general, problems arise when the probability is concentrated in a much lower dimensional
manifold in the d-dimensional space. The Markov chain is not allowed to move in the normal
directions (off the manifold) but only on the tangent directions.
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Figure 5.3: Left: The Gibbs sampler has a hard time sampling a probability with two tightly
coupled variables, as explained in Example 5.1. Right: In general the Gibbs sampler has a hard
time sampling data that is concentrated on a manifold.

As we know, Gibbs distributions are derived from constraints on the variable x, and thus they
are defined in some implicit manifold.

Ω(H0) = {X : Hi(x) = hi, i = 1, 2, · · · ,K}, H0 = (h1, h2, · · · , hK)

Examples of Gibbs distributions that could be hard to sample using the Gibbs sampler are Arkov
Random Fields in general and the Ising/Potts model in particular.

Let G =< V,E > be an adjacency graph, such as a lattice with the 4 nearest neighbor con-
nections. Each vertex vi ∈ V has a state variable xi with a finite number of labels (or colors),
xi ∈ {1, 2, ...,L}. The total number of labels L is predefined.

Definition 5.2. Let x = (x1, x2, ..., x|V |) denote the labeling of the graph, then the Ising/Potts
model is a Markov random field,

πPTS(x) =
1

Z
exp{−

∑
<s,t>∈E

βst1(xs 6= xt)}, (5.1)

where 1(x6s = xt) is a Boolean function, equal to 1 if condition xs 6= xt is satisfied, and is 0
otherwise. If the number of possible labels L = 2 it is called the Ising model, and for L ≥ 3 it is
the Potts model.

Usually we consider βst > 0 for a ferro-magnetic system that prefers same colors for neighboring
vertices. The Potts models and its extensions are used as a priori probabilities in many Bayesian
inference tasks.

Figure 5.4: The Ising model has a flat energy landscape that is difficult to sample.
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Example 5.2. For single site Gibbs sampler on the Ising model (5.1), the boundary spins are
flipped with a p = 1/2 probability because the enrgy landscape is flat as illustrate din Figure 5.4.
Flipping a string of length n will need on average t ≥ 1/pn = 2n steps! This is exponential waiting
time.

5.2 Gibbs Sampler generalizations

This section presents some Gibbs sampler modifications and generalizations that alleviate some of
the difficulties with using the Gibbs sampler for correlated variables highlighted in Section 5.1.1.

5.2.1 Hit-and-Run

This design selects a direction at random and samples in that direction.
Suppose the current state is x(t).

1) Select a direction or axis ~et.

2) Sample along the axis.
r ∼ π(x(t) + r · ~et)

3) Update
x(t+1) = x(t) + r · ~et

The sampling along the axis will be a continuous Gibbs and implemented by Multi-Try Metropo-
lis. However, there is still one problem with this design, which is how to select the sampling direction.

5.2.2 Generalized Gibbs Sampler

In fact, one may not have to move in straight lines. In more general cases, one may use a group of
transformations for the possible moves, as long as the moves preserve the invariant probability.

Theorem (Liu and Wu, 1999 [125]). Let Γ = {γ} be a locally compact group that acts on the space
Ω and each element multiplication is a possible move,

x(t) → x(t+1) = γ · x(t)

If x ∼ π and the element γ ∈ Γ is chosen by

γ|x ∼ π(γ · x)|Jγ(x)|H(dγ)

where Jγ(x) is the Jacobian of the transformation x → γ · x evaluated at x and H(dγ) is the
left-invariant Haar measure,

H(γ ·B) = H(B), ∀γ,B.

Then the new state follows the invariant probability

x(t+1) = γ · x ∼ π
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5.2.3 Generalized Hit-and-Run

Conceptually, it helps to generalize the hit-and-run idea to an arbitrary partition of the space,
especially in finite state space. This is a concept by Persi Diaconis 2000.

Suppose a Markov Chain consists of many sub-chains, and the transition probability is a linear
sum,

K(x,y) =
N∑
i=1

ωiKi(x,y), ωi = p(i),
N∑
i=1

ωi = 1

•

•

If each sub-kernel has the same invariant probability,∑
x

π(x)Ki(x,y) = π(y), ∀y ∈ Ω

Then the whole Markov chain follows π(x).
We denote the set of states connected to x by the i-th type moves with kernel Ki as

Ωi(x) = {y ∈ Ω : Ki(x,y) > 0}

Then x is connected to the set
Ω(x) = ∪Ni=1Ωi(x)

The key issues with this approach are:

1. How do we decide the sampling dimensions, directions, group transforms, and sets Ωi(x) in a
systematic and principled way?

2. How do we schedule the visiting order governed by p(i)? i.e. choosing the moving directions,
groups, and sets

5.2.4 Sampling with auxiliary variables

We would like to sample x ∼ π(x), which might be a distribution hard to sample due to correlations
between variables. A systematic way to escape these correlations is to introduce auxiliary random
variables:

x ∼ π(x) → (x, y) ∼ π+(x, y)

Examples for auxiliary variables y:

• T– temperature: Simulated Tempering [82]
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• S – scale: Multi-grid sampling

• w – weight: Dynamic weighting

• b – bond: Cluster sampling, Swendsen-Wang [59,180]

• u – energy level: Slice sampling [59]

5.2.5 Simulated Tempering

Let the target probability be

π(x) =
1

Z
exp{−U(x)}

Augment a variable I in {1, 2, . . . , L} for L levels of temperature

1 = T1 < T2 < · · · < TL

Sampling a joint probability, and keep the X’s with I = 1

(x, I) ∼ π+(x, I) =
1

Z+
exp{− 1

TI
U(x)}

The sampler will move more freely in high temperature. But it is very difficult to cross between
different temperature levels. Suppose we run Markov chains at the L levels in parallel. Define a
joint probability for all chains

π+(x1, . . . ,xL) ∝
L∏
i=1

exp{− 1

Ti
U(xi)}

Propose to permute two chains:

(. . . ,xi, . . . ,xj , . . . )→ (. . . ,xj , . . . ,xi, . . . )

Accept with Metropolis-Hastings

α = min

(
1, exp{

( 1

Tj
− 1

Ti

)(
U(xj)− U(xi)

)
}
)

5.2.6 Slice Sampling

Suppose x ∼ π(x) in a 1-D distribution. We introduce an auxiliary variable y ∈ [0, 1] for the level
of probability. Thus sampling π(x) is equivalent to sampling uniformly from the shaded area in the
(x, y) space.

•

x(t) x(t+1)

y

x

π(x)

• •

•
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We satisfy the conditions of ∑
y

π+(x, y) = π(x)

but 
y ∼ π+(y|x) = unif(0, π(x))← easy to sample

x ∼ π+(x|y) = unif(

level set︷ ︸︸ ︷
{x;π(x) > y})← hard to sample

The slice {x;π(x) > y} usually contains multiple components bounded by the level set π(bx) = y
and is difficult to sample. This area is illustrated in Figure 5.5.

Figure 5.5: The slice {x;π(x) > y} usually contains multiple components and is difficult to sample.

5.2.7 Data Augmentation

The slice sampling method suggests two general conditions for auxiliary variables

x ∼ π(x) → (x, y) ∼ π+(x, y)

1) The marginal probability is ∑
y

π+(x, y) = π(x)

2) Both conditional probabilities are factorized and are easy to sample from{
x ∼ π+(x|y)
y ∼ π+(y|x)

The intuitions for data augmentation is the following: Very often the probability is focused on
separated modes (areas), and hopping between these modes is hard, since Markov chains usually
move locally. Good auxiliary variables will:

1) help selecting moving directions/groups/sets (in generalized hit-and-run).

2) enlarge the search scopes.
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5.2.8 Metropolized Gibbs Sampler

We go back to the generalized hit and run setup from section 5.2.3 where the kernel is made of a
number of sub-kernels

K(x,y) =
N∑
i=1

ωiKi(x,y), ωi = p(i),
N∑
i=1

ωi = 1

with the same invariant probability,
∑

x π(x)Ki(x,y) = π(y), ∀y ∈ Ω and the set of states
connected to x by the i-th type moves is

Ωi(x) = {y ∈ Ω : Ki(x,y) > 0}

Then x is connected to the set
Ω(x) = ∪Ni=1Ωi(x)

We know there are two general designs: Gibbs and Metropolis.

1) Gibbs Design, where we sample a probability in each set

y ∼ [π]i(y), [π]i(y) ∼
{
π(y) y ∈ Ωi(x),
0, y /∈ Ωi(x)

In this way, the move is symmetric

Ωi(x) = Ωi(y)

2) Metropolis Design. We know that in Metropolis design, we move arbitrary Ωi(x), but we do
not know the proposal distribution q.

qi(x, y) =
π(y)∑

y′∈Ωi(x) π(y′)
, ∀y′ ∈ Ωi(x)

However, we will have to check

qi(y, x) =
π(x)∑

x′∈Ωi(y) π(x′)
, ∀x′ ∈ Ωi(y)

The problem now is that it is no longer symmetric, Ωi(x) 6= Ωi(y). Although normalized,
since the sets are different detailed balance equation might not be satisfied. To observe the
detailed balance, we need a condition,

y ∈ Ωi(x) iff x ∈ Ωi(y)

Acceptance probability,

αi(x,y) = min

(
1,
qi(y,x) · π(y)

qi(x,y) · π(x)

)
= min

(
1,

π(x)∑
x′∈Ωi(y) π(x′) · π(y)

π(y)∑
y′∈Ωi(x) π(y′) · π(x)

)
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= min

(
1,

total probability mass of Ωi(x)︷ ︸︸ ︷∑
y′∈Ωi(x)

π(y′)

∑
x′∈Ωi(y)

π(x′)

︸ ︷︷ ︸
total probability mass of Ωi(y)

)

The sub-kernels are designed in pairs,

Ki(x, y) = ωi1Kil(x, y) + ωirKir(x, y)

and have their corresponding spaces Ωil(x) and Ωir(x).

x

Ωir(x)

Ωil(x)

In this situation, the acceptance rate is

αi(x,y) = min

(
1,

∑
y′∈Ωil(x) π(y′)∑
x′∈Ωir(y) π(x′)

)
, y ∈ Ωil(x)

If the sets are symmetric, i.e. Ωil(x) = Ωir(y), then we will always have acceptance rate 1,
i.e. α(x, y) = 1. If the sets are asymmetric, then we needs the Metropolis acceptance step to
“re-balance”.

One can improve the traditional Gibbs sampler by prohibiting the MC from staying in its
current state in the conditional probability. Thus the sets are asymmetric and we need a
Metropolis acceptance step to “re-balance”.

The diagonal elements in the proposal matrix are this way set to zero. This is a desirable
property of MC design in order to make the MC “mix fast”.

q(x,y) =
π(y)

1− π(x)
, y ∈ Ω(x),x /∈ Ω(x)

where “1” represents the normalizing factor. Thus, the acceptance rate becomes

α(x, y) = min

(
1,

1− π(x)

1− π(y)

)
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Furthermore, it has been proven that

KMGS(x,y) > KGibbs(x,y), ∀x 6= y ∈ Ω

5.3 Data association and data augmentation

There are many cases when accurate models f(y,h|θ) could be obtained when the observed data
y is augmented with some missing (hidden) data h. For example a more accurate face model
f(y,h|θ) (where θ ∈ 0, 1 could represent face/nonface) can be obtained if the observed intensity
image is augmented with a vector h containing the face position, rotation, scale, 3D pose, and other
variables (e.g. sun-glasses, beard, etc.).

Then the posterior distribution of the parameter θ conditional on the observed data is obtained
by integrating out the hidden variables:

p(θ|y) =

∫
p(θ|y,h)p(h|y)dh. (5.2)

If we could obtain samples p(h|y) then we could obtain a Monte Carlo approximation of p(θ|y)
using Eq. (5.2) above.

Tanner and Wong [181] observed that we could use an initial approximation f(θ) of the target
distribution p(θ|y) to obtain samples of the hidden variables h1, ...,hm from:

p̃(h) =

∫
p(h|θ,y)f(θ)dθ

by first sampling θi ∼ f(θ) and then hi ∼ p(h|θi,y). These hidden samples are also called mul-
tiple imputations. We can use them to obtain a (hopefully) better approximation of the target
distribution:

f(θ) =
1

m

m∑
i=1

p(θ|y,hi)

Thus the original data augmentation algorithm starts with a set of hidden values h(0)
1 , ...,h

(0)
m and

proceeds as follows:

Initialize h
(0)
1 , ...,h

(0)
m

for t=1 to N iter do
for i=1 to m do

Pick k randomly from {1, ...,m}
Sample θ′ ∼ p(θ|y,h(t−1)

k )

Sample h
(t)
k ∼ p(h|y, θ

′)
end for

end for
Algorithm 2: The original Data Augmentation (DA) algorithm

An important observation to make is that the DA algorithm is equivalent to the version with
m = 1, because one can trace back where each element of the current generation h

(t)
1 , ...,h

(t)
m

originates and it can be easily seen that when t is sufficiently large all samples from generation t
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originate from a single element. Due to the purely random way the parents are chosen, there is no
bias in the selection of the common ancestor.

Thus the DA algorithm is equivalent to a Gibbs sampler type of algorithm that alternates
sampling the parameter θ with sampling the hidden variables h:

Initialize h
for t=1 to N iter do

Sample θ′ ∼ p(θ|y,h(t−1))
Sample h(t) ∼ p(h|y, θ′)

end for
Algorithm 3: The simplified Data Augmentation (DA) algorithm

5.4 Julesz ensemble and MCMC sampling of texture

Before pursuing the “trichromacy” theory for texture, we will first review some important image
features and statistics that have been used in texture modeling.

5.4.1 Image features and statistics

Let I be an image defined on a finite lattice Λ ⊂ Z2. For each pixel v = (x, y) ∈ Λ, the intensity
value at v is denoted by I(v) ∈ S, with S being a finite interval on the real line or a finite set of
quantized gray levels. We denote by ΩΛ = S|Λ| the space of all images on Λ.

In modeling homogeneous texture images, we start with exploring a finite set of statistics of some
local image features. There are three major categories of image features studied in the literature.

The first category consists of k-gons proposed by Julesz. A k-gon is a polygon of k vertices
indexed by α = (u1, u2, ..., uk), where ui = (∆xi,∆yi) is the displacement of the i-th vertex if we
put the center of the k-gon at the origin. ∆xi and ∆yi must be integers. If we move this k-gon on
the lattice, under some boundary conditions we collect a set of k-tuples

{ (I(v + u1), I(v + u2), ..., I(v + uk)) ; v ∈ Λ }.

The k-gon statistic is the k-dimensional joint intensity histogram of these k-tuples, and it is also
called the co-occurrence matrix.

The second type of features are the cliques in Markov random fields (MRF). Given a neighbor-
hood system on the lattice Λ, a clique is a set of pixels that are neighbors of each other, so a clique
is a special type of k-gon. Let α = (u1, u2, ..., ukα) be the index for different types of cliques under a
neighborhood system. According to the Hammersley-Clifford theorem [16], a Markov random field
model has the Gibbs form

p(I) =
1

Z
exp{−

∑
α

∑
v∈Λ

Uα(I(v + u1), I(v + u2), ..., I(v + ukα))}

where Z is the normalization constant or the partition function and Uα are potential functions of kα
variables. The above Gibbs distribution can be derived from the maximum entropy principle under
the constraints that p(I) reproduces, on average, the co-occurrence matrices h(α)(b1, ..., bkα ; I), ∀α.
Therefore, the Gibbs model integrates all the co-occurrence matrices for the cliques into a single
probability distribution. See Picard, Elfadel, and Pentland (1991) [160] for a related result. Like
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k-gon statistics, this general MRF model also suffers from curse of dimensionality even for small
cliques. The existing MRF texture models are much simplified in order to reduce the dimensionality
of potential functions, such as in auto-binomial models [45], Gaussian MRF models [31] and φ-
models [76].

The co-occurrence matrices (or joint intensity histograms) on the polygons and cliques have
been proven inadequate for describing real world images and irrelevant to biologic vision systems.
In the late 1980s, it was realized that real world imagery is better represented by spatial/frequency
bases, such as Gabor filters [48], wavelet transforms [47], and filter pyramids. These filters are often
called image features. Given a set of filters {F (α), α = 1, 2, ...,K}, a sub-band image I(α) = F (α) ∗ I
is computed for each filter F (α).

Thus the third category of features extracts statistics on the sub-band images or pyramid instead
of the intensity image. From a dimension reduction perspective, the filters characterize local texture
features, as a result, very simple statistics of the sub-band images can capture information that
would otherwise require k-gon or clique statistics of very high dimensions.

While Gabor filters are well grounded in biological vision [37], very little is known about how
visual cortices pool statistics across images. There are four popular choices of statistics in the
literature.

1. Moments of a single filter response, e.g. mean and variance of I(α).
2. Rectified functions that resemble the responses of “on/off” cells [5]:

h(α,+)(I) =
1

|Λ|
∑
v∈Λ

R+(I(α)(v)),h(α,−)(I) =
1

|Λ|
∑
v∈Λ

R−(I(α)(v)),

3. One bin of the empirical histogram of I(α).
4. One bin of the full joint histogram of (I(1), · · · , I(k)).
As the second step to pursue the "trichromacy" theory of texture, in this section, we first

propose a mathematical definition of texture–the Julesz ensemble, and then we study an algorithm
for sampling images from the Julesz ensemble.

5.4.2 The Julesz ensemble - a mathematical definition of texture

Given a set of K statistics h = {h(α) : α = 1, 2, ...,K} which have been normalized with respect
to the size of the lattice |Λ|, an image I is mapped into a point h(I) = (h(1)(I), ...,h(K)(I)) in the
space of statistics. Let

ΩΛ(h0) = {I : h(I) = h0}

be the set of images sharing the same statistics ho. Then the image space ΩΛ is partitioned into
equivalence classes

ΩΛ = ∪hΩΛ(h).

Due to intensity quantization in finite lattices, in practice one needs to relax the constraint on
statistics and to define the image set as

ΩΛ(H) = {I : h(I) ∈ H},

where H is an open set around h0.
ΩΛ(H) implies a uniform distribution

q(I;H) =

{ 1
|ΩΛ(H)| for I ∈ ΩΛ(H),

0 otherwise
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where |ΩΛ(H)| is the volume of the set.
Definition Given a set of normalized statistics h = {h(α) : α = 1, 2, ...,K}, a Julesz ensemble
Ω(h) is the limit of ΩΛ(H) as Λ→ Z2 and H → {h} under some boundary conditions.

A Julesz ensemble Ω(h) is a mathematical idealization of ΩΛ(H) on a large lattice with H close
to h. As Λ → Z2, it makes sense to let the normalized statistics H → {h}. We assume Λ → Z2 in
the sense of van Hove [78], i.e., the ratio between the size of the boundary and the size of Λ goes
to 0, |∂Λ|/|Λ| → 0. In engineering practice, we often consider a lattice big enough if |∂Λ|

|Λ| is very
small, e.g. 1/15. Thus with a slight abuse of notation and also to avoid technicalities in dealing
with limits, we consider a sufficiently large image (e.g. 256 × 256 pixels) as an infinite image in the
rest of the paper. See the companion paper [208] for a more careful treatment.

A Julesz ensemble Ω(h) defines a texture pattern on Z2, and it maps textures into the space
of feature statistics h. By analogy to color, as an electro-magnetic wave with wavelength λ ∈
[400, 700]nm defines an unique visible color, a statistic value h defines a texture pattern! 1 We shall
study the relation between the Julesz ensemble and the mathematical models of texture in the next
section.

A mathematical definition of texture could be different from a texture category in human texture
perception. The latter has very coarse precision on the statistics h and is often influenced by expe-
rience. For example, Julesz proposed that texture pairs which are not pre-attentively segmentable
belong to the same category. Recently many groups have reported that texture pairs which are
not pre-attentively segmentable by naive subjects become segmentable after practice [99]. This
phenomenon is similar to color perception.

With the mathematical definition of texture, texture modeling is posed as an inverse problem.
Suppose we are given a set of observed training images Ωobs = {Iobs,1, Iobs,2, ..., Iobs,M}, which are
sampled from an unknown Julesz ensemble Ω∗ = Ω(h∗). The objective of texture modeling is to
search for the statistics h∗.

We first choose a set of K statistics from a dictionary B discussed in Section 5.4.1. We then
compute the normalized statistics over the observed images hobs = (h

(1)
obs, ...,h

(K)
obs ), with

h
(α)
obs =

1

M

M∑
i=1

h(α)(Iobs,i), α = 1, 2, ...,K. (5.3)

Then we define an ensemble of texture images using hobs,

ΩK,ε = {I : D(h(α)(I),h
(α)
obs) ≤ ε, ∀α}, (5.4)

where D is some distance, such as the L1 distance for histograms. If Λ is large enough to be
considered infinite, we can set ε essentially at 0, and we denote the corresponding ΩK,ε as ΩK . The
ensemble ΩK implies a uniform probability distribution q(I;h) over ΩK , whose entropy is log |ΩK |.

To search for the underlying Julesz ensemble Ω∗, one can adopt a pursuit strategy used by Zhu,
Wu, and Mumford (1997) [222]. When k = 0, we have Ω0 = ΩΛ. Suppose at step k, a statistic h is
chosen, then at step k + 1 a statistic h(k+1) is added to have h+ = (h,h(k+1)). h(k+1) is selected
for the largest entropy decrease among all statistics in the dictionary B,

h(k+1) = arg max
β∈B

[entropy(q(I;h))− entropy(q(I;h+)] = arg max
β∈B

[log |Ωk| − log |Ωk+1|]. (5.5)

1We name this ensemble after Julesz to remember his pioneering work on texture. This does not necessarily mean
that Julesz defined texture pattern with this mathematical formulation.
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Figure 5.6: The volume (or entropy) of Julesz ensemble decreases monotonically with more statistical
constraints added.

The decrease of entropy is called the information gain of h(k+1).
As shown in figure 5.6, as more statistics are added, the entropy or volume of the Julesz ensemble

decreases monotonically
ΩΛ = Ω0 ⊇ Ω1 ⊇ · · · ⊇ Ωk ⊇ · · ·

Obviously introducing too many statistics will lead to an “over-fit”. In the limit of k →∞, Ω∞ only
includes the observed images in Ωobs and their translated versions.

With the observed finite images, the choice of statistics h and the Julesz ensemble Ω(h) is
an issue of model complexity that has been extensively studied in the statistics literature. In the
minimax entropy model [222,223], an AIC criterion [2] is adopted for model selection. The intuitive
idea of AIC is simple. With finite images, we should measure the fluctuation of the new statistics
h(k+1) over the training images in Ωobs. Thus when a new statistic is added, it brings information as
well as estimation error. The feature pursuit process should stop when the estimation error brought
by h(k+1) is larger than its information gain.

5.4.3 The Gibbs ensemble and ensemble equivalence

To make this paper self-contained, we briefly discuss in this section the Gibbs ensemble and the
equivalence between the Julesz and Gibbs ensembles. A detailed study is referred to a companion
paper [208].

Given a set of observed images Ωobs and the statistics hobs, another line of research is to pursue
probabilistic texture models, in particular the Gibbs distributions or Markov Random Field (MRF)
models.

One general class of MRF model is the FRAME model studied by Zhu, Wu, and Mumford in
1997 [222, 223]. The FRAME model derived from the maximum entropy principle has the Gibbs
form

p(I;β) =
1

Z(β)
exp{−

K∑
α=1

< β(α),h(α)(I) >} =
1

Z(β)
exp{< β,h(I) >}. (5.6)

The parameters β = (β(1), β(2), ..., β(K)) are Lagrange multipliers. The values of β are determined
so that p(I;β) reproduces the observed statistics,

Ep(I;β)[h
(α)(I)] = h

(α)
obs α = 1, 2, ...,K. (5.7)
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The selection of statistics is guided by a minimum entropy principle.
As the image lattice becomes large enough, the fluctuations of the normalized statistics diminish.

Thus as Λ → Z2, the FRAME model converges to a limiting random field in the absence of phase
transition. The limiting random field essentially concentrates all its probability mass uniformly over
a set of images which we call the Gibbs ensemble. 2

In a companion paper [208], we prove that the Gibbs ensemble given by p(I;β) is equivalent
to the Julesz ensemble specified by q(I;hobs). The relationship between β and hobs is expressed
in equation (5.7). Intuitively, q(I;hobs) is defined by a “hard” constraint, while the Gibbs model
p(I;β) is defined by a “soft” constraint. Both use the observed statistics hobs, and the model p(I;β)
concentrates on the Julesz ensemble uniformly as the lattice Λ gets big enough.

The ensemble equivalence reveals two significant facts in texture modeling.

1. Given a set of statistics h, we can synthesize typical texture images of the fitted FRAME
model by sampling from the Julesz ensemble Ω(h) without learning the parameters β in the
FRAME models [222], which is time consuming. Thus feature pursuit, model selection, and
texture synthesis can be done effectively with the Julesz ensemble.

2. For images sampled from the Julesz ensemble, a local patch of the image given its environment
follows the Gibbs distribution (or FRAME model) derived by the minimax entropy principle.
Therefore, the Gibbs model p(I;β) provides a parametric form for the conditional distribution
of q(I;h) on small image patches. p(I;β) should be used for tasks such as texture classification
and segmentation.

The pursuit of Julesz ensembles can also be based on the minimax entropy principle. First, the
definition of Ω(h) as the maximum set of images sharing statistics h is equivalent to a maximum
entropy principle. Second, the pursuit of statistics in equation (5.5) uses a minimum entropy
principle. Therefore a unifying picture emerges for texture modeling under the minimax entropy
theory.

5.4.4 Sampling the Julesz ensemble

Sampling the Julesz ensemble is by no means a trivial task! As |ΩK |/|ΩΛ| is exponentially small,
the Julesz ensemble has almost zero volume in the image space. Thus rejection sampling methods
are inappropriate, and we resort to Markov chain Monte Carlo methods.

First, we define a function

G(I) =

{
0, if D(h(α)(I),h

(α)
obs) ≤ ε, ∀α.∑K

α=1D(h(α)(I),h
(α)
obs), otherwise.

Then the distribution
q(I;h, T ) =

1

Z(T )
exp{−G(I)/T} (5.8)

goes to a Julesz ensemble ΩK , as the temperature T goes to 0. The q(I;h, T ) can be sampled by
the Gibbs sampler or other MCMC algorithms.

2In the computation of a feature statistic h(I), we need to define boundary conditions so that the filter responses
in Λ are well defined. In case of phase transition, the limit of a Gibbs distribution is not unique, and it depends on
the boundary conditions. However, the equivalence between Julesz ensemble and Gibbs ensemble holds even with
phase transition. The study of phase transition is beyond the scope of this paper.
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Algorithm I: Sampling the Julesz ensemble

Given texture images {Iobs,i, i = 1, 2, ...,M}.
Given K statistics (filters) {F (1), F (2), ..., F (K)}.
Compute hobs = {h(α)

obs, α = 1, ...,K}.
Initialize a synthesized image I (e.g. white noise).
T ← T0.
Repeat

Randomly pick a location v ∈ Λ,
For I(v) ∈ S Do

Calculate q(I(v) | I(−v);h, T ).
Randomly draw a new value of I(v) from q(I(v) | I(−v);h, T ).

Reduce T after each sweep.
Record samples when D(h(α)(I),h

(α)
obs) ≤ ε for α = 1, 2, ...,K.

Until enough samples are collected.
In the above algorithm q(I(v) | I(−v);h, T ) is the conditional probability of the pixel value I(v)

with intensities for the rest of the lattice fixed. A sweep flips |Λ| pixels in a random visiting scheme
or to flip all pixels in a fixed visiting scheme.

Due to the equivalence between the Julesz ensemble and the Gibbs ensemble [208], the sampled
images from q(I;h) and those from p(I;β) share the same statistics in that they produce not only the
same statistics in h, but also statistics extracted by any other filters, linear or nonlinear. It is worth
emphasizing one key concept which has been misunderstood in some computer vision work: the
Julesz ensemble is the set of “typical” images for the Gibbs model p(I;β), not the “most probable”
images that minimize the Gibbs potential (or energy) in p(I;β).

One can use algorithm I for selecting statistics h, as in [222]. That is, one can pursue new
statistics by decreasing the entropy as measured in equation (5.5). An in-depth discussion is referred
to [208].

5.4.5 Experiment: sampling the Julesz ensemble

In our first set of experiments, we select all of the 56 linear filters (Gabor filters at various scales
and orientations and small Laplacian of Gaussian filters) used in [222]. The largest filter window
size is 19 × 19 pixels. We choose h to be the marginal histograms of these filters and sample the
Julesz ensemble using algorithm I. Although only a small subset of filters are often necessary for
each texture pattern, we use a common filter set in this section. We shall discuss statistics pursuit
issues in the next section. It is almost impractical to learn a FRAME model integrating all these 56
filters in our previous work [222]; the computation is much easier using the simpler but equivalent
model q(I;h).

We run the algorithm over a broad set of texture images collected from various sources. The
results are displayed in figures 5.7. The left columns show the observed textures, and the right
columns display the synthesized images whose sizes are 256 × 256 pixels. For these textures, the
marginal statistics closely match (less than 1% error for each histogram) after about 20 to 100
sweeps, starting with a temperature T0 = 3. Since the synthesized images are finite, the matching
error ε cannot be infinitely small. In general, we set ε ∝ 1

|Λ| .
These experiments demonstrate that Gabor filters and marginal histograms are sufficient for

capturing a wide variety of homogeneous texture patterns. For example, the cloth pattern in
the middle row of figure 5.7 has very regular structures, which are reproduced fairly well in the
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synthesized texture image. This demonstrates that Gabor filters at various scales align up without
using the joint histograms explicitly. The alignment or high order statistics are accounted for
through the interactions of the filters.

Figure 5.7: Left column: the observed texture images, right column: the synthesized texture images
that share the exact histograms with the observed for 56 filters.

Our experiments reveal two problems.
The first problem is demonstrated in the failed example in figure 5.7. The observed texture

patterns have large structures whose periods are longer than the biggest Gabor filter windows in
our filter set. As a result, these periodic patterns are scrambled in the two synthesized images, while
the basic texture features are well preserved.

The second problem is with the effectiveness of the Gibbs sampler. If we scale up the checker
board image so that each square of the check board is 15 × 15 pixels in size, then we have to
choose filters with large window sizes. It becomes infeasible to match the marginal statistics closely
using the Gibbs sampler in algorithm I, since flipping one pixel at a time is inefficient for such
large patterns. This suggests that we should search for more efficient sampling methods that can
update large image patches. We believe that this problem would occur for other statistics matching
methods, such as steepest descent [5, 69]. The inefficiency of the Gibbs sampler is also reflected in
its slow mixing rate. After the first image is synthesized, it takes a long time for the algorithm to
generate an image which is distinct from the first one. That is, the Markov chain moves very slowly
in the Julesz ensemble.
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Chapter 6

Cluster Sampling Methods

6.1 Introduction: Potts model and Swendsen-Wang

In this section, we review the Potts model and the Swendsen-Wang (SW) method.
Let G =< V,E > be an adjacency graph, such as a lattice with 4 nearest neighbor connections.

Each vertex vi ∈ V has a state variable xi with a finite number of labels (or colors), xi ∈ {1, 2, ...,L}.
The total number of labels L is predefined. LetX = (x1, x2, ..., x|V |) denote the labeling of the graph,
then the Ising/Potts model is a Markov random field,

πPTS(X) =
1

Z
exp{−

∑
<s,t>∈E

βst1(xs 6= xt)}, (6.1)

where 1(xs 6= xt) is a Boolean function, equal to 1 if its condition xs 6= xt is observed, and is 0
otherwise. If the number of possible labels L = 2 it is called the Ising model, and for L ≥ 3 it is
the Potts model. Usually we consider βst > 0 for a ferro-magnetic system that prefers same colors
for neighboring vertices. The Potts models and its extensions are used as a priori probabilities in
many Bayesian inference tasks.

Figure 6.1: Illustating the SW method. (a) An adjacency graph G and each edge e =< s, t > is
augmented with a binary variable µe ∈ {1, 0}. (b) A labeling of the Graph G where the edges
connecting vertices of different colors are removed. (c). A number of connected component after
turning off some edges in (b) probabilistically.
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As Fig.6.1.(a) illustrates, the SW method introduces a set of auxiliary variables on the edges.

U = {µe : µe ∈ {0, 1}, ∀e ∈ E}. (6.2)

The edge e is disconnected (or turned off) if and only if µe = 0. The binary variable µe follows a
Bernoulli distribution conditional on xs, xt.

µe|(xs, xt) ∼ Bernoulli(qe1(xs = xt)), with qe = 1− e−βst , ∀e ∈ E. (6.3)

µe = 1 with probability qe if xs = xt, and µe = 0 with probability 1 if xs 6= xt. The SW method
iterates the following two steps:

1. The clustering step. Given the current state X, it samples the auxiliary variables in U
according to eqn. (6.3). It first turns off each edges e according to µe. That is the edge e =< s, t >
is turned off deterministically if xs 6= xt, as Fig.6.1.(b) shows.

E = Eon(X) ∪ Eoff(X). (6.4)

The remaining edges are turned off the with probability ρst = exp(−βst). The edges e are
divided into "on" and "off" sets respectively depending on µe = 1 or 0. Therefore we further divide
the edge set Eon(X),

Eon(X) = Eon(U,X) ∪ Eoff(U,X). (6.5)

The edges in Eon(U,X) form a number of connected components, as shown in Fig. 6.1.(c). We
denote all the connected components given Eon(U,X) by,

CP(U,X) = {cpi : i = 1, 2, ...,K, with ∪Ki=1 cpi = V }. (6.6)

Vertices in each connected component cpi are guaranteed to have the same color. Intuitively,
the strongly coupled sites have higher probability to be probabilistically grouped into a connected
component. These connected components are "decoupled" for now.

2. The flipping step. It selects one connected component Vo ∈ CP at random and assigns a
common color ` to all vertices in Vo. The new label ` follows a uniform probability,

xs = ` ∀s ∈ Vo, ` ∼ uniform{1, 2, ...,L}. (6.7)

In this step, one may choose to repeat the random color flipping for one or all the connected
components in CP(U) independently, as they are decoupled given the edges in Eon(U,X). By
doing so, all possible labelings of the graph are connected in one step, just like one sweep of the
Gibbs sampler.

In one modified version by Wolff [205], one may choose a vertex v ∈ V and grow a connected
component following the Bernoulli trials on edges around v. This saves some computation in the
clustering step, and thus bigger components have higher chance to be selected.

In Figure 6.2 are shown consecutive realizations obtained by running the SW algorithm on the
Ising model for a lattice of size 256 × 256 for different values of the parameter βij = β. One can
see that for small values of β the samples appear random and for β = 1 most nodes have the same
label. There is a value β0 of β around 0.8 or 0.9 at which there is a phase transition between the
"random" phase and the "unicolor" phase. The value 1/β0 is called the critical temperature.

Using a path coupling technique, Cooper and Frieze [41] have showed that the mixing time τ
(see eqn. (6.34)) is polynomial in the number of vertices N if each vertex in the graph G is connected
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β = 0.1

β = 0.8

β = 0.9

β = 1.0

Figure 6.2: Consecutive samples obtained by the SW algorithm on the Ising model for different
values of βij = β. From top to bottom: β = 0.1, 0.8, 0.9, 1.0 respectively.

to O(1) neighbors, i.e. the connectivity of each vertex does not grow with the size of V . This is
usually observed in computer vision problems, such as lattices or planar graphs. The mixing time
becomes at worst case exponential when the graph G is fully connected [86]. Such cases usually
don’t occur in vision problems.

The Ising/Potts model p(x) can be used as a prior for vision problems, in a Bayesian model
p(x|I) ∝ p(I|x)p(x) where the likelihood p(I|x) measures how well the input image is explained
by x. However, the SW algorithm slows down in the presence of the likelihood, also known as an
external field. This is because the clusters are created entirely based on the prior coefficients βij ,
ignoring the likelihood.

Higdon introduced an auxiliary variable method named partial decoupling [93] that takes into
account the likelihood when growing the clusters. However, this approach is still limited to models
with Ising/Potts priors.
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Huber [95] developed a bounding chain method for Potts models (6.1) that can diagnose when
the SW Markov chain has converged and thus obtain exact sampling or perfect sampling [166]. The
number of steps for reaching exact sampling is in the order of O(log |Eo|) for temperatures that are
far below or far above the critical temperature.

6.2 Interpretations of the SW Algorithm

There are three different interpretations of the SW algorithm, one as a Metropolis-Hasting algorithm,
one as a data augmentation method with auxiliary variables and one as a slice sampling algorithm.
For simplicity in this section we assume that we are working with a homogeneous Potts model with
βst = β > 0, ∀ < s, t >∈ E.

6.2.1 Interpretation 1: Metropolis-Hastings perspective

The SW algorithm can be interpreted as a Metropolis-Hastings step with acceptance probability 1.

Figure 6.3: SW algorithm flips a patch of spins in one step for the Ising/Potts models.

Fig. 6.3 shows three partition states A, B and C which differ in the labels of the pixels in a
connected component Vo (denoted by R in the figure). Suppose the current state is A in which Vo
is connected to V1 which are the remaining black vertices. The edges that are turned off probabilis-
tically between Vo and V1 is a cut

C01 = C(V0, V1) = {e =< s, t >: s ∈ V0, t ∈ V1}.

The cut is illustrated by the crosses in Figure 6.3.
Obviously there are many ways to arrive at a connected component Vo through the random

steps. But they must share a common cut C(V0, V1).
Similarly if the Markov chain is currently at state B, it also has a chance to select a connected

component Vo in white. We denote the remaining white vertices as V2, and the cut between V0 and
V2 is

C02 = C(V0, V2) = {e =< s, t >: s ∈ V0, t ∈ V2}.

So far, we have a pair of states A and B who are different in the labels of Vo. A Metropolis-Hastings
method is used to realize a reversible move between them. Though it is difficult to compute the
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proposal probabilities Q(A → B) and Q(B → A), one can compute their ratio easily through
cancellation.

Q(A→ B)

Q(B → A)
=

(1− q)|C01|

(1− q)|C02|
= (1− q)|C01|−|C02|. (6.8)

In the above equation, |C| is the cardinality of the set. In other words, the probabilities for selecting
V0 in states A and B are the same, except that the cuts are different. Remarkably the probability
ratio for π(A)/π(B) is also decided by the cuts through cancellation.

π(A)

π(B)
=
e−β|C02|

e−β|C01|
= eβ(|C01|−|C02|) (6.9)

The acceptance probability for the move from A to B is,

α(A→ B) = min(1,
Q(B → A)

Q(A→ B)
· π(B)

π(A)
) = (

e−β

1− q
)|C01|−|C02|. (6.10)

By a smart choice of the edge probability

q = 1− e−β,

then the proposal from A to B is always accepted with

α(A→ B) = 1.

As β ∝ 1
T is proportional to the inverse temperature, thus q → 1 at low temperature and SW flips

a large patch at a time. So SW algorithm can mix very fast at even critical temperature.
Proof of eq.(6.8). Here is the sketch of the proof. A generalization of this idea, with a complete

proof will be given in Section 6.4.
Let UA|(X = A) and UB|(X = B) be the realizations of the auxiliary variables in states A and

B respectively. Following the Bernoulli probabilities in the flipping step, which leads to two sets of
connected components CP(UA|X = A) and CP(UB|X = B) respectively. We divide UA into two
sets for the on and off edges respectively,

UA = UA,on ∩UA,off . (6.11)

UA,on = {µe : µe = 1}, UA,off = {µe : µe = 0}.

We are only interested in the UA’s (and thus CP(UA|X = A)’s) which yield the connected compo-
nent Vo. We collect all such UA given A in a set,

Ω(Vo|A) = {UA s.t. Vo ∈ CP(UA|X = A)}. (6.12)

In order for Vo to be a connected component in A, all edges between Vo and V1 must be cut (turned
off), otherwise Vo can not be a connected component. So, we denote the remaining ”off” edges by
−Uoff ,

UA,off = C(Vo, V1) ∪ −UA,off , ∀UA ∈ Ω(Vo|A). (6.13)

Similarly, we collect all UB in state B which produce the connected component Vo,

Ω(Vo|B) = {UB s.t. Vo ∈ CP(UB|X = B)}. (6.14)
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In order for Vo to be a connected component in UB|B, the clustering step must cut all the edges
between Vo and V2. Thus we have

UB = UB,on ∪UB,off (6.15)

with
UB,off = C(Vo, V2) ∪ −UB,off , ∀UB ∈ Ω(Vo|B). (6.16)

A key observation is that there is a one-to-one mapping between Ω(Vo|A) and Ω(Vo|B).

Proposition 6.1. For any UA ∈ Ω(Vo|A), there exists one and only one UB ∈ Ω(Vo|B) such that

CP(UA|X = A) = CP(UB|X = B) (6.17)

and
UA,on = UB,on,

−UA,off =− UB,off . (6.18)

That is, UA and UB differ only in the cuts C(Vo, V1) and C(Vo, V2).

Proof. Suppose that we choose Vo ∈ CP(UA|X = A) with uniform probability, then the probability
for choosing Vo at state A is

q(Vo|A) =
∑

UA∈Ω(Vo|A)

1

|CP(UA|X = A)|
∏

e∈UA,on

qe
∏

e∈−UA,off

(1− qe)]
∏

e∈C(Vo,V1)

(1− qe). (6.19)

Similarly, the probability for choosing Vo at state B is

q(Vo|B) =
∑

UB∈Ω(Vo|B)

1

|CP(UB|X = B)|
∏

e∈UB,on

qe
∏

e∈−UB,off

(1− qe)]
∏

e∈C(Vo,V2)

(1− qe). (6.20)

Dividing eqn. (6.19) by eqn. (6.20), we obtain the ratio in eqn. (6.44) due to cancellation following
the observations in Proposition 6.1. �

In a special case when C(Vo, V1) = ∅, then
∏
e∈C(Vo,V1)(1 − qe) = 1. Note that the proof holds

for arbitrary design of qe.
There is a slight complication, when there are two paths connecting the two states, as illustrated

in Figure 6.4.

Figure 6.4: State A has two subgraphs V1 and V2 which are merged in state B.

Path 1. Choose Vo = V1. In state A, choose new label ` = 2, i.e. merge Vo to V2, and reversely
in state B, choose new label ` = 1, i.e. split Vo from V2.
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Path 2. Choose Vo = V2. In state A, choose new label ` = 1, i.e. merge Vo to V1, and reversely
in state B, choose ` = 2, i.e. split Vo from V1. In such case, the proposal probability ratio is,

Q(B → A)

q(A→ B)
=
Q(Vo = V1|B)q(XVo = 2|Vo, B) + q(Vo = V2|B)q(XVo = 1|Vo, B
q(Vo = V1|A)q(XVo = 1|Vo, A)) + q(Vo = V2|A)q(XVo = 2|Vo, A)

. (6.21)

In state A, the SW-cut C(Vo, V` \ Vo) = ∅ for both paths, and in state B the cut is C(V1, V2) for
both paths. Following Prop. 6.7, the probability ratios for choosing Vo = V1 and Vo = V2 are equal,

q(Vo = V1|A)

q(Vo = V1|B)
=

1∏
e∈C(V1,V2)(1− qe)

=
q(Vo = V2|A)

q(Vo = V2|B
. (6.22)

Once Vo is selected, either Vo = V1 or Vo = V2, then the remaining partition for both A and
B are the same, and is denoted by XV \Vo = XV \Vo . In proposing the new label of Vo, we easily
observe that

q(XVo = 2|Vo = V1, B)

q(XVo = 1|Vo = V2, A)
=
q(XVo = 1|Vo = V2, B)

q(XVo = 2|Vo = V1, A)
. (6.23)

Then the acceptance rate remains 1.

6.2.2 Interpretation 2: data augmentation

The SW method described above is far from what was presented in the original paper [180]. Instead
our description follows the interpretation by Edward and Sokal [59], who augmented the Potts model
to a joint probability for both X and U,

pES(X,U) =
1

Z

∏
e=<s,t>∈E

[(1− ρ)1(µe = 0) + ρ1(µe = 1) · 1(xs = xt)] (6.24)

=
1

Z
[(1− ρ)|Eoff(U)| · ρEon(U)] ·

∏
<s,t>∈Eon(U)

1(xs = xt). (6.25)

The second factor
∏
<s,t>∈Eon(U) 1(xs = xt) is in fact a hard constraint on X and U. Let the space

of X be
Ω = {1, 2, ...,L}|V |. (6.26)

Under this hard constraint, the labelingX is reduced to a quotient space Ω
CP(U) where each connected

component must have the same label,∏
<s,t>∈Eon(U)

1(xs = xt) = 1(X ∈ Ω

CP(U)
). (6.27)

The joint probability pES(X,U) observes two nice properties, both of which are easy to verify.

Proposition 6.2. The Potts model is a marginal probability of the joint probability,∑
U

pES(X,U) = πPTS(X). (6.28)

The other marginal probability is the random cluster model πRCM,∑
X

pES(X,U) = πRCM(U) =
1

Z
(1− ρ)|Eoff(U)| · ρEon(U)L|CP(U)|. (6.29)
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Proposition 6.3. The conditional probabilities of pES(X,U) are

pES(U|X) =
∏

<s,t>∈E
p(µe|xs, xt), with p(µe|xs, xt) = Bernoulli(ρ1(xs = xt)), (6.30)

pES(X|U) = unif[
Ω

CP(U)
] = (

1

L
)|CP(U)| for X ∈ Ω

CP(U)
; = 0 otherwise. (6.31)

Therefore the two SW steps can be viewed as sampling the two conditional probabilities.

1. Clustering step: U ∼ pES(U|X), i.e. µe|(xs, xt) ∼ Bernoulli(ρ1(xs = xt)).

2. Flipping step: X ∼ pES(U|X), i.e. X(cpi) ∼ Unif{1, 2, ...,L}, ∀cpi ∈ CP(U).

As (X,U) ∼ pES(X,U), discarding the auxiliary variables U, we have X following the marginal of
pES(X,U). The goal is achieved,

X ∼ πPTS(X). (6.32)

The beauty of this data augmentation method (Tanner and Wong [181]) is that the labels of the
connected components are completely decoupled (independent) given the auxiliary variables. As
ρ = 1 − e−β , it tends to choose smaller clusters if the temperature (T ∝ 1

β ) in the Potts model is
high, and in low temperature it chooses large clusters. So it can overcome the coupling problem
with single site Gibbs sampler.

6.3 Some theoretical results

Let the Markov chain have kernel K and initial state Xo, in t steps the Markov chain state follows
probability pt = δ(X−Xo)Kt where δ(X−Xo) (for δ(X−Xo) = 1 for X = Xo and 0 otherwise) is
the initial probability. The convergence of the Markov chain is often measured by the total variation

||pt − π||TV =
1

2

∑
X

|pt(X)− π(X)|. (6.33)

The mixing time of the Markov chain is defined by

τ = max
Xo

min{t : ||pt − π||TV ≤ ε}. (6.34)

τ is a function of ε and the graph compexlity M = |Go| in terms of the number of vertices and
connectivity. The Markov chain is said to mix rapidly if τ(M) is polynomial or logarithmic.

Empirically, the SW method is found to mix rapidly. Recently some analytic results on its
performance have surfaced. Cooper and Frieze [41] proved using a path coupling technique that SW
mixes rapidly on sparsely connected graphs.

Theorem 6.4. (Cooper and Frieze 1999) Let n = |V | and ∆ be the maximum number of edges at
any single vertex, and L the number of colors in Potts model. If G is a tree, then the SW mixing
time is O(n) for any β and L. If ∆ = O(1), then there exists ρo = ρ(∆) such that if ρ ≤ ρo (i.e.
higher than a certain temperature), then SW has polynomial mixing time for all L.

A negative case was constructed by Gore and Jerrum [86] on complete graph.

Theorem 6.5. (Gore and Jerrum 1997) If G is a complete graph and L > 2, then for β =
2(L−1) ln(L−1)

n(L−2) , the SW does not mix rapidly.
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In the image analysis applications, our graph often observes the Copper-Frieze condition and
the graph is far from being complete.

Most recently an exact sampling technique was developed for SW on Potts by Huber [95] for
very high or very low temperatures. It designs a bounding chain which assumes that each vertex
s ∈ V has a set of colors Ss initialized with the full set |Ss| = L, ∀s. The Bernoulli probability for
the auxiliary variables µe is changed to

Ubd = {µbd
e : µbd

e ∈ {0, 1}, µe ∼ Bernoulli(ρ1(Ss ∩ St 6= ∅))}. (6.35)

Thus Ubd has more edges than U in the original SW chain, i.e. U ⊂ Ubd. When Ubd collapses to
U, then all SW chains starting with arbitrary initial states have collapsed into the current single
chain. Thus it must have converged (exact sampling). The step for collapsing is called the "coupling
time".

Theorem 6.6. (Huber 2002) Let n = |V | and m = |E|, at high temperature, ρ < 1
2(∆−1) , the bound-

ing chain couples completely by time O(ln(2m)) with probability at least 1/2. At lower temperature,
ρ ≥ 1− 1

mL , then the coupling time is O((mL)2) with probability at least 1/2.

In fact the Huber bound is not very tight as one may expect. Fig. 6.5(a) plots the results on
a 5 × 5 lattice with torus boundary condition on the Ising model for the empirical coupling time
against ρ = 1 − e−β . The coupling time is large near the critical temperature (didn’t plot). The
Huber bound for the high temperature starts with ρo = 0.16 and is plotted by the short curve.
The bound for the low temperature starts with ρo > 0.99 which is not visible. Fig.6.5.(b) plots the
coupling time at ρ = 0.15 against the graph size m = |E| and the Huber bound.

(a) (b)

Figure 6.5: The coupling time empirical plots and the Huber bounds for Ising model.

Despite the encouraging success discussed above, the SW method is limited in two aspects.
Limit 1. It is only valid for the Ising and Potts models, and furthermore it requires that the

number of colorings L is known. In many applications, such as image analysis, L is the number of
objects (or image regions) which has to be inferred from the input data.

Limit 2. It slows down quickly in the presence of external field, i.e input data. For example, in
the image analysis problem, our goal is to infer the label X from the input image I and the target
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probability is a Bayesian posterior probability where πPTS(X) is used as a prior model,

π(X) = π(X|I) ∝ L(I|X)πPTS(X). (6.36)

L(I|X) is the likelihood model, such as independent Gaussians N(Īc, σ
2
c ) for each coloring c =

1, 2, ...,L,

L(I|X) ∝
L∏
c=1

∏
xi=c

1√
2πσc

exp{−(I(vi)− Īc)
2

2σ2
c

}. (6.37)

The slowing down is partially attributed to the fact that the Bernoulli probability ρ = 1− e−β for
the auxiliary variable is calculated independently of the input image.

Figure 6.6: A reversible move between three partition states πA(left), πB (middle), and πC(right)
that differ only in the color of the set V0. The vertices connected by thick edges form a connected
component. The thin lines marked with crosses are edges in the SW-cuts.

6.4 Swendsen-Wang Cuts for Arbitrary Probabilities

In this section, we generalize the SW to arbitrary probabilities from the perspective of Metropolis-
Hastings method [91,139]. Our method iterates three steps: (i) a clustering step driven by data, (ii)
a label flipping step which can introduce new labels, and (iii) an acceptance step for the proposed
labelling. A key observation is the simple formula in calculating the acceptance probabilities.

We deliberate the three steps in the following three subsections, and then we show how it reduces
to the original SW with Potts models.

(a). Input image (b). superpixels (c). segmentation

Figure 6.7: Example of image segmentation. (a). Input image. (b). Superpixels obtained by edge
detection followed by edge tracing and contour closing. Each superpixel is a vertex in the graph G.
c. Segmentation (labeling) result where each closed region is assigned a color or label.
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We illustrate the algorithm by an example on image segmentation shown in Fig. 6.7. Fig. 6.7.(a)
is an input image I on a lattice Λ, which is decomposed into a number of "superpixels" to reduce the
graph size in a preprocessing stage. Each superpixel has nearly constant intensity and is a vertex in
the graph G. Two vertices are connected if their superpixels are adjacent (i.e. sharing boundary).
Fig. 6.7.(c) is a result by our algorithm optimizing a Bayesian probability π(X) = π(X|I) (see
section (6.6) for details). The result X assigns a uniform color to all vertices in each close region
which hopefully corresponds to an object in the scene or a part of it. Note that the number of
objects or colors L is unknown, and we do not distinguish the different permutations of the labels.

6.4.1 Step 1: data-driven clustering

We augment the adjacency graph G with a set of binary variables on the edges U = {µe : e =<
s, t >∈ E}, as in the original SW method. Each µe follows a Bernoulli probability depending on
the current state of the two vertices xs and xt,

µe|(xs, xt) ∼ Bernoulli(qe1(xs = xt)), ∀ < s, t >∈ E. (6.38)

qe is a probability on edge e =< s, t > which tells how likely the two vertices s and t have the same
label. In Bayesian inference where the target π(X) is a posterior probability, then qe can be better
informed by the data.

For the image segmentation example, qe is computed based on the similarity between image
intensities at s and t (or their local neighborhood) and it may be an approximate to the marginal
probability of π(X|I),

qe = q(xs = xt|I(s), I(t)) ≈ π(xs = xt|I). (6.39)

There are many ways for computing q(xs = xt|I(vs), I(vt)) using so called discriminative methods,
and it is beyond the scope of this book to discuss details.

Figure 6.8: Three examples of the connected components for the horse image computed using
discriminative edge probabilities given that X is a uniform color X = c for all vertices.

Our method will work for any qe, but a good approximation will inform the clustering step and
achieve faster convergence empirically. Fig. 6.8 shows nine clustering examples of the horse image.
In these examples, we set all vertices to the same color (X = c) and sample the edge probability
independently,

U|X = c ∼
∏

<s,t>∈E
Bernoulli(qe). (6.40)

The connected components in CP(U) are shown by different regions. We repeat the clustering step
nine times. As we can see, the edge probabilities lead to "meaningful" clusters which correspond to
distinct objects in the image. Such effects cannot be observed using constant edge probabilities.
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6.4.2 Step 2: flipping of color

Let X = (x1, x2, ..., x|V |) be the current coloring state, and the edge variables U sampled conditional
on X further decompose X into a number of connected components

CP(U|X) = {cpi : i = 1, 2, ..., N(U|X)}. (6.41)

Suppose we select one connected component Vo ∈ CP(U|X) with color XVo = ` ∈ {1, 2, ..., L},
and assign its color to `′ ∈ {1, 2, ..., L, L + 1} with probability q(l′|Vo,X) (to be designed shortly),
obtaining new state X′. There are three cases shown in Fig. 6.3.

1. The canonical case: Vo ⊂ V` and `′ ≤ L. That is, a portion of V` is re-grouped into an existing
color V`′ , and the number of colors remains L = L in π′. The moves between A ↔ B in Fig.
6.3 are examples.

2. The merge case: Vo = V` in X is the set of all vertices that have color ` and `′ ≤ L, ` 6= `′.
That is, color V` is merged to V`′ , and the number of distinct colors reduces to L − 1 in X′.
The moves XC → XA or XC → XB in Fig. 6.3 are examples.

3. The split case: Vo ⊂ V` and `′ = L+ 1. V` is split into two pieces and the number of distinct
color increases to L+ 1 in X′. The moves XA → XC in Fig.6.3 are examples.

Note that this color flipping step is also different from the original SW with Potts model as we
allow new colors in each step. The number of color L is not fixed.

6.4.3 Step 3: accepting the flipping

The previous two steps basically have proposed a move between two states X and X′ which differ
in coloring a connected component Vo. In the third step we accept the move with probability,

α(X→ X′) = min{1, q(X
′ → X)

q(X→ X′)
· π(X′)

π(X)
}. (6.42)

q(X′ → X) and q(X → X′) are the proposal probabilities between X and X′. If the proposal is
rejected, the Markov chain stays at state X. The transition kernel is

K(X→ X′) = q(X→ X′)α(X→ X′), ∀X 6= X′. (6.43)

For the canonical case, there is a unique path for moving between bX and X′ in one step –
choosing Vo and changing its color. The proposal probability ratio is the product of two ratios
decided by the clustering and flipping steps respectively: (i) the probability ratio for selecting Vo
as the candidate in the clustering step in both states X and X′, and (ii) the probability ratio for
selecting the new labels for Vo in the flipping step.

q(X′ → X)

q(X→ X′)
=
q(Vo|X′)
q(Vo|X)

· q(XVo = `|Vo,X′)
q(XVo = `′|Vo,X)

. (6.44)

For the split and merge cases, there are two paths between X and X′. But this does not change the
conclusion (see Appendix B).

Now we compute the probability ratio q(Vo|X′)
q(Vo|X) for proposing Vo.
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Definition 6.1. Let X = (V1, V2, ..., VL) be a coloring state, and Vo ∈ CP(U |X) a connected
component, the "cut" between Vo and Vk is a set of edges between Vo and Vk\Vo,

C(Vo, Vk) = {< s, t >: s ∈ Vo, t ∈ Vk\Vo}, ∀k.

One of the key observations is that this ratio only depends on the cuts between Vo and rest
vertices.

Proposition 6.7. In the above notation, we have

q(Vo|X)

q(Vo|X′)
=

∏
<i,j>∈C(Vo,V`)(1− qij)∏
<i,j>∈C(Vo,V`′ )

(1− qij)
. (6.45)

qe’s are the edge probabilities.

Thus the acceptance probability is given by the following

Theorem 6.8. (Barbu and Zhu, 2005) The acceptance probability for the proposed swapping is

α(X→ X′) = min{1,
∏
<i,j>∈C(V0,V`′ )

(1− qij)∏
<i,j>∈C(V0,V`)

(1− qij)
· q(XV0 = `|V0,X

′)

q(XV0 = `′|V0,X)
· π(X′)

π(X)
}. (6.46)

[Proof] See Theorem 2 in Barbu and Zhu [9].

Example 6.1. In image analysis, π(X) is a Bayesian posterior π(X|I) ∝ L(I|X)po(X) with the prior
probability po(X) being a Markov model (like Potts in Eqn. (6.37)). Therefore one can compute
the ratio of the target probabilities in the local neighborhood of Vo, i.e. ∂Vo.

π(X′)

π(X)
=
L(IVo |XVo = `′)

L(IVo |XVo = `)
· po(XVo = `′|X∂Vo)

po(XVo = `|X∂Vo)
(6.47)

Note that X∂Vo = X′∂Vo in the above equation.

The second ratio in eq.(6.46) is easy to design. For example, we can make it proportional to the
likelihood,

q(XVo = `|Vo,X) = L(IVo |XVo = `), ∀`. (6.48)

Therefore,
q(XVo = `|Vo,X′)
q(XVo = `′|Vo,X)

=
L(IVo |XVo = `)

L(IVo |XVo = `′)
(6.49)

It cancels the likelihood ratio in eqn.(6.47). We get

Proposition 6.9. The acceptance probability for the proposed cluster flipping using the proposal
(6.48) is,

α(X→ X′) = min{1,
∏
<s,t>∈C(R,V`′ )

(1− qe)∏
e∈C(Vo,V`)(1− qe)

· po(XVo = `′|X∂Vo)

po(XVo = `|X∂Vo)
}. (6.50)

The result above states that the computation is limited to a local neighborhood of Vo defined
by the prior model. This result is also true if one changes the clustering step by growing Vo from a
vertex, i.e. the Wolff modification.

In the experiments on image analysis, our cluster sampling method is empirically O(100) times
faster than the single site Gibbs sampler in terms of CPU time. We refer to plots and comparison
in Figs.(6.11), (6.12) and (6.13) in section (6.6) for details.
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6.4.4 Complexity Analysis

This section presents an evaluation of the computation complexity of the SWC algorithm.
Let N = |V | be the number of points of the graph G =< V,E >.
Each of the N it iterations of the SWC algorithm involves the following steps:

• Sampling the edges in the data driven clustering step, which is O(|E|). Assuming that G =<
V,E > is sparse (which is usually the case in vision), then O(|E|) = O(N).

• Constructing connected components, which is O(|E|α(|E|)) = O(Nα(N)) using the disjoint
set forest data structure [66, 70]. The function α(N) is the inverse of f(n) = A(n, n) where
A(m,n) is the fast growing Ackerman function [1]. In fact α(N)≤ 5 for N ≤ 221019729

, thus for
all practical values of N .

• Computing π(X) depends on the problem, but is usually O(N).

• Flipping the label of one connected component, which is O(N).

Therefore one iteration is O(Nα(N)) and all the SWC iterations take O(N itNα(N)) time.

6.4.5 Example: SWC for Gaussian Mixture Models

Let {xi ∈ Rd, i = 1, ..., n} be data points assumed to originate from a mixture of k multivariate
Gaussians with unknown mixture weights αi, means µi ∈ Rd and covariance matrices Σi, for i =
1, . . . ,K. Let Θ contain all the unknown mixture parameters αi, µi,Σi, i = 1, . . . ,K.

The log likelihood (energy) of the Gaussian mixture model is:

logP (Θ) =
n∑
i=1

log
K∑
j=1

αjG(xi;µj ,Σj)− logZ(Θ), (6.51)

where G(xi;µj ,Σj) = 1√
det(2πΣj)

exp
[
−1

2 (xi − µj)T Σ−1
j (xi − µj)

]
is a Gaussian and Z(θ) is the

normalization constant.
If the labels assigning points to clusters are known, say L = (l1, . . . , ln) then the log likelihood

is

logP (L,Θ) =
K∑
j=1

∑
i∈Lj

logG(xi;µj ,Σj)

where Lj = {i, li = j}.
Sampling P (Θ) can be done by sampling P (L,Θ) and taking the marginal P (θ). Sampling

P (L,Θ) can be done by alternating sampling P (L|Θ) and P (Θ|L).
For sampling P (L|Θ) we can use the SWC algorithm. We construct the SWC graph as the k-NN

graph and use a constant probability q for all the edge weights.

Sampling P (Θ|L) is more involved. First, we should observe that P (Θ|L) =
K∏
j=1

∏
i∈Lj

G(xi;µj ,Σj)

splits in independent parts: P (Θ|L) =
∏K
j=1 P (Θj |Lj), where θj = (αj , µj ,Σj). Thus we can sample

P (Θj |Lj) independently for each j by sampling P (µj |Lj ,Σj) and P (Σj |µj , Lj). Now

P (µj |Σj , Lj) =
∏
i∈Lj

G(xi;µj ,Σj) ∝ G(µj ,
1

nj

∑
i∈Lj

xi,
1

nj
Σj)
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is just a Gaussian, where nj = |Lj |. Also,

P (Σj |µj , Lj) = det(Σj)
−nj/2 exp(−1

2

∑
i∈Lj

(µj−xi)
TΣ−1

j (µj−xi)) = det(Σj)
−nj/2 exp(−1

2
tr(Σ̂Σ−1

j ))

where Σ̂ =
∑

i∈Lj (µj − xi)(µj − xi)
T and we used that tr(AB) = tr(BA) with A = (µj − xi) and

B = (µj − xi)
TΣ−1. Since Σ̂ is symmetric and positive definite, there exists symmetric positive

definite S such that Σ̂ = S2. Then writing B = SΣ−1
j S we get

P (Σj |µj , Lj) = det(Σ)−nj/2 exp(−1

2
tr(SΣ−1S)) = det(S)−nj/2 det(B)nj/2 exp(−1

2
tr(B)).

Now writing B = UDUT where D = diag(λ1, ..., λd) is diagonal we obtain

P (Σj |µj , Lj) ∝ det(D)nj/2 exp(−1

2
tr(D)) =

d∏
i=1

λ
n/2
i e−λi/2

so to sample Σj we first sample the eigenvalues λi independently from the Gamma distribution
Γ(1 +

nj
2 , 2) to obtain D = diag(λ1, ..., λd), then take any rotation matrix U to obtain B = UDUT

and Σj = SUDUTS.

6.5 Variants of the cluster sampling method

In this section, we briefly discuss two variants of the cluster sampling method.

6.5.1 Cluster Gibbs sampling — the "hit-and-run" perspective

(a) (b)

Figure 6.9: Illustrating the cluster Gibbs sampler. (a) The cluster Vo has a number of neighboring
components of uniform color. (b) The cuts between Vo and its neighboring colors. The sampler
follows a conditional probability modified by the edge strength defined on the cuts.

With a slight change, we can modify the cluster sampling method to become a generalized Gibbs
sampler.

Suppose that Vo ∈ CP(U |X) is the candidate chosen in the clustering step, and Fig. 6.9 shows
its cuts with adjacent sets

C(Vo, Vk), k = 1, 2, ...,L(X).
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We compute the edge weight γk as the strength of connectivity between Vo and Vk\R,

γk =
∏

e∈C(Vo,Vk)

(1− qe). (6.52)

Proposition 6.10. Let π(X) be the target probability, in the notation above. If R is relabeled
probabilistically with

q(XVo = k|Vo,X) ∝ γkπ(XVo = k|X∂Vo), k = 1, 2, ...., N(X), (6.53)

then the acceptance probability is always 1 in the third step.

This yields a generalized Gibbs sampler which flips the color of a cluster according to a modified
conditional probability.

Cluster Gibbs Sampler
1. Cluster step: choosing a vertex v ∈ V and group a cluster Vo from v by the Bernoulli edge

probability µe.
2. Flipping step: relabel Vo according to eqn. (6.53).

The traditional single site Gibbs sampler [75] is a special case when qe = 0 for all e and thus
Vo = {v} and γk = 1 for all k.

One may also view the above method from the perspective of hit-and-run. In continuous state
space, a hit-and-run method (see [84]) chooses a new direction ~e (random ray) at time t and then
sample on this direction by a ∼ π(x+a~e). Liu and Wu [125] extended it ray to any compact groups
of actions. In finite state space Ω, one can choose any finite sets Ωa ⊂ Ω and then apply the Gibbs
sampler within the set.

But it is difficult to choose good directions or subsets in hit-and-run methods. In the cluster
Gibbs sampler presented above, the subset is selected by the auxiliary variables on the edges.

6.5.2 The multiple flipping scheme

Given a set of connected components CP(U|X) (see eqn. (6.41)) after the clustering step, instead
of flipping a single component R, we can flip all (or any chosen number of) connected components
simultaneously. There is room for designing the proposal probabilities for labeling these connected
components, independently or jointly. In what follows, we assume the labels are chosen indepen-
dently for each connected component cp ∈ CP(U|X), by sampling from a proposal probability
q(Xcp = l|cp). Suppose we obtain a new label X′ after flipping. Let Eon(X) ⊂ E and Eon(X′) ⊂ E
be the subsets of edges that connect the vertices of same color in X and X′ respectively. We define
two cuts by the differences of the sets

C(X→ X′) = Eon(X′)− Eon(X), and C(X′ → X) = Eon(X)− Eon(X′), (6.54)

We denote the set of connected components which have different colors before and after the
flipping by D(X,X′) = {cp : Xcp 6= X′cp}.

Proposition 6.11. The acceptance probability of the multiple flipping scheme is

α(X→ X′) = min{1,
∏
e∈C(X→X′)(1− qe)∏
e∈C(X′→X)(1− qe)

∏
cp∈D(X,X′) q(X

′
cp|cp)∏

cp∈D(X,X′) q(Xcp|cp)
· p(π

′)

p(π)
} (6.55)
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Observe that when D = {Vo} is a single connected component, this reduces to Theorem 6.50.
It is worth mentioning that if we flip all connected components simultaneously, then the Markov

transition graph of K(X,X′) is fully connected, i.e.

K(X,X′) > 0, ∀X,X′ ∈ Ω. (6.56)

This means that the Markov chain can walk between any two partitions in a single step.

(a) input image (b) superpixels (c) segmentation result

Figure 6.10: More results for image segmentation.

(a) convergence CPU time in seconds (b) Zoomed-in view of the first 5 seconds.

Figure 6.11: The plot of − lnπ(X) over computing time for both the Gibbs sampler and our
algorithm for the horse image. Both algorithms are measured by the CPU time in seconds using a
Pentium IV PC. So they are comparable. (a). Plot in the first 1, 400 seconds. The Gibbs sampler
needs a high initial temperature and slow annealing step to achieve the same energy level. (b). The
zoomed-in view of the first 5 seconds.
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6.6 Application: Image Segmentation

Our first experiment tests the cluster sampling algorithm in an image segmentation task. The
objective is to partition the image into a number of disjoint regions (as Figs.6.7 and 6.8 have
shown) so that each region has consistent intensity in the sense of fitting to some image models.
The final result should optimize a Bayesian posterior probability π(X) ∝ L(I|X)po(X).

In such problem,G is an adjacency graph with vertices V being a set of superpixels (see Figs.(6.7)
and (6.8)). Usually |V | = O(102). For each superpixel v ∈ V , we compute a 15-bin intensity
histogram h normalized to 1. Thus the edge probability is calculated as

qij = p(µe = on|I(vi), I(vj)) = exp{−1

2
(KL(hi||hj) +KL(hj ||hi))}, (6.57)

where KL() is the Kullback-Leibler divergence between the two histograms. Usually qe should
be close to zero for e crossing object boundary. In our experiments, the edge probability leads to
good clustering as Fig. 6.8 shows.

Now we briefly define the target probability in this experiment. LetX = (V1, ..., VL) be a coloring
of the graph with L being a unknown variable, and the image intensities in each set Vk is consistent
in terms of fitting to a model θk. Different colors are assumed to be independent. Therefore, we
have,

π(X) = π(X|I) ∝
L∏
k=1

[L(I(Vk); θk)po(θk)]po(X). (6.58)

We selected three types of simple models for the likelihood models to account for different image
properties. The first model is a non-parametric histogram H, which in practice is represented by a
vector of B-bins (H1, ...,HB) normalized to 1. It accounts for cluttered objects, like vegetation.

I(x, y; θ0) ∼ H iid, ∀(x, y) ∈ Vk. (6.59)

Figure 6.12: Convergence comparison between the clustering method and Gibbs sampler in CPU
time (seconds) on the artificial image (circles, triangle and rectangles) in the first row of Fig.6.10.
(Left). The first 1,200 seconds. (Right) Zoomed-in view of the first 30 seconds. The clustering
algorithm is run 5 trials for both the random and uniform initializations.

The other two are regression models for the smooth change of intensities in the two-dimensional
image plane (x, y), and the residues follow the empirical distribution H (i.e. the histogram).

I(x, y; θ1) = β0 + β1x+ β2y +H iid, ∀(x, y) ∈ Vk. (6.60)
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Figure 6.13: Convergence comparison between the clustering method and Gibbs sampler in CPU
time (seconds) on the cheetah image. (Left) The first 1,200 seconds. (Right) Zoomed-in view of
the first 15 seconds. The clustering algorithm is run 5 times for both the random and uniform
initializations.

I(x, y; θ2) = β0 + β1x+ β2y + β3x
2 + β4xy + β5y

2 +H iid, ∀(x, y) ∈ Vk. (6.61)

In all cases, the likelihood is expressed in terms of the entropy of the histogram H

L(I(Vk); θk) ∝
∏
v∈Vk

H(Iv) =
B∏
j=1

Hnjj = exp(−|Vk|entropy(H)). (6.62)

The model complexity is penalized by a prior probability po(θk) and the parameters θ in the
above likelihoods are computed deterministically at each step as the best least square fit. The
deterministic fitting could be replaced by the reversible jumps together with the flipping of color.
This was done in [193] and will be presented in Chapter 8.

The prior model po(X) encourages large and compact regions with small number of colors, as it
was suggested in [193]. Let r1, r2, ..., rm, m ≥ L be the connected components of all Vk, k = 1, ...,L.
Then the prior is

po(X) ∝ exp{−α0L− α1m− α2

m∑
k=1

Area(rk)
0.9}. (6.63)

For the image segmentation example (horse) shown in Figs. 6.7 and 6.8, we compare the cluster
sampling method with the single-site Gibbs sampler and the results are displayed in Fig. 6.11. Since
our goal is to maximize the posterior probability π(X), we must add an annealing scheme with a
high initial temperature To and then decreases to a low temperature (0.05 in our experiments). We
plot the − lnπ(X) over CPU time in seconds with a Pentium IV PC. The Gibbs sampler needs to
raise the initial temperature high (say To ≥ 100)) and uses a slow annealing schedule to reach a good
solution. The cluster sampling method can run at low temperature. We usually raise the initial
temperature to To ≤ 15 and use a fast annealing scheme. Fig. 6.11.(a) plots the two algorithms at
the first 1, 400 seconds, and Fig. 6.11.(b) is a zoomed-in view for the first 5 seconds.

We run the two algorithms with two initializations. One is a random labeling of the superpixels
and thus has higher − lnπ(X), and the other initialization sets all vertices to the same color.
The clustering methods are run five times on both cases. They all converged to one solution (see
Fig.6.7.(c)) within 1 second, which is O(102) times faster than the Gibbs sampler.

107



Fig.6.10 shows four more images. Using the sample comparison method as in the horse image, we
plot − lnπ(X) against running time in Figs. 6.12 and 6.13 for the images in the first and second row
of Fig.6.10 respectively. In experiments, we also compared the effect of the edge probabilities. The
clustering algorithm are O(100) times slower if we use a constant edge probability µij = c ∈ (0, 1)
as the original SW method does. For example the single-site Gibbs sampler is an example with
qij = 0, ∀ i, j.

6.7 Multigrid and multi-level SW-cut

The essence of the SW-cut is a Markov chainMC =< ν,K, p > which visits a sequence of states in
the partition space Ωπ over time t,

π(0), π(1), ...., π(t) ∈ Ωπ.
The MC consists of three elements. (1). An initial probability ν(π) with π(0) ∼ ν(π). (2).

A transition kernel K(π, π′) which is a conditional probability for moving from state π(t) = π to
π(t + 1) = π′. (3). An invariance probability p(π) which is the Bayesian posterior probability for
the partitions in a vision task.

The three theorems in the previous section ensure that the SW-cut design observes the detailed
balance equations

p(π)K(π, π′) = p(π′)K(π′, π), ∀π′, π. (6.64)
This is a sufficient condition for p(π) being the invariant probability of the kernel K,∑

π

p(π)K(π, π′) = p(π′). (6.65)

Once it converges, the SW-cut simulates fair samples from p(π)

Figure 6.14: Multi-level SW-cut for joint image and motion segmentation.
The SW-cut is characterized by three selections in its design.
(I). The discriminative proposal probabilities defined on the edges of the adjacency graph G =<

V,E >. q(π) =
∏
e∈E qe is a factorized approximation to p(π) and it influences the formation

connected components CP, and thus the candidate component Vo.
(II) The uniform probability for selecting Vo from a connected component Vo ∈ CP.
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(III) The reassignment probability Q(`new(Vo)|Vo, πA) for the new label of the connected com-
ponent Vo.

We extend the SW-cut for speed and generality by introducing the multigrid and multilevel
SW-cuts which provide more flexible means for selecting Vo’s and q(π)’s.

In summary, the two extensions are new directions for sampling p(π)

1. The multigrid SW-cuts simulates Markov chainMCmg with kernel Kmg sampling the condi-
tional probabilities of p(π).

2. The multi-level SW-cuts simulates Markov chainMCml with kernel Kml sampling the condi-
tional probabilities of p(π) at the higher levels, and the full posterior at the lover level.

BothMCmg andMCml satisfy the detailed balance equations in (6.64), as it will be shown in the
following sections. The proofs are based on the following result.

Let p(x, y) be a two dimensional probability, and K be a Markov kernel sampling its conditional
probability p(x|y) (or p(y|x)). Thus it observes the detailed balance equation,

p(x|y)K(x, x′) = p(x′|y)K1(x′, x), ∀x, x′. (6.66)

Theorem 6.12. In the above notation, K observes the general detailed balance equations after
augmenting y

p(x, y)K((x, y), (x′, y′)) = p(x′, y′)K((x′, y′), (x, y)).

Proof. If y = y′, then it is straightforward. If y 6= y′ then K((x, y), (x′, y′)) = K((x′, y′), (x, y)) =
0 because there is no way to go from state (x, y) to state (x′, y′).

The conclusion of this theorem is that an algorithm which is reversible when sampling from a
conditional probability is also reversible for sampling the full probability.

Figure 6.15: Multigrid SW-cut: run SW-cut within an “attention” window Λ with the rest of the
labels fixed, and it realizes a reversible move between two states πA and πB by flipping the label of
Vo ⊂ VΛ.

6.7.1 SW-cuts at multigrid

We first study the multigrid SW-cut. Recall that in each step the SW-cut turns off, probabilistically,
the edges in the entire adjacency graph, and this could be less effective especially when G is very
large. The concept of multigrid SW-cut is to allow us to select certain “attentional” windows and
run the SW-cut within the window. Thus it provides flexibility in designing a “visiting scheme” by
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Figure 6.16: Selecting windows in a multigrid scheme

selecting windows of various sizes and locations over time. For example, Fig. 6.16 shows windows
in a multigrid arrangement.

Let G =< V,E > be the adjacency graph, π = {V1, ..., Vn} the current partition, and Λ an
attentional window of arbitrary size and shape. Λ divides the vertices into two subsets V = VΛ∪VΛ̄

for vertices inside and outside the window respectively. For example, Fig.6.15 displays a rectangular
window Λ (in red) in a lattice G.

The Λ further removes some edges within each subset Vi, i = 1, 2, ..., n, and we denote them by,
C(Vi|Λ) = {e =< s, t >: s ∈ Vi ∩ VΛ, t ∈ Vi ∩ VΛ̄}.

For example, in Fig.6.15 the window Λ intersects with three subsets V1 (white), V2 (black), and V3

(grey), and all edges crossing the (red) rectangle window are removed.
We divide the labeling (coloring or partition) of the vertices V into two parts

π(V ) = (π(VΛ), π(VΛ̄)) (6.67)
We fix π(VΛ̄) as boundary condition, and sample the labels of vertices within the window by SW-cut.

To summarize, the multigrid SW-cut iterates the following three steps

1. it selects a window Λ of certain size and shape following a probability Λ ∼ q(Λ).

2. For any edges within each subgraph inside the window,
e =< s, t >, s, t ∈ Λ, `s = `t,

it turns off edge e with probability qe. Thus it obtains a set of connected components CP(VΛ).

3. It selects Vo ∈ CP(VΛ) as a connected component and flips its label according to probability

Q(`new(Vo) = j|Vo, π) =
1

C

∏
e∈Cj

qe · p(π∗j ), ∀j (6.68)

where π∗j is the partition by assigning Vo to label j, and Cj = C(Vo, Vj)− C(Vj |Λ).

For example, Fig. 6.15 illustrates a reversible move by flipping a connected component Vo (within
the blue polygon) between two states πA and πB. C1 and C3 are shown by the blue crosses which
are removed by the random procedure.

Following the same procedure as in the previous SW-cut, we can derive the proposal probability
ratio for selecting Vo in the two states within Λ.

Theorem 6.13. The probability ratio for proposing Vo as the candidate subgraph within window Λ
at two states πA and πB is

Q(Vo|πA,Λ)

Q(Vo|πB,Λ)
=

∏
e∈C(Vo,V1)−C(V1|Λ) qe∏
e∈C(Vo,V3)−C(V3|Λ) qe

.
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The difference between this ratio and the ratio in theorem 6.8 is that some edges (see the red
crosses in Fig.6.15) no longer participate the computation.

Following the probability in eqn.(6.68) for the new labels, we can prove that it simulates the
conditional probability,

π(VΛ) ∼ p(π(VΛ)|π(VΛ̄)).
Theorem 6.14. The multigrid SW-cut within window Λ simulates a Markov kernel

K(Λ) = K(π(VΛ), π′(VΛ)|π(VΛ̄)), (6.69)
p(π(VΛ)|π(VΛ̄))K(π, π′) = p(π′(VΛ)|π(VΛ̄))K(π′, π).

Following theorem 6.12, we haveK(Λ) satisfies the general detailed balance equation in eqn.(6.64).

6.7.2 SW-cuts at multi-level

Level 1 Level 2

Figure 6.17: Multi-level SW-cut: run SW-cut at two levels.

Now we add a multi-level SW-cut mechanism. Suppose at state π = {V1, V2, ..., Vn}, we “freeze”
some subsets Ak, k ∈ {1, ...,m} such that for any k, Ak ⊂ Vi for some i. This way, the vertices in each
Ak are locked to have the same label. The subsets Ak can represent an intermediary segmentation.
For example, for motion segmentation, it is useful to get an intensity segmentation A and group
the intensity regions Ak into coherently moving objects.

Thus G = G(1) is reduced to a smaller adjacency graph G(2) =< U,F >. U is the set of vertices

U = {u1, ..., um}, uk = Ak, k = 1, 2, ...,m.
F is the adjacency relation between the subsets Ak in G.

F = {f =< ui, uj >: C(Ai, Aj) 6= ∅}.
Fig.6.17 illustrates an example with m = 9. We run the SW-cut on level 2 based on new discrimina-
tive heuristics q(2) which measure the similarity of Ai, Aj , q(2)(π(U)) =

∏
f∈F q

(2)
f . In general, these

heuristics are more informative than the lower level, so the SW-cuts moves are more meaningful
and the convergence is faster.

The partition space for graph G(2) is a projection of Ωπ,
Ωπ(G(2)) = {π : `(s) = `(t), ∀s, t ∈ Ai, i = 1, 2, ...,m.}

Obviously, the SW-cut on level 2 simulates a Markov chain with kernel K(2) which has invariant
probability p(π(U)|A), the probability of p(π) conditional on the relations `(s) = `(ui) for all s ∈ Ai
and all i.

Following theorem 6.12, we have that K(2) satisfies the general detailed balance equation (6.64).
Summary. Suppose we design a visiting scheme for selecting the windows Λ ∼ qw(Λ) and level

σ ∼ ql(σ) over time. Then the generalized SW-cut has a mixed Markov kernel
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K =
∑
σ

∑
Λ

ql(σ)qw(Λ)K(σ)(Λ).

As each K(σ)(Λ) observes the detailed balance equations, so is K. When the windows cover the
entire graph, it is also irreducible and its states follows p(π) at convergence.

6.8 Subspace Clustering

Subspace clustering is the problem of grouping an unlabeled set of points into a number of clusters
corresponding to subspaces of the ambient space. This problem has applications in unsupervised
learning and computer vision. One of the computer vision applications is sparse motion segmen-
tation, where a number of feature point trajectories need to be grouped into a small number of
clusters according to their common motion model. The feature point trajectories are obtained by
detecting a number of feature points using an interest point detector and tracking them through
many frames using a feature point tracker or an optical flow algorithm.

A common approach in the state of the art sparse motion segmentation methods [60] [111] [121]
[198] [210] is to project the feature trajectories to a lower dimensional space and use a subspace
clustering method based on spectral clustering to group the projected points and obtain the motion
segmentation.

Even though these methods obtain very good results on standard benchmark datasets, the
spectral clustering algorithm requires expensive computation of eigenvectors and eigenvalues on an
N × N dense matrix where N is the number of data points. In this manner, the computation
time for these subspace clustering/motion segmentation methods scales as O(N3), so it can become
prohibitive for large problems (e.g. N = 105 − 106).

This section presents a completely different approach to subspace clustering, based on the
Swendsen-Wang Cut (SWC) algorithm [9]. The subspace clustering problem is formulated as Maxi-
mum A Posteriori (MAP) optimization problem in a Bayesian framework with Ising/Potts prior [165]
and likelihood based on a linear subspace model. The SWC graph is constructed as a k-NN graph
from an affinity matrix.

Overall, the proposed method provides a new perspective to solve the subspace clustering prob-
lem, and demonstrates the power of Swendsen-Wang Cuts algorithm in clustering problems.

Figure 6.18: Left. two subspaces in 2D. Right. two 2D subspaces in 3D. The points in both 2D
subspaces have been normalized to unit length. Due to noise, the points may not lie exactly on
the subspace. One can observe that the angular distance finds the correct neighbors in most places
except at the plane intersections.

112



Subspace Clustering by Spectral Clustering

Given a set of points {x1, ...,xN} ∈ RD, the subspace clustering problem is to group the points into
a number of clusters corresponding to linear subspaces of RD. The problem is illustrated in Figure
6.18, left, showing two linear subspaces and a number of outliers in R2.

A popular subspace clustering method [56] [111] [167] is based on spectral clustering, which
relies on an affinity matrix that measures how likely any pair of points belong to the same subspace.

Spectral clustering [150, 175] is a generic clustering method that groups a set of points into
clusters based on their connectivity. The point connectivity is given as an N ×N affinity matrix A
with Aij close to 1 if point i is close to point j and close to zero if they are far away. The quality of
the affinity matrix is very important for obtaining good clustering results. The affinity matrix for
spectral subspace clustering is computed as follows..

First, the the points are normalized to unit length [56,111,167], as shown in Figure 6.18, right.
Then the following affinity measure based on the angle between the vectors has been proposed

in [111]
Aij = (

xTi xj
‖xi‖2‖xj‖2

)2α, (6.70)

where α is a tuning parameter, and the value α = 4 has been used in [111].
Fig 6.18, right shows two linear subspaces, where all points have been normalized. It is intuitive

to find that the points tend to lie in the same subspace as their neighbors in angular distance except
those near the intersection of the subspaces.

6.8.1 Subspace Clustering by Swendsen-Wang Cuts

This section presents a novel subspace clustering algorithm that formulates the subspace clustering
problem as a MAP estimation of a posterior probability in a Bayesian framework and uses the
Swendsen-Wang Cuts algorithm [9] for sampling and optimization.

A subspace clustering solution can be represented as a partition (labeling) π : {1, ..., N} →
{1, ...,M} of the input points x1, . . . ,xN ∈ RD. The number M ≤ N is the maximum number of
allowed clusters.

In this section is assumed that an affinity matrix A is given, representing the likelihood for any
pair of points to belong to the same subspace. One form of A has been given in (6.70) and another
one will be given below.

Posterior Probability

A posterior probability will be used to evaluate the quality of any partition π. A good partition
can then be obtained by maximizing the posterior probability in the space of all possible partitions.
The posterior probability is defined in a Bayesian framework

p(π) ∝ exp[−Edata(π)− Eprior(π)].

The normalizing constant is irrelevant in the optimization since it will cancel out in the acceptance
probability.

The data term Edata(π) is based on the fact that the subspaces are assumed to be linear. Given
the current partition (labeling) π, for each label l an affine subspace Ll is fitted in a least squares
sense through all points with label l. Denote the distance of a point x with label l to the linear
space Ll as d(x, Ll). Then the data term is
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Edata(π) =

M∑
l=1

∑
i,π(i)=l

d(xi, Ll) (6.71)

The prior term Eprior(π) is set to encourage tightly connected points to stay in the same cluster.

Eprior(π) = −ρ
∑

<i,j>∈E,π(i) 6=π(j)

log(1−Aij), (6.72)

where ρ is a parameter controlling the strength of the prior term. It will be clear in the next section
that this prior is exactly the Potts model (6.1) that would have Aij as the edge weights in the
original SW algorithm.

The SWC algorithm could automatically decide the number of clusters, however in this chapter,
as in most motion segmentation algorithms, it is assumed that the number of subspacesM is known.
Thus the new label for the component V0 is sampled with uniform probability from the number M
of subspaces:

q(cV0 = l′|V0, π) = 1/M.

Graph Construction

Section 6.8 described a popular subspace clustering method based on spectral clustering. Spectral
clustering optimizes an approximation of the normalized cut or the ratio cut [200], which are dis-
criminative measures. In contrast, the proposed subspace clustering approach optimizes a generative
model where the likelihood is based on the assumption that the subspaces are linear. It is possible
that the discriminative measures are more flexible and work better when the linearity assumption
is violated, and will be studied in future work.

The following affinity measure, inspired by [111], will be used in this work

Aij = exp(−mθij

θ̄
), i 6= j (6.73)

where θij is based on the angle between the vectors xi and xj ,

θij = 1− (
xTi xj

‖xi‖2‖xj‖2
)2,

and θ̄ is the average of all θ. The parameter m is a tuning parameter to control the size of the
connected components obtained by the SWC algorithm. The subspace clustering performance with
respect to this parameter will be evaluated in Section 6.8.2 for motion segmentation.

The affinity measure based on the angular information between points enables to obtain the
neighborhood graph, for example based on the k-nearest neighbors. After the graph has been
obtained, the affinity measure is also used to obtain the edge weights for making the data driven
clustering proposals in the SWC algorithm as well as for the prior term of the posterior probability.

The graph G = (V,E) has as vertices the set of points that need to be clustered. The edges
E are constructed based on the proposed distance measure from eq. (6.73). Since the distance
measure is more accurate in finding the nearest neighbors (NN) from the same subspace, the graph
is constructed as the k-nearest neighbor graph (kNN), where k is a given parameter.

Examples of obtained graphs will be given in Section 6.8.2.

Optimization by Simulated Annealing

The SWC algorithm is designed for sampling the posterior probability p(π). To use SWC for
optimization, a simulated annealing scheme should be applied while running the SWC algorithm.

Simulated annealing means the probability used by the algorithm is not p(π) but p(π)1/T where
T is a "temperature" parameter that is large at the beginning of the optimization and is slowly
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Input: N points (x1, . . . ,xN ) from M subspaces
Construct the adjacency graph G as a k-NN graph using eq (6.73).
for r = 1, . . . , Q do
Initialize the partition π as π(i) = 1, ∀i.
for i = 1, . . . , N it do

1. Compute the temperature Ti using eq (6.74).
2. Run one step of the SWC algorithm using p(π|I) = p1/Ti(π) in eq (6.46).

end for
Record the clustering result πr and the final probability pr = p(πr).

end for
Output: Clustering result πr with the largest pr.

Figure 6.19: The Swendsen-Wang Cuts algorithm for subspace clustering.

decreased according to an annealing schedule. If the annealing schedule is slow enough, it is theo-
retically guaranteed [101] that the global optimum of the probability p(π) will be found.

In reality we use a faster annealing schedule, and the final partition π will only be a local opti-
mum. We use an annealing schedule that is controlled by three parameters: the start temperature
Tstart, the end temperature as Tend, and the number of iterations N it. The temperature at step i is
calculated as

Ti =
Tend

log
(
i
N [e−exp( Tend

Tstart
)]+exp( Tend

Tstart
)
) , i = 1, N it (6.74)

To better explore the probability space, we also use multiple runs with different random initializa-
tions. Then the final algorithm is shown in Figure 6.19.

Complexity Analysis

Let N be the number of points in RD that need to be clustered. The computation complexity of
the SWC subspace clustering method can be broken down as follows:

• The adjacency graph construction is O(N2D log k) where D is the space dimension. This is
because one needs to calculate the distance from each point to the other N −1 points and use
a heap to maintain its k-NNs.

• Each of the N it iterations of the SWC algorithm is O(Nα(N)), as discussed in section
6.4.4. Computing Edata(π) involves fitting linear subspaces for each motion cluster, which is
O(D2N+D3), while computing the Eprior(π) is O(N). The number of iterations isN it = 2000,
so all the SWC iterations take O(Nα(N)) time.

In conclusion, the entire algorithm complexity in terms of the number N of points is O(N2) so
it scales better than spectral clustering for large problems.

6.8.2 Application: Sparse Motion Segmentation

This section presents an application of the proposed subspace clustering algorithm to motion seg-
mentation.

Most recent works on motion segmentation use the affine camera model, which is approximatively
satisfied when the objects are far from the camera. Under the affine camera model, a point on the
image plane (x, y) is related to the real world 3D point X by[

x
y

]
= A

[
X
1

]
, (6.75)
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(a) 1RT2TC (b) cars3 (c) articulated
Figure 6.20: Examples of SWC weighted graphs for a checkerboard (left), traffic (mid) and articu-
lated (right) sequence. Shown are the feature point positions in the first frame. The edge intensities
represent their weights from 0 (white) to 1 (black).

where A ∈ R2×4 is the affine motion matrix.
Let ti = (x1

i , y
1
i , x

2
i , y

2
i , . . . , x

F
i , y

F
i )T , i = 1, . . . .N be the trajectories of tracked feature points

in F frames (2D images), where N is the number of trajectories. Let the measurement matrix
W = [t1, t2, . . . , tN ] be constructed by assembling the trajectories as columns.

If all trajectories undergo the same rigid motion, equation (6.75) implies that W can be decom-
posed into a motion matrix M ∈ R2F×4 and a structure matrix S ∈ R4×N as

W = MS
x1

1 x1
2 · · · x1

N

y1
1 y1

2 · · · y1
N

...
...

. . .
...

xF1 xF2 · · · xFN
yF1 yF2 · · · yFN

 =

 A1

...
AF

[ X1 · · · XN

1 · · · 1

]

where Af is the affine object to world transformation matrix at frame f . It implies that rank(W ) ≤
4. Since the entries of the last row of S are always 1, under the affine camera model, the trajectories
of feature points from a rigidly moving object reside in an affine subspace of dimension at most 3.

In general, we are given a measurement matrix W that contains trajectories from multiple
possibly nonrigid motions. The task of motion segmentation is to cluster together all trajectories
coming from each motion.

A popular approach [56] [111] [167] [198] is to project the trajectories to a lower dimensional
space and to perform subspace clustering in that space, using spectral clustering as described in
section 6.8. These methods differ in the projection dimension D and in the affinity measure A used
for spectral clustering.

Dimension Reduction

Dimension reduction is an essential preprocessing step for obtaining a good motion segmentation.
To realize this goal, the truncated SVD is often applied [56,111,167,198].

To project the measurement matrix W ∈ R2F×N to X = [x1, ..., xN ] ∈ RD×N , where D is the
desired projection dimension, the matrix W is decomposed via SVD as W = UΣV T and the first
D columns of the matrix V are chosen as XT .

The value of D for dimension reduction is also a major concern in motion segmentation. This
value has a large impact on the speed and accuracy of the final result, so it is very important to
select the best dimension to perform the segmentation. The dimension of a motion is not fixed, but
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(a) Checkerboard (b) Traffic (c) Articulated
Figure 6.21: Sample images from some sequences of three categories in the Hopkins 155 database
with ground truth superimposed.

can vary from sequence to sequence, and since it is hard to determine the actual dimension of the
mixed space when multiple motions are present, different methods may have different dimensions
for projection.

The GPCA [198] suggests to project the trajectories onto a 5-dimensional space. ALC [167]
chooses to use the sparsity-preserving dimension dsp = argmind≥2D log(2T/d) d for D-dimensional
subspaces. The SSC [60] and LRR [121] simply projects the trajectories to the 4M subspace, where
M is the number of motions. Some methods [56,111] use an exhaustive search strategy to perform
the segmentation in spaces with a range of possible dimensions and pick the best result. In this
chapter, we find that projecting to dimension D = 2M + 1 can generate good results.

The computation complexity of computing the SVD of a m × n matrix U when m >> n is
O(mn2+n3) [185]. If n >> m then it is faster to compute the SVD of UT , which takes O(nm2+m3).

Assuming that 2F << N , it means that the SVD of W can be computed in O(NF 2 + F 3)
operations.

After projecting to the subspace of dimension D = 2M + 1, the SWC subspace clustering
algorithm from Section 6.8.1 is applied and the clustering result gives the final motion segmentation
result.

Experiments on the Hopkins 155 Dataset

This section presents experiments with the SWC-based motion segmentation algorithm on the Hop-
kins 155 motion database [187]. The database consists of 155 sequences of two and three motions.
The ground-truth segmentation is also provided for evaluation purposes. Based on the content
of the video, the sequences could be categorized into three main categories: checkerboard, traffic,
and articulated sequences, with examples shown in Figure 6.21. The trajectories are extracted
automatically by a tracker, so they are slightly corrupted by noise.

As already mentioned, before applying the SWC algorithm, the dimension of the data is reduced
from 2F to D = 2M+1, whereM is the number of motions. After the projection, the initial labeling
state in the SWC algorithm has all points having the same label.

The motion segmentation results are evaluated using the misclassification error rate

Misclassification Rate =
# of misclassified points

total # of points
(6.76)

Parameter settings. The motion segmentation algorithm has a number of tuning parameters
that were held constant to the following values. The number of NN (nearest neighbors) for graph
construction is k = 7, the parameter m in the affinity measure (6.73) is m = 10, and the prior
coefficient in (6.72) is ρ = 2.2. The annealing parameters are Tstart = 1, Tend = 0.01, N it = 2000.
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Figure 6.22: SWC clustering of the Hopkins 155 sequence 1R2TCR, containing M = 3 motions.
Shown are the feature point positions in the first frame, having colors as the labeling states π
obtained while running the SWC algorithm from the initial state (top left) to the final state (bottom
right).

The number of independent runs to obtain the most probable partition is Q = 10. An example of
all the partition states during an SWC run is shown in Figure 6.22.

Results. The average and median misclassification errors are listed in Table 6.1. For accuracy,
the results of the SWC algorithm from Table 6.1 are averaged over 10 runs and the standard
deviations are shown in parentheses. In order to compare the SWC method with the state of the
art methods, we also list the results of ALC [167], SC [111], SSC [60] and VC [56].

Table 6.1: Misclassification rates (in percent) of different motion segmentation algorithms on the
Hopkins 155 dataset.

Method ALC SC SSC VC SWC (std) SC4 SC4k KSP
All (2 motion)
Average 2.40 0.94 0.82 0.96 1.49 (0.19) 11.50 7.82 4.76
Median 0.43 0.00 0.00 0.00 0.00 (0.00) 2.09 0.27 0.00
All (3 motion)
Average 6.69 2.11 2.45 1.10 2.62 (0.13) 19.55 11.25 9.00
Median 0.67 0.37 0.20 0.22 0.81 (0.00) 18.88 1.42 1.70
All sequences combined
Average 3.37 1.20 1.24 0.99 1.75 (0.15) 13.32 8.59 5.72
Median 0.49 0.00 0.00 0.00 0.00 (0.00) 6.46 0.36 0.31

The SWC based algorithm obtains average errors that are less than twice the errors of the other
methods. In our experiments we observed that the energy of the final state is usually smaller than
the energy of the ground truth state. This fact indicates that the SWC algorithm is doing a good
job optimizing the model but the Bayesian model is not accurate enough in its current form and
needs to be improved.

Also shown in Table 6.1 are the columns labeled SC4 and SC4k representing the misclassification
errors of the SC method [111] with an affinity matrix with 4-NN and 4k-NN respectively. These
errors are 13.32 and 8.59 respectively and indicate that the Spectral Clustering really needs a dense
affinity matrix to work well, and it cannot be accelerated using sparse matrix operations.
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Finally, the performance of the SWC-based algorithm is compared with the KASP algorithm
[209], which is a fast approximate spectral clustering and was used in place of the spectral clustering
step in the SC method [111]. The data reduction parameter used was γ = 10, which still results
in a O(N3) clustering algorithm. The total misclassification error is 5.72, about three times larger
than the SWC method.

Scalability Experiments on Large Data

Figure 6.23: Selected frames of sequence cars10 with 1000 tracked feature points.
In order to evaluate the scalability of different algorithms, sequences with a large number of

trajectories are needed. The trajectories can be generated by some optical flow algorithm, but it is
difficult to obtain the ground truth segmentation and remove bad trajectories caused by occlusions.
Brox et.al. [28] provided a dense segmentation for some frames in 12 sequences in the Hopkins
155 dataset1. From them, we picked the cars10 sequence and tracked all pixels of the first frame
using the Classic+NL method [179]. There are two reasons for choosing cars10. First, it has three
motions, two moving cars and the background. Second, the two moving cars are relatively large in
the video, so that a large number of trajectories can be obtained from each motion.

There are 30 frames in the sequence, and 3 of them have a dense manual segmentation of all
pixels. We removed trajectories that have different labels on the 3 ground truth frames. To avoid
occlusion, the trajectories close to the motion boundaries were also removed. Plus, we only kept
the full trajectories for clustering. Finally, we obtained around 48,000 trajectories as a pool. From
the pool, different numbers N of trajectories were subsampled for evaluation. For each given N , a
total of N trajectories were randomly selected from the pool such that the number of trajectories in
each of the three motions was roughly the same. For example, to generate N = 1000 trajectories,
we would randomly pick from the pool 333 trajectories from two of the motions and 334 trajectories
from the third motion. If there were not enough trajectories available from one motion, we added
more from the motion that has the most trajectories.

We compared the SWC method with the SC algorithm [111] discussed in Section 6.8, which is
one of the fastest and most accurate algorithms [56] based on spectral clustering. We generated
data containing between 1,000 to 15,000 trajectories, and applied the two segmentation algorithms.
Sample frames are shown in Figure 6.23. The parameters for SC were kept the same as in the
original paper, and those for SWC were identical with the experiments from Table 6.1. The SC
algorithm is implemented in Matlab (which has optimized SVD algorithms), while the SWC code is
in C++. The experiments were performed on a Windows machine with an Intel core i7-3970 CPU
and 12 GB memory. We also generated data with N = 24, 000 and N = 48, 000 trajectories for
SWC clustering. For SC, the same experiments could not be conducted because Matlab ran out of

1http://lmb.informatik.uni-freiburg.de/resources/datasets/
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Figure 6.24: Left. Computation time (sec) vs number of trajectories N for SC and SWC. Right:
log-log plot of same data with the fitted regression lines.

memory.

Table 6.2: Average misclassification rate for the sequence cars10 (in percent).

Number of Trajectories N SC SWC
1000 to 15,000 2.77 0.99
24,000 to 48,000 - 1.00

The misclassification rate is recorded in Table 6.2 and the running time is shown on Figure 6.24.
Table 6.2 shows that both methods perform well and the misclassification rate of SWC is about one
third of that of the SC.

From Figure 6.24, which shows the computation time vs the number N of trajectories, one
could find that for a small number of trajectories, the SC is faster than SWC, but for more than
N = 6, 000 trajectories, the computation time of SC is greater than that of SWC, and increases
much faster. We also plot the log(time) vs. log(N) and use linear regression to fit lines through the
data points of the two methods. If the slope of the line is α, then the computation complexity is
O(Nα). We observe that the slope of SC is 2.52 while the slope for SWC is 1.29, which is consistent
with the complexity analysis of Section 6.8.1.

6.9 C4: Clustering Cooperative and Competitive Constraints

Many vision tasks, such as scene labeling [109,162,170], object detection/recognition [62,184], seg-
mentation [43, 193], and graph matching [38, 120] are formulated as energy minimization (or maxi-
mum a posteriori probability) problems defined on graphical models – Markov random fields [17,75],
conditional random fields [109, 110], or hierarchical graphs [73, 221]. These optimization problems
become exceedingly difficult when there are multiple solutions, i.e. distinct modes with high prob-
abilities and, in some cases, equal probability.

Fig. 6.25 shows examples of typical scenarios that have multiple, equally likely solutions in the
absence of further context. The top row shows the well-known Necker Cube which has two valid
3D interpretations. The middle row is the Wittgenstein illusion, in which the drawing can appear
to be either a duck or a rabbit. Without further context, we cannot determine the correct labeling.
The bottom row shows an aerial image for scene labeling. It can be explained as either a roof with
vents or a parking lot containing cars.

Computing multiple solutions is important for preserving the intrinsic ambiguities and avoiding
early commitment to a single solution which, even if it’s currently the globally optimal one, may
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Figure 6.25: Problems with multiple solutions: (top) the Necker Cube; (Middle) the Wittgenstein
illusion; and (Bottom) An aerial image interpreted as either a roof with vents or a parking lot with
cars. Ambiguities should be preserved until further context arrives.

turn out to be less favorable when later context arrives. However, it is a persistent challenge to
enable algorithms to climb out of local optima and to jump between solutions far apart in the state
space. Popular energy minimization algorithms, such as Iterative Conditional Modes (ICM) [17],
Loopy Belief Propagation (LBP) [108,204], and graph cuts [23,105] compute one solution and thus
do not address this problem. Existing MCMC algorithms, such as various Gibbs samplers [75,124],
DDMCMC [193], and Swendsen-Wang cuts [9, 180], promise global optimization and ergodicity in
the state space, but often need long waiting time in moving between distinct modes, which needs a
sequence of lucky moves up the energy landscape before it goes down.

In this section, our objective is to develop an algorithm that can discover multiple solutions by
jumping out of equal probability states and thus preserve the ambiguities on rather general settings:

1. The graph can be flat, such as a MRF or CRF, or hierarchical, such as a parse graph.

2. The graph may have positive (cooperative) and negative (competitive or conflicting) edges for
both hard or soft constraints.

3. The probability (energy) defined on the graph is quite general, even with energy terms involv-
ing more than two nodes.

In vision, it is safe to assume that the graph is locally connected and we do not consider the worst
case scenario where graphs are fully connected.

In the 1970s, many problems, including line drawing interpretation and scene labeling, were
posed as constraint satisfaction problems (CSPs). The CSPs were either solved by heuristic search
methods [158] or constraint propagation methods [6,129]. The former keeps a list of open nodes for
plausible alternatives and can backtrack to explore multiple solutions. However, the open list can
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become too long to maintain when the graph is large. The latter iteratively updates the labels of
nodes based on their neighbors. One well-known constraint propagation algorithm is the relaxation
labeling method by Rosenfeld, Hummel, and Zucker in 1976 [170].

In the 1980s, the famous Gibbs sampler – a probabilistic version of relaxation labeling – was
presented by Geman and Geman in 1984 [75]. The update of labels is justified in a solid MCMC and
MRF framework and thus is guaranteed to sample from the posterior probabilities. In special cases,
the Gibbs sampler is equal to belief propagation [158] for polytrees and to dynamic programming
in chains. The Gibbs sampler is found to slow down critically when a number of nodes in the graph
are strongly coupled.

Fig. 6.26 illustrates an example of the difficulty with strongly coupled graphs using the Necker
Cube. The six internal lines of the figure are divided into two coupling groups: (1-2-3) and (4-5-6).
Lines in each group must have the same label (concave or convex) to be valid as they share the two
’Y’-junctions. Thus, updating the label of a single line in a coupled group does not move at all,
unless we update the label of the whole group together, i.e. all six labels in one step.

The problem is that we don’t know which nodes in the graph are coupled and to what extent
they are coupled for general problems with large graphs. In 1987, a breakthrough came from two
physicists, Swendsen and Wang [180], who proposed a cluster sampling technique. The Swendsen-
Wang (SW) method finds coupled groups, called “clusters”, dynamically by turning the edges in the
graph on/off according to the probabilities defined on these edges. The edge probability measures
the coupling strengths. Unfortunately, their algorithm only works for the Ising and Potts models.
We will discuss the SW method in later sections.

There were numerous attempts made to improve MCMC methods in the 1990’s (see Liu [123]
for surveys), such as the block Gibbs sampler [124]. Green formulated reversible jumps in 1995 [87]
following the jump-diffusion algorithm by Grenander and Miller in 1994 [88]. In 1999, Cooper and
Frieze analyzed the convergence speed of SW using a path coupling technique and showed that
the SW method has a polynomial mixing time when the nodes in the graph are connected to a
constant number of neighbors [41]. Nevertheless, it was also shown that SW could mix slowly under
conditions when graphs were heavily or fully connected [86].

In the 2000s, a few non-MCMC methods generated remarkable impacts on the vision community.
For example, the loopy belief propagation (LBP) algorithm by Weiss et. al. [204] and the graph cut
algorithms by Boykov, Kolmogorov, et. al. [23, 105]. These algorithms are very fast and work well
on special class of graph structures and energy functions. In addition, techniques such as survey
propagation [24] have had great success in statistical physics. In the case of multimodal energy
functions, however, it can be difficult for these techniques to converge properly, as we will see.

On the MCMC side, Tu and Zhu developed the Data-Driven Markov Chain Monte Carlo (DDM-
CMC) algorithm for image segmentation in 2002 [193], which uses bottom-up discriminative prob-
abilities to drive the Markov chain moves. They also developed a “K-adventurer” procedure to
keep multiple solutions. The DDMCMC method was also used by Dellaert [153] for tracking bee
dances. Dellaert also used MCMC to explore correspondences for structure-from-motion problems,
even incorporating a “jump parameter” to allow the algorithm to jump to new solutions [50]. In
2005, barbu2005generalizing and Zhu proposed the SW-cut algorithm [9] which, for the first time,
generalized the SW method to arbitrary probabilities models. As we will discuss in later sections,
the SW-cut did not consider negative edges, high order constraints, or hierarchical graphs and is
less effective in swapping between competing solutions. The C4 algorithm in this section is a direct
generalization of the SW-cut algorithm [9].
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Figure 6.26: Swapping between the two interpretations of the Necker Cube. Locally coupled labels
are swapped with alternate labelings to enforce global consistency. See text for explanation.

6.9.1 Overview of the Major Concepts of C4

In this section we present a probabilistic clustering algorithm called Clustering Cooperative and
Competitive Constraints (C4) for computing multiple solutions in graphical models. We consider
two types of graphs:

Adjacency graphs treat each node as an entity, such as a pixel, a superpixel, a line, or an object,
which has to be labeled in K-classes (or colors). Most MRFs and CRFs used in computer vision are
adjacency graphs.

Candidacy graphs treat each node as a candidate or hypothesis, such as a potential label for
an entity, or a detected object instance in a window, which has to be confirmed (’on’) or rejected
(’off’). In other words, the graph is labeled with K = 2 colors.

As we will show in section 6.9.2, an adjacency graph can always be converted to a bigger
candidacy graph. In both cases, the tasks are posed as graph coloring problems on MRF, CRF
or hierarchical graphs. There are two types of edges expressing either hard or soft constraints (or
coupling) between the nodes.

Positive edges are cooperative constraints that favor the two nodes having the same label in an
adjacency graph or being turned on (or off) simultaneously in a candidacy graph.

Negative edges are competitive or conflicting constraints that require the two nodes to have
different labels in an adjacency graph or one node to be turned on and the other turned off in a
candidacy graph.

In Fig. 6.26, we show that the Necker cube can be represented in an adjacency graph with each
line being a node. The six internal lines are linked by 6 positive edges (in green) and two negative
edges (in red and wiggly). Lines 2 and 4 have a negative edge between them as they intersect with
each other, as do lines 3 and 6. We omit the labeling of the six outer lines for clarity.

In this section, the edges play computational roles, and are used to dynamically group nodes
which are strongly coupled. On each positive or negative edge, we define an edge probability (using
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bottom-up discriminative models) for the coupling strength. Then we design a protocol for turning
these edges on and off independently according to their edge probabilities respectively for each
iteration. The protocol is common for all problems while the edge probabilities are problem specific.
This probabilistic procedure turns off some edges, and all the edges that remain ’on’ partition the
graph into some connected components (ccp’s).

A ccp is a set of nodes that are connected by the positive edges. For example, Fig. 6.26 has
two ccp’s: ccp1 includes nodes 1-2-3 and ccp2 includes nodes 4-5-6. Each ccp is a locally coupled
sub-solution.

A cccp is a composite connected component that consists of a number of ccp’s connected by
negative edges. For example, Fig. 6.26 has one cccp containing ccp1 and ccp2. Each cccp contains
some conflicting sub-solutions.

At each iteration, C4 selects a cccp and updates the labels of all nodes in the cccp simultaneously
so that (i) nodes in each ccp keep the same label to satisfy the positive or coupling constraints, and
(ii) different ccp’s in the cccp are assigned different labels to observe the negative constraints.

Since C4 can update a large number of nodes in a single step, it can move out of local modes
and jump effectively between multiple solutions. The protocol design groups the cccp’s dynamically
and guarantees that each step follows the MCMC requirements, such as detailed balance equations
and thus it samples from the posterior probability.

We evaluate C4 against other popular algorithms in the literature by two criteria.

1. The speed that they converge to solutions. In some studied cases, we know the global minimum
solutions.

2. The number of unique solution states generated by the algorithms over time. This measures
how “dynamic” an algorithm is.

3. The estimated marginal probability at each site in the graphical model after convergence.

6.9.2 Graphs, Coupling, and Clustering

Adjacency and candidacy graphs

We start with a flat graph G that we will extend to a hierarchical graph in section 6.9.6,

G =< V, E >, E = E+ ∪ E−. (6.77)

Here V = {vi, i = 1, 2, ..., n} is a set of vertices or nodes on which variables X = (x1, ..., xn) are
defined, and E = {eij = (vi, vj)} is a set of edges which is divided into E+ and E− for positive
(cooperative) and negative (competitive or conflicting) constraints respectively. We consider two
types of graphs for G:

Adjacency graph, where each node vi ∈ V is an entity, such as a pixel or superpixel in image
labeling, a line in a line drawing interpretation, or an object in scene understanding. Its variable
xi ∈ {1, 2, 3, ...,Ki} is a label or color. MRFs and CRFs in the literature belong to this category,
and the task is to color the nodes V in K colors.

Candidacy graph, where each node vi ∈ V is a candidate or hypothesis, such as a potential
label assignment for an entity, an object instance detected by bottom-up methods, or a potential
match of a point to another point in graph matching. Its variable xi ∈ {′on′,′ off ′} is a boolean which
confirms (‘on’) or rejects (‘off’) the candidate. In other words, the graph is labeled with K = 2

124



colors. In the graph matching literature [38], the candidacy graph is represented by a assignment
matrix.

An adjacency graph can always be transferred to a bigger candidacy graph by converting each
node vi into Ki nodes {xij}. xij ∈ {′on′,′ off ′} represents xi = j in the adjacency graph. These
nodes observe a mutual exclusion constraint to prevent fuzzy assignments to xi.

Fig. 6.27 shows this conversion. The adjacency graph Gadj =< Vadj, Eadj > has six nodes
Vadj = {A,B,C,D,E, F} and each has 3 ∼ 5 potential labels. The variables are Xadj = (xA, ..., xF )
with xA ∈ {1, 2, 3, 4, 5} and so on. We convert it to a candidacy graph Gcan =< Vcan, Ecan > with
24 nodes Vcan = {A1, ..., A5, ..., F1, ..., F4}. Node A1 represents a candidate hypothesis that assigns
xA = 1. The Xcan = (xA1 , ..., xF4) are boolean variables.
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candidacy 
graph

B D

C
E

F

A

5

4

3

2

1

3

2

1

4

3

2

1

4

3

2

1 3

2

1

4

3

2

1

`On` nodes
`Off ` nodes

positive edge
negative edge

Figure 6.27: Converting an adjacency graph to a candidacy graph. The candidacy graph has positive
(straight green lines) and negative (wiggled red lines) edges depending on the values assigned to the
nodes in the adjacency graph.

Represented by the graph G, the vision task is posed as an optimization problem that computes
a most probable interpretation with a posterior probability p(X|I) or an energy function E(X ).

X∗ = arg max p(X|I) = arg min E(X). (6.78)

To preserve the ambiguity and uncertainty, we may compute multiple distinct solutions {Xi} with
weights {ωi} to represent the posterior probability.

(Xi, ωi) ∼ p(X|I), i = 1, 2, ...,K. (6.79)

Positive and Negative Edges

In conventional vision formulation, edges in the graphs are a representational concept and the
energy terms in E are defined on the edges to express the interactions between nodes. In contrast,
Swendsen-Wang [180] and Edward-Sokal [59] added a new computational role to the edges in their
cluster sampling method. The edges are turned ‘on’ and ‘off’ probabilistically to dynamically form
groups (or clusters) of nodes which are strongly coupled. We will introduce the clustering procedure
shortly after the example below. In this section, we adopt this notion and the edges in graph G are
characterized in three aspects:
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Positive vs negative. A positive edge represents a cooperative constraint for two nodes having
the same label in an adjacency graph or being turned on (or off) simultaneously in a candidacy
graph. A negative edge requires the two nodes to have different labels in an adjacency graph or
requires one node to be turned on and the other turned off in a candidacy graph.

Hard vs soft. Some edges represent hard constraints which must be satisfied, for example, in line
drawing interpretation or scene labeling, while other edge constraints are soft and can be expressed
with a probability.

Position dependent vs value dependent. Edges in adjacency graphs are generally position depen-
dent. For example, in an Ising model an edge between two adjacent nodes poses a soft constraint
that they should have the same label (ferromagnetism) or opposite labels (antiferromagnetism). In
contrast, edges in candidacy graphs are value dependent and thus have more expressive power. This
is common for vision tasks, such as scene labeling, line drawing interpretation, and graph matching.
As Fig. 6.27 illustrates, the edges between nodes in the candidacy graph could be either positive or
negative depending on the values assigned to nodes A,B in the adjacency graph.

As we will show in a later subsection that the positive and negative edges are crucial for gener-
ating connected components and resolving the problem of node coupling.

The Necker Cube Example

Fig. 6.28 shows the construction of a candidacy graph G for interpreting the Necker cube. For
clarity of discussion we assume the exterior lines are labeled and the task is to assign two labels
(concave and convex) to the six inner lines such that all local and global constraints are satisfied.
Therefore we have a total of 12 candidate assignments or nodes in G.

Based on the theory of line drawing interpretation [130,178], the two ’Y’-junctions pose positive
constraints so that lines 1-2-3 have the same label and lines 4-5-6 have the same label. We have
12 positive edges (green) in G to express these constraints. The intersection of lines 2 and 4 poses
negative constraints that lines 2 and 4 have opposite labels which are shown in the red and wiggly
edges in Fig. 6.28. The same is true for lines 3 and 6. The two different assignments for each line
should also be linked by a negative edge. These negative edges are not shown for clarity.

In this candidacy graph, the two solutions that satisfy all constraints are represented by the
2-colors in Fig. 6.28. The first has all nodes 1,2, and 3 labeled convex (’x’) and all nodes 4,5, and
6 labeled concave (’o’). This solution is currently in the ’on’ state. This would create a valid 3D
interpretation where the cube is “coming out” of the page. The alternative solution has the opposite
labeling, and creates a 3D interpretation of the cube “going in” to the page.

To switch from one solution to the other, we must swap the junction labels. Each set of nodes,
1-2-3 and 4-5-6, constitutes a corner of the Necker Cube and all have positive constraints between
them. This indicates that we should update all of these values simultaneously. We create two
connected component ccp1 and ccp2, comprised of the coupled nodes 1-2-3 and nodes 4-5-6 respec-
tively. If we were simply to invert the labels of ccp1 or ccp2 alone we would create an inconsistent
interpretation where all edges in the whole graph would now have the same label. What we need
to do is simultaneously swap ccp1 and ccp2.

Notice that we have negative edges between nodes 2 and 4 and between nodes 3 and 6. Negative
edges can be thought of as indicators of multiple competing solutions, as they necessarily dictate
that groups on either end of the edge can either be (’on’, ’off’) or (’off’, ’on’), creating two possible
outcomes. This negative edge connects nodes in ccp1 and ccp2, thus indicating that those nodes in
the two ccp’s must have different labels. We construct a composite connected component (called
cccp), cccp12, encompassing nodes 1-6, we now have a full component that contains all relevant
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Figure 6.28: The Necker cube example. The adjacency graph with 6 nodes (bottom) is converted
to a candidacy graph of 12 nodes (top) for concave and convex label assignments respectively. 12
positive and 2 negative edges are placed between these candidate assignments to ensure consistency.

constraints. Moving from solution 1 to 2 is now as simple as flipping all the nodes simultaneously,
or equivalently satisfying all of the constraints.

In the next subsection, we explain how we form the ccp’s and cccp’s in a formal way.

Edge Probability for Clustering

On each positive or negative edge, we define an edge probability (using bottom-up discriminative
models) for the coupling strength. That is, at each edge e ∈ E, we define an auxiliary probability
ue ∈ {0, 1} or {′on′, ′off ′}, which follows an independent probability qe.

In Swendsen and Wang [180], the definition of qe is decided by the energy term in the Potts
model qe = e−2β as a constant for all e. barbu2005generalizing and Zhu [9], for the first time,
separate qe from the energy function and define it as a bottom-up probability: qe = p(l(xi) =
l(xj)|F (xi), F (xj)) = p(e = on|F (xi), F (xj)) with F (xi) and F (xj) being local features extracted
at node xi and xj . This can be learned through discriminative training, for example, by logistic
regression and boosting,

p(l(xi) = l(xj)|F (xi), F (xj))

p(l(xi) 6= l(xj)|F (xi), F (xj))
=
∑
n

λnhn(F (xi), F (xj)).

On a positive edge e = (i, j) ∈ E+, ue = ‘on′ follows a Bernoulli probability,

ue ∼ Bern(qe · 1(xi = xj)).
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1() is boolean function. It equals 1 if the condition is satisfied and 0 otherwise. Therefore, at the
present state X, if the two nodes have the same color, i.e. xi = xj , then the edge e is turned on
with probability qe. If xi 6= xj , then ue ∼ Bern(0) and e is turned off with probability 1. So, if
two nodes are strongly coupled, qe should have a higher value to ensure that they have a higher
probability to stay the same color.

Similarly, for negative edges e ∈ E−, ue = ‘on′ also follows a Bernoulli probability,

ue ∼ Bern(qe1(xi 6= xj)).

At the present state X, if the two nodes have the same color xi = xj , then the edge e is turned off
with probability 1, otherwise e is turned on with probability qe to enforce that xi and xj stay in
different colors.

After sampling ue for all e ∈ E independently, we denote the sets of positive and negative edges
that remain ’on’ as E+

on ⊂ E+ and E−on ⊂ E− respectively. Then we have a formal definitions of the
ccp and cccp.

Definition 6.2. A ccp is a set of vertices {vi; i = 1, 2, ..., k} for which every vertex is reachable
from every other vertex by the positive edges in E+

on.

Definition 6.3. A cccp is a set of ccp’s {ccpi; i = 1, 2, ...,m} for which every ccp is reachable from
every other ccp by the negative edges in E−on.

No two ccp’s are reachable by positive edges, or else they would be a single ccp. Thus a cccp is a
set of isolated ccp’s that are connected by negative edges. An isolated ccp is also treated as a cccp.

In section 6.9.6, we will treat the invalid cases where a ccp contains negative edges by converting
it to a cccp.

To observe the detailed balance equations in MCMC design, we need to calculate the probabilities
for selecting a ccp or cccp which are determined by the edge probabilities qe. For this purpose we
define their cuts. In general, a cut is the set of all edges connecting nodes between two nodes sets.

Definition 6.4. Under a current state X, a cut for a ccp is the set all positive edges between nodes
in ccp and its surrounding nodes which have the same label,

Cut(ccp|X) = {e : e ∈ E+, xi = xj , i ∈ ccp, j /∈ ccp}.

These are the edges that must be turned off probabilistically (with probability 1− qe) in order
to form the ccp and the cut depends on the state X.

Definition 6.5. A cut for a cccp at a state X is the set of all negative (or positive) edges connecting
the nodes in the cccp and its neighboring node which have different (or same) labels,

Cut(cccp|X) = {e : e ∈ E−, i ∈ cccp, j /∈ cccp, xi 6= xj}

∪{e : e ∈ E+, i ∈ cccp, j /∈ cccp, xi = xj}.

All these edges must be turned off probabilistically with probability 1− qe in order to form the
composite connected component cccp at state X.

As edges in E+
on only connect nodes with the same label, so all nodes in a ccp have the same

label. In contrast, all edges in E−on only connect nodes with different labels, adjacent ccp’s in a cccp
must have different labels.
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Figure 6.29: A Necker cube candidacy graph not in a solution state.

To illustrate the concepts, we show a non-solution state X for the Necker cube in Figure 6.29.
By turning off some edges (marked with the crosses), we obtain three cccp’s for the nodes that are
currently ’on’. In this example, qe = 1, as these are hard constraints that are inviolable. cccp1 and
cccp3 have only 1 node, and cccp2 has two ccp’s with 4 nodes. The algorithm will now arbitrarily
select a cccp and update its values according to its constraints. If it selects either cccp1 or cccp3,
then we are one step closer to the solution. If it selects (cccp2), then all the 4 vertex labels are
swapped and we have reached a solution state and will continue to swap back and forth between
the two solutions.

6.9.3 C4 algorithm on flat graphs

In this section, we introduce the C4 algorithm for cluster sampling on flat graphs.

Outline of the algorithm

The C4 algorithm works iteratively following the MCMC design. In each iteration, it generates the
cccp’s, selects (or visits) a cccpo with a probability, and reassigns labels to its ccp’s such that all
internal negative constraints are satisfied. As the number of ccp’s in cccpo grows large, the number
of potential labelings will grow as well. One can remedy this situation in two ways:

1. Use a constraint-satisfaction problem (CSP)-solver to solve this smaller, easier constraint
satisfaction problem within cccpo.

2. Use random or heuristic sampling to find a new valid labeling.

We will use the second approach throughout this section and the number of ccp’s in a cccpo is
in general small, so the label assignment is not a problem. The C4 algorithm can be a viewed as
a method that breaks a large constraint-satisfaction problem into smaller fragments in cccpo which
can be satisfied locally. Then it propagates the solution through iterations.

This assignment represents a move in MCMC which is accepted by the Metropolis-Hastings
step with an acceptance probability. The acceptance probability account for the probabilities for
generating the cccp’s, selecting a cccpo, assigning new labels, and the posterior probability.

In summary, we state the C4 algorithm below.
We will elaborate on the probabilities used in the algorithm in the next subsection,
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Input: A graph G =< V,E > and posterior prob. p(X|I).
Calculate the edge probability qe, ∀e ∈ E.

qe is a problem specific discriminative probability.
Initialize the state X = (x1, x2, ..., xn).

e.g. all nodes are turned off in a candidacy graph.
for s = 1 to N iter do

Denote the current X by state A.
Step 1: Generate a cccpo at state A
∀e = (i, j) ∈ E+, sample ue ∼ Bern(qe1(xi = xj))
∀e = (i, j) ∈ E−, sample ue ∼ Bern(qe1(xi 6= xj))
Generate the {ccp} and {cccp} based on E+

on and E−on
Select a cccpo from {cccp} probabilistically
Denote the prob for selecting cccpo by q(cccpo|A).

Step 2: Assign labels to ccp’s in the cccp with probability: q(l(cccpo = L|cccpo, A)).
Denote the new X as state B.

Step 3: Calculate the acceptance probability:

α(A→ B) = min(1,
q(B → A)

q(A→ B)
· p(X = B|I)
p(X = A|I)

)

end for
Output: Distinct states {X∗} with highest probabilities.

Figure 6.30: The C4 Algorithm

Calculating the Acceptance Probability

In Markov chain design, each move between two states A and B is made reversible and observes
the detailed balance equation,

p(X = A|I)K(A→ B) = p(X = B|I)K(B → A). (6.80)

K(A → B) is the Markov chain kernel or transition probability from A to B. In the Metropolis-
Hastings design,

K(A→ B) = q(A→ B)α(A→ B), ∀A 6= B. (6.81)

q(A → B) is the probability for proposing state B from state A, and α(A → B) is the acceptance
probability,

α(A→ B) = min(1,
q(B → A)

q(A→ B)
· p(X = B|I)
p(X = A|I)

). (6.82)

It is easy to check that the design of proposal probability in eqn.(6.82) and the acceptance probability
in eqn.(6.81) makes the kernel satisfy the detailed balance equation in (6.80), which in turn suffices
to observe the invariance condition,

p(X = A|I)K(A→ B) = p(X = B|I). (6.83)

So, p(X|I) is the invariant probability of the Markov chain with kernel K. Now we elaborate on
the design of proposal and acceptance probabilities. The acceptance probability is determined by
two ratios.
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(i) The ratio p(X=B|I)
p(X=A|I) is problem specific and is not part of our design. The posterior probability

can be in general form and does not have to be modified or approximated to fit the C4 algorithm.
As states A and B only differ in their labels for nodes in cccpo, it often can be computed locally if
the posterior probability is a MRF or CRF.

(ii) The proposal probability ratio is completely up to our design, and it includes two parts,

q(B → A)

q(A→ B)
=
q(cccpo|B)

q(cccpo|A)
· q(l(cccpo) = LA|cccpo, B)

q(l(cccpo) = LB|cccpo, A)
.

q(cccp0|A) and q(cccp0|B) are the probabilities for choosing cccpo at states A and B respectively.
Given the chosen composite connected component cccpo, in both states A and B, the assignment
of new labels is independent of the surrounding neighbors of cccpo and is often assigned by equal
probability (uniform) among all valid assignments in the CSP-solver. Thus they cancel out, and we
have q(l(cccpo)=LA|cccpo,B)

q(l(cccpo)=LB |cccpo,A) = 1.

To summarize, the key to the algorithm design is the ratio q(cccpo|B)
q(cccpo|A) . In single site sampling,

such as Gibbs sampler, each node is a cccpo and the selection is simply a visiting scheme. In C4,
the probability for choosing cccpo at a state depends on two steps: (a) How likely it is to generate
cccpo by sampling the edge probabilities qe following the Bernoulli probability. (b) How likely it is
to select cccpo from the set of formed {cccp} in states A and B. These probabilities are hard to
compute, because there are a vast amount of partitions of the graph that include a certain cccpo by
turning on/off edges. A partition is a set of cccp’s after turning off some edges.

positive edge negative edges cut: turn off edge probabilistically 

cccpo

(a) Potts model with +/- edges (b) state X=A (c) state X=B
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Figure 6.31: The Potts model with negative edges. (a) Minimum energy is a checkerboard pattern.
(b) Forming cccps. (c) cccp0 consists of sub-ccps of positive edges connected by negative edges.

Interestingly, the set of all possible partitions in state A is identical to those in state B, and
all these partitions must share the same cut Cut(cccpo). That is, in order for cccpo to be a com-
posite connected component, its connections with its neighboring nodes must be turned off. Even
though the probabilities are in complex form, their ratio is simple and clean due to cancellation.
Furthermore, given the partition, cccpo is selected with uniform probability from all possible cccp’s.

Proposition 1. The proposal probability ratio for selecting cccpo at states A and B is

q(cccp0|B)

q(cccp0|A)
=

∏
e∈Cut(cccpo|B)(1− qe)∏
e∈Cut(cccpo|A)(1− qe)

. (6.84)

We will prove this in the appendix in a similar way to the SW-cut method [9]
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Special case: Potts model with +/- edges

To illustrate C4, we derive it in more detail for a Potts model with positive and negative edges.
Let X be a random field defined on a 2D lattice with discrete states xi ∈ {0, 1, 2, ..., L − 1}. Its
probability is specified by

p(X) =
1

Z
exp{−E(X)}; (6.85)

E(X) =
∑

<i,j>∈E+

βδ(xi = xj) +
∑

<i,j>∈E−
βδ(xi 6= xj),

where β > 0 is a constant. The edge probability will be qe = 1− e−β for all edges.
Fig. 6.31.(a) shows an example on a small lattice with L = 2 labels, which is an adjacency

graph with position dependent edges. The states with checkerboard patterns will have highest
probabilities. Fig. 6.31(b) and (c) show two reversible states A and B by flipping the label of a
cccpo in one step. In this example, cccpo has three ccp’s, cccpo = {{2, 5, 6}; {3, 7, 8}; {11, 12}}. The
labels of the 8 nodes are re-assigned with uniform probability, and this leads to the difference in
the cuts for cccpo at the two states, Cut(cccpo|A) = {(3, 4), (4, 8), (12, 16)} and Cut(cccpo|B) =
{(1, 2), (1, 5), (5, 9), (6, 10), (10, 11), (11, 15)}.

Proposition 2. The acceptance probability for C4 on the Potts model is α(A → B) = 1 for any
two states with different labels in cccpo. Therefore, the move is always accepted.

The proof follows two observations. Firstly, the energy terms inside and outside cccpo are
the same for both A and B, and they differ only at the cuts of cccpo. More precisely, let c =
|Cut(cccpo|B)|− |Cut(cccpo|A) be the difference of sizes in the two cuts (i.e. c = 3 in our example),
it is not too hard to show that

p(X = B|I)
p(X = A|I)

= e−βc (6.86)

Secondly, we have the proposal probability ratio, following eqn.(6.84),

q(cccp0|B)

q(cccp0|A)
=

(1− qe)|Cut(cccpo|B)|

(1− qe)|Cut(cccpo|A)| = eβc. (6.87)

Plugging the two ratios in eqn.6.82, we have α(A→ B) = 1. In the literature of SW [59], Edwards
and Sokal explain the SW on Potts model as data augmentation where the edge variables {ue} are
treated as auxiliary variables and they sample {xi} and {ue} iteratively from a joint probability.

6.9.4 Experiments on Flat Graphs

In this section we test C4’s performance on some flat graphs (MRF and CRF) in comparison with
the Gibbs sampler [75], SW method [180], iterated conditional modes (ICM), graph cuts [23], and
loopy belief propagation (LBP) [108]. We choose classical examples: (i) Ising/Potts model for
MRF; (ii) Line drawing interpretation for constrained-satisfaction problem using candidacy graph;
(iii) scene labeling using CRF; and (iv) scene interpretation of aerial images.
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Figure 6.32: The Ising/Potts model with checkerboard constraints and two minimum energy states
computed by C4.

6.9.5 Checkerboard Ising Model

We first show the Ising model on a 9× 9 lattice with positive and negative edges (the Ising model
is a special case of the Potts model with L = 2 labels). We tested C4 with two parameters settings:
(i) β = 1 and thus qe = 0.632; and (ii) β = 5 and thus qe = 0.993. In this lattice we’ve created a
checkerboard pattern. We’ve assigned negative and positive edges so that blocks of nodes want to
be the same color, but these blocks want to be different colors than their neighbors.

Fig. 6.32 shows a typical initial state to start the algorithm, and two solutions with minimum (i.e.
0 ) energy. Fig. 6.33(a) shows a plot of energy versus time for C4, Gibbs sampler, SW, graph cuts,
and LBP. C4 converges second fastest of all five algorithms in about 10 iterations, behind graph
cuts. Belief propagation cannot converge due to the loopiness of the graph, and Gibbs sampler
and the conventional Swendsen-Wang cannot quickly satisfy the constraints as they do not update
enough of the space at each iteration. This shows that C4 has a very low burn-in time.

Fig. 6.33(b)(c) show the state visited at each iteration. We show the states in 3 levels: the curve
hits the ceiling or floor for the two minimum energy states respectively, and the middle for all other
states. Here we are only comparing graph cuts, SW and C4 as they are the only algorithms that
converge to a solution in a reasonable amount of time. C4 keeps swapping solutions while SW and
graph cuts get stuck in their first solution. This is because C4 can group along negative edges as
well as positive edges to update large portions of the system at once, while Swendsen-Wang is stuck
proposing low probability moves over smaller portions of the solution space.

We also compared our results for experiments where β = 1 and β = 5. Figure 6.33(c) shows
the states visited by the sampler over time. In the β = 1 case, it takes longer for C4 to converge,
because it can’t form large components with high probability. As β gets large, however, C4 very
quickly takes steps in the space towards the solution and can move rapidly between solution states.
We have found that an annealing schedule where qe = 1 − e−β/T and T is adjusted such that qe
moves from 0 to 1 over the course of the experiment works quite well too.

We finally compare the estimated marginal beliefs at each node as computed by each algorithm.
LBP computes these beliefs directly, but we can estimate them for Gibbs sampling, SW, and C4

by running each algorithm and recording the empirical mean at each iteration for each node given
the previous states. Fig. 6.34 shows the belief for one of the Ising model sites over time for each of
the 4 algorithms. LBP does not converge, so it has a noisy estimate over time and is not plotted
for clarity, Gibbs and SW converge to a probability of 1, because they get stuck in a single solution
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state, while C4 approaches 0.5, as it keeps flipping between the two states.
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Figure 6.33: (a) Energy plots of C4, SW, Gibbs sampler, graph cuts, and LBP on the Ising model
vs. time. (b) (c) The state (visited by the algorithms) in time for graph cuts, SW and C4. Once
SW and graph cuts hit the first solution, they get stuck while C4 keeps swapping between the two
minimum energy states. C4 results shown for β = 1 and β = 5.

Figure 6.34: Comparison of marginal beliefs at a single site of the Ising model for Gibbs, SW, and
C4. C4 correctly converges toward 0.5, while the other algorithms only find a single solution state.
LBP does not converge and thus has erratic beliefs that we do not show on this plot.

Checkerboard Potts Model with 7 Labels

We ran the same experiment as with the Ising model above but this time solved the same checker-
board pattern on a Potts model in which each site could take one of seven possible colors (L = 7).
In this example, we have a large number of equal states (in checkerboard pattern) with minimum
energy.

Fig. 6.35(a) plots the energy convergence of each algorithm over time. Graph cuts again con-
verges to just one of the many solutions. Unlike in the case of the L = 2 model, SW is able to find
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Figure 6.35: (a) Energy plots of C4, SW, Gibbs sampler, and LBP on the Potts model (L = 7) vs.
time. (b) (c) The minimum energy states visited by SW and C4 algorithms over time. (d) Total
number of unique solutions found vs. time for SW and C4 with β = 1 and β = 5.

multiple solutions this time, as seen in Fig. 6.35(b). Fig. 6.35(c) shows the number of distinct states
with minimum energy that have been visited by SW and C4 over time. We see that C4 explores
more states in a given time limit which again demonstrates that C4 is more dynamic and thus have
fast mixing time – a crucial measure for the efficiency of MCMC algorithms. We also compare
the case where β = 1 vs. β = 5. Once again, we see that β = 1 doesn’t create strong enough
connections for C4 to move out of local minimum, so it finds roughly as many unique solutions as
Swendsen-Wang does (about 13). When β is increased to 5, however, the number skyrockets from
13 to 90. We thus see that C4 can move around the solution space much more rapidly than other
methods when β is high and can discover a huge number of unique solution states.

Line Drawing Interpretation

The previous two examples are based on MRF models whose edges are position dependent. Now
we test on line drawing interpretation on candidacy graph. We use two classical examples which
have multiple stable interpretations, or solutions: (i) the Necker cube in Fig. 6.25 that has two
interpretations; and (ii) a line drawing with double cubes in Fig. 6.36 that has four interpretations.
The swapping between these states involves the flipping of 3 or 12 lines simultaneously. Our goal is
to test whether the algorithms can compute the multiple distinct solutions over time.

We adopt a Potts like model on the candidacy graph. Each line in the line drawing is a node
in the Potts model, which can take one of eight line drawing labels indicating whether the edge is
concave, convex, or a depth boundary. See [178] for an in-depth discussion on labels for consistent
line drawings. We add an edge in our candidacy graph between any two lines that share a junction.
At each junction, there are only a small set of valid labels for each line that are realizable in a
3D world. We add positive edges between pairs of line labels that are consistent with one of these
junction types, and negative edges between line labels that are not. Thus, we model the pairwise
compatibility of neighboring line labels given the type of junction they form.

For these experiments we set β = 2, resulting in qe = 0.865. Figs 6.36(a) and (c) plot the state
visited by the algorithms over time. Once again we see that C4 can quickly switch between solutions
where CSP solvers or other MCMC methods could get stuck.
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Figure 6.36: Experimental results for swapping state between interpretations: (a) States visited by
C4 for the Necker Cube. (b) A line drawing with outer and inner cubes. (c) States visited by C4

for the double cubes.

Parsing Aerial Images

In this experiment we use C4 to parse aerial images. This experiment is an extension of our work
from [162]. In [162], aerial images are represented as collections of groups of objects, related by
statistical appearance constraints. These constraints are learned automatically in an offline phase
prior to inference.

We create our candidacy graph by letting each bottom-up detected window be a vertex in the
graph, connected by edges with probabilities proportional to how compatible those objects are (we
refer to [162] for detailed discussion of the energy function). Each candidate can be on or off,
indicating whether it is in the current explanation of the scene or not.

Each edge is assigned to be positive or negative and assigned a probability qe of being on by
examining the energy e = φ(xi, xj) between its two nodes. If e > t, the edge is labeled as a negative
edge and if e < t the edge is labeled as a positive edge, where t is a threshold of the user’s choosing.
In our experiments we let t = 0. In this way we create data-driven edge probabilities and determine
positive and negative edge types for C4.

In these experiments we learned a prior model for likely object configurations using labeled aerial
images. Object boundaries were labeled in each image from a set of over 50 images. We tested the
results on five large aerial images collected from Google Earth that were also labeled by hand, so
that we could measure how much C4 improved the final detection results. Though we only use five
images, each image is larger than 1000× 1000 pixels and includes hundreds of objects, so one could
also think of the evaluation as spanning 125 images of 200× 200 pixels.

Figure 6.37 shows an example of a parsed aerial scene. The bottom-up detected windows are
treated as candidates and many are false positives. After using C4 minimizing a global energy
function, however, we are left with the subset that best satisfies the constraints of the system. The
false positive rates are vastly diminished after C4 rules out incompatible proposals. Figure 6.37(d)
shows the precision-recall curve for aerial image object detection using C4 vs. just bottom-up
cues. We can see that the C4 curve, drawn in dashed green, has a much higher precision than the
bottom-up detections even as the recall increases.

We also compared the results of using C4 over LBP, ICM, and SW for similar false alarm rates.
The results are shown in Table 6.3
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Figure 6.37: An application of C4 to aerial image parsing. (a) A portion of an aerial image from
Google earth. (b) A set of bottom-up detections of objects with each being a candidate, i.e. a node
in the candidacy graph. Note the large number of false positives that need to be turned off. (b)
The final subset of proposals selected by C4 to represent the scene. C4 has removed the candidates
that are inconsistent with the prior. (c) Precision recall curve for pixel level performance over a
dataset of aerial images.

Method FalsePositive (per image) DetectRate (%)
LBP 85.32 0.668
ICM 82.11 0.768
SW 87.91 0.813
C4 83.04 0.875

Table 6.3: False positives per image and detection rate using Loopy BP, SW, ICM, and C4 for aerial
image parsing.

6.9.6 C4 on Hierarchical Graphs

In this section, we discuss the consistency of the flat graphs and extend C4 from flat graphs to
hierarchical graphs and then we address high-order constraints that involve more than two sites.

Condition for Graph Consistency

In each iteration of the C4 algorithm, suppose we have turned on edges probabilistically and the
original graph G =< V,E > becomes Gon =< V,Eon > with E = Eon ∪ Eoff , Eon = E+

on ∪ E−on,
and Eoff = E+

off ∪ E
−
off . As we discussed in section 6.9.2 all nodes in the graph Gon in each ccp

shares the same label and they are supposed to form a coupled partial solution. However, if the
constraints in graph G are inconsistent, then some nodes in a ccp may be connected by edges in
E−off . Though such negative edges are not turned on in ccp, they indicate that some nodes in the
ccp may be conflicting to each other. This may not be a serious problem, for example, the negative
edges may simply express soft constraints, such as overlapping windows due to occlusion, which is
acceptable in the final solution.

Fig. 6.38 shows an example where the negative edge is a hard constraint. If we try to solve the
duck/rabbit illusion using flat candidacy graph, a ccp may contain {′eye′,′ nose′,′ head′} which is
inconsistent. We call it a "love triangle".
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Figure 6.38: An attempt to solve the duck/rabbit illusion using flat C4. We see that we are very
likely to form love triangles on the left and right of the graph, making constraint satisfaction very
difficult.

Definition 6.6. In a graph G, two nodes i, j connected by a negative edge is said to be involved
in a love triangle if there also exists a path between i, j that consists of all positive edges.

Definition 6.7. A ccp is said to be consistent in graph G if there are no negative edges in E that
connect two nodes in the ccp, that is, {e : i, j ∈ ccp} ∩E− = ∅. A graph G is said to be consistent
if all its ccp’s are always consistent in C4.

When a graph is consistent, then we are guaranteed to get valid solutions.
The existence of the so-called ’love triangles’ are the sole reason to generate inconsistent ccp’s.

For this we can easily prove the following proposition.

Proposition 3. In the absence of ’love triangles’, the graph G will be consistent.

The essential reason for generating the ’love triangles’ in a graph, mostly in candidacy graphs,
is that certain nodes are over-loaded with multiple labels and thus they are coupled with conflicting
nodes. For example, the node ’eye’ should be either a ’rabbit eye’ or a ’duck eye’ and it should be
split into two conflicting candidates connected by an negative edge. This way it can eliminate the
"love triangle". Fig. 6.39 illustrates that we can remove the love triangle by splitting node 1 into
nodes 1 and 1′ and thus we will have consistent ccp.

Figure 6.39: Breaking the ’love triangle’ in a candidacy graph.
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Figure 6.40: An attempt to solve the duck/rabbit illusion using hierarchical C4. The trees define
which parts comprise each object. Nodes are grouped according to these trees, creating higher-level
nodes. The higher-level nodes inherit the negative constraints.

Formulation of Hierarchical C4

One other common issue that we need to address is higher-order constraints that involve more than
2 nodes. Fig. 6.40 shows a hierarchical graph representation for the duck/rabbit illusion. This
is a candidacy graph with two layers. The top layer contains two hidden candidate hypotheses:
’duck’ and ’rabbit’. The two nodes are decomposed into three parts in layer 1 respectively and
thus impose high order constraints between them. Now the hypotheses for parts are specifically for
’duck.eye’, ’rabbit.eye’ etc. The negative edge connecting the two object nodes is inherited from
their overlapping children.

This hierarchical candidacy graph is constructed on-the-fly with nodes being generated by mul-
tiple bottom-up detection and binding processes as well as top-down prediction processes. We refer
to a recent paper by Wu and Zhu [207] for the various bottom-up/top-down processes in object
parsing. In this graph, positive and negative edges are added between nodes on the same layers in
a way identical to the flat candidacy graph, while the vertical links between parent-child nodes are
deterministic.

By turning on/off the positive and negative edges probabilistically at each layer, C4 obtains
ccp’s and cccp’s as in the flat candidacy graphs. In this case, a ccp contains a set of nodes that are
coupled in both horizontal and vertical directions and thus represents a partial parse tree. A cccp
contains multiple competing parse trees, which will be swapped in a single step. For example, the
left panel in Fig. 6.40 shows two ccp’s for the duck and rabbit respectively which are connected
with negative edges in the candidacy graph.

This hierarchical representation can also eliminate the inconsistency caused by overloaded labels.
That is, if a certain part is shared by multiple object or object instances, we need to create multiple
instances as nodes in the hierarchical candidacy graph.
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Figure 6.41: (Top panel) Flat C4 results on the duck/rabbit illusion. C4 swaps between two
impossible states due to love triangles. (Bottom panel) Hierarchical C4 results on the duck/rabbit
solution. C4 now swaps uniformly between the two correct solutions.

6.9.7 Experiments on Hierarchical C4

To demonstrate the advantages of hierarchical C4 over flat C4, we present two experiments (i)
interpreting the duck/rabbit illusion, and (ii) finding configurations of object parts amidst extremely
high noise.

(i) Experiment on Hierarchical Duck/Rabbit Illusion. As referenced above, C4 on the
flat candidacy graph in Fig. 6.38 creates two love triangles. The top panel of Fig. 6.41 shows the
results of flat C4 on the duck/rabbit illusion. C4 continuously swaps between two states, but the
two states either have all nodes on or all nodes off, neither of which are valid solutions. The bottom
panel of Figure 6.41 shows the results of applying hierarchical C4 to the duck/rabbit illusion. We
defined a tree for the duck/rabbit illusion consisting of either a duck, {beak, eye, duckhead}, or a
rabbit {ears, eye, rabbithead}. As a result, the algorithm instantly finds both solutions and then
proceeds to swap between them uniformly. These results show that hierarchical C4 can help guide
the algorithm to more robust solutions and negates the effects of love triangles.

(ii) Experiments on Object Parsing. A problem that often appears in computer science is
the problem of finding the optimal subset from a larger set of items that minimizes some energy
function. For example, in the star model [63] , many instances of each object part may be detected
in the image. However, our algorithm should find the subset (or subsets) of these detections that
creates the highest probability configuration. This is a combinatorially hard problem as the number

140



of solutions grows exponentially in the number of detections, so heuristic approaches are usually
proposed to deal with this situation. One can use dynamic programming for inferring star models,
but these require that the root part be present, which our algorithm does not. Hierarchical C4 is
ideally suited for this problem, as it can use local edge constraints and hierarchical grouping to
guide its search through large sets of detections to find the most likely solutions.
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Chapter 7

Convergence Analysis of MCMC

Let (ν,K,Ω) be a Markov chain with initial distribution ν, transition kernel K in the space Ω. The
samples obtained by this Markov chain at some time n follow the distribution X(t) ∼ ν ·Kn n→∞−−−→
π).

The convergence of νKn is measured using the total variation ‖νKn − π‖TV → 0.

Kn =

n∑
i=1

λiviui

Recall the typical measurements, define in Section 3.3:

i) First hitting time of a state i (In the finite state case)

τhit(i) = inf{n > 1;xn = i, x0 ∼ ν0}, ∀i ∈ Ω

ii) First return time of a state i

τret(i) = inf{n > 1;xn = i, x0 = i}, ∀i ∈ Ω

iii) Mixing time
τmix(i) = min

n
{‖νKn − π‖TV 6 ε,∀ν0}

We also have the following concepts to characterize the Markov chain.

Definition 7.1. The Burn-in period is the expected number of steps until the Markov chain enters
the subspace of typical states. The subspace of typical states is a subspace of Ω where π(x) is
concentrated.

The burn-in notion is not very precise since it is hard to estimate when the distribution of the
Markov chain νKn is sufficiently close to the target distribution π, especially in high dimensional
spaces.

Definition 7.2. The auto-correlation between the states of the Markov chain x = (x0, ..., ) is
defined as

Corr(τ) =
1

T

t0+T∑
t=t0+1

(xt − x)(xt+τ − x), ∀τ ≥ 0
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Figure 7.1: Usually the auto-correlation between samples decreases with the lag τ .

High auto-correlation implies slow convergence, and low auto-correlation implies fast conver-
gence.

We can use the MC samples to integrate:

θ =

∫
f(x)π(x)dx ∼=

1

T

t+T∑
t=t0+1

f(xt) = θ̂

var(θ̂) = Esamples

[
(θ̂ − θ)2

]
=

1

m
· const

where m is the effective number of independent samples.

7.1 Practical Methods for Monitoring

Deterministic algorithms converge to a point and convergence to that point can usually be moni-
tored. For example in Maximum Likelihood Estimation (MLE) we can check the likelihood function
f(x) to see if the algorithm has converged.

In contrast, MCMC algorithms are stochastic, they converge to a distribution π(x) and it is
hard to determine whether convergence has occurred or not. However, there are some methods that
can tell us something about convergence, such as:

1. Monitoring “sufficient statistics” of π(x), such as the boundary length, total energy, etc. The
statistics is averaged over space (a sample has many perturbations) or time (number of sam-
ples).

This way, we will project the state space Ω to the space of the sufficient statistics H. For any
particular value of H, we have the inverse space

Ω(h) = {x ∈ Ω : H(x) = h}

2. Run many Markov chains in parallel, starting from widely dispersed initial states, if possible,
the extreme states. Monitoring can still be done using 1).

e.g. In Ising/Potts Model, we start from constant 0/1 (white/black), or white noise.

3. On top of 1)+2), we can monitor whether the MC (or MCs) forgot the past or initial points.

4. Monitoring the sampling temperature, T . In this respect we can:
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Figure 7.2: The σ̂ and σw bound the true sigma. IS THIS TRUE??

• Monitor the rejection rate of the Metropolis-Hastings algorithm.

• Monitor the entropy of the π(xi|x−i in the Gibbs sampler (which reflects the tempera-
ture).

5. Suppose we have a state space Ω, we can simulate M different MC sequences, {MCi; i =
1, 2, · · · ,M}. We can compute the individual means ψi, and the total mean of all MCs, ψ.
Thus we have the between-MC variance and within-MC variance:

σ2
w =

1

M

M∑
i=1

σ2
i , σ

2
i =

1

T

t0+T∑
i=t0

(
xi(t)− ψi

)2

σ2
b =

1

M − 1

M∑
i=1

(ψi − ψ)2

Then we have an estimate of the variance of the MC:

σ̂ =
T − 1

T
σw +

1

T
σB

7.2 Coupling Methods for Card shuffling

Shuffling a deck of cards is a Markov chain. We can use card shuffling to study coupling methods
for Markov chains, where two or more MCs start independently and they slowly coalesce and move
identically after a number of steps.

Suppose we have a deck with n = 52 cards. We can use Markov Chains to answer some questions
such as: When are the cards thoroughly shuffled? Are all cards randomly distributed?

We have three ways to understand the problem.

1. Convergence is to a procedure, such as a shuffling process, since after each shuffling we get a
new order.

By repeating this process N times, we get N decks (arrangements), and we can

a) Test the distribution of the cards that appear at any location i, and compare with the
empirical distribution of cards at i, which should be uniform.

b) Track the card tht started at position i, and check its position distribution.

2. Check whether the new deck forgot the history, so players cannot cheat by memorizing the
original order
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3. We can monitor some marginal statistics between the cards, so that one cannot predict the
next card based on cards in deck.

There are many ways to shuffle the cards, of which we present two here:

7.2.1 Shuffling to the top

This is a simple shuffling method easy to study theoretically. At each step a card i is selected at
random and placed on the top of the deck. This way after many moves the deck is completely
random.

To couple the MC associated to deck 1 with another MC associated to deck 2, we find the same
card i in deck 2, and place it on the top. Thus, top cards are identical between deck 1, 2. This
procedure is repeated until all 52 cards are picked at least once. This is also known as the “coupon
collector’s problem”.

After some time T , the two decks are identical, have “coalesced”. The coalescence time T has
the following characteristics

E[T ] = n(
1

n
+

1

n− 1
+ · · ·+ 1) ∼= n log n

var[T ] ∼= 0.72n

Remark 7.1. At each step we have to select among all n cards, so that the shuffling on deck one
is unbiased otherwise it is no longer random.

Remark 7.2. Both decks are coupled by the same card i at each move.

7.2.2 Riffle shuffling

We divide the 52 cards into two decks according to Binomial(n, 1
2). i.e. n Bernoulli(1

2) trials. This
way a number k of cards are in deck 1 and n−k are in deck 2. The number k follows the distribution:

K ∼ P (k) =
1

2n

(
n

k

)
=

1

2n
· n!

k!(n− k)!

This can be better understood by an inverse shuffling process, where “inverse” is similar to
rewinding a video, i.e. playing video backwards.

At each shuffling, we simulate a binary bit for each card, b1, b2, · · · , bn ∼Bernoulli(1
2), n times

total. Then we go back and put all 0’s on top of 1’s.
After t shuffling operations, each card i from the original order is associated with t bits of code.

xi = b1ib2i · · · bti

When t is large so that all {xi} are distinct, then the order of the cards corresponds to the values
of xi, in the sense that the card that has a 0 last is above the other card in the deck. Then, the
ordering after time t is completely random, since the order is dictated only by the bits xi.

The number t will be equal to a classic statistical problem: What is the the probability of
dropping n balls in 2t bins, so that each bin has at most 1 ball? The bins correspond to the 2t bit
combinations (b1, b2, · · · , bt) without repetition and the balls correspond to the n cards.
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7.3 Geometric Bounds, Bottleneck and Conductance

In this section, we introduce some key concepts about MCMC convergence rates without proofs.

7.3.1 Geometric convergence

Let (ν,K,Ω) be a Markov chain on a finite state space Ω with initial probability ν and transition
kernel K. If K is irreducible and aperiodic, then

‖ν ·Kn − π‖TV 6 c · rn

where c is constant and 0 < r < 1 is the geometric rate.
For such a Markov chain, there exists n0 > 0 such that

Kn0(x, y) > 0, ∀x, y ∈ Ω

There are many ways to prove it, since we do not have r specified.

i) Using the contraction coefficient. The contraction coefficient for K is the maximum TV-norm
between any two rows in the transition kernel and is calculated by

C(K) = max
x,y
‖K(x, ·)−K(y, ·)‖TV

THIS PROOF IS NOT COMPLETE

ii) Using Perron-Frobenius Theorem. Recall Theorem 3.4:

Theorem (Perron-Frobenius Theorem). For any primitive (irreducible and aperiodic) N ×N
stochastic matrix K, K has eigenvalues

1 = λ1 > |λ2| > · · · > |λr|

with multiplicities m1, ...,mr and left and right eigenvectors (ui,vi) respectively. Then u1 =
π,v1 = 1, and

Kn = 1 · π′ +O(nm2−1|λ2|n).

More specifically, we have the bound on each starting state x0 ∈ Ω

‖νKn − π‖ 6

√
1− π(x0)

4π(x0)
· λnslem

This bound is known as the Diaconis-Hanlon bound [54].
Now we need to analyze what factors bound λslem. λslem is often related to the worst case

scenario (state, vertices, edge). There are two key concepts in the MCMC convergence literature:
the “bottleneck” and “conductance” of a trade map.
Trade map (transition graph). Going back to the analogy of a Markov chain Kernel K with a
trade between people (see Example 3.2), we define a graph G =< V,E > where V = Ω is the finite
set of states, and

E = {< x, y >;x, y ∈ V,K(x, y) > 0}

Each edge e =< x, y > is weighted by Q(e) = π(x) ·K(x, y).
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Figure 7.3: The graph associated to a MCMC.

Now we study some properties of this map to diagnose convergence. By irreducibility, ∀x 6= y ∈
Ω, x and y are connected through many paths,

x
γ−→ y

We define a weighted path
Γxy

def
= (x, · · · , y)

has effective “length”:

γxy
def
=

∑
<s,t>∈Γxy

1

π(s)K(s, t)

Thus, a lower probability to go from x to y will imply a longer path, and one needs to wait a long
time to go from x to y.
Bottleneck. The connectivity of G can be measured by a “bottleneck” measure

κ = max
e∈E

∑
Γxy3e

γxy · π(x)π(y)

where e∗ is the bottleneck and κ is the measure. Intuitively, e∗ will be like the “Panama Canal” or
the “Strait of Magellan”, it will cause the traffic jam.

Poincaré inequality implies that:
λslem 6 1− κ−1

Conductance of G. Suppose we divide the state space Ω into two subspaces.

Ω = S ∪ Sc

We define the transition probability,

K(S, Sc)
def
=
∑
x∈S

∑
y∈Sc

K(x, y)

Let π(S) =
∑

x∈S π(x) as the capacity of S, and

Q(S, Sc) =
∑
x∈S
y∈Sc

π(x) ·K(x, y)

be the flow out of S.
Then the “conductance” of G is defined as

h
def
= min

S:π(S)6 1
2

Q(S, Sc)

π(S)
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In the case of small conductance there exists S with large π(S) but small Q(S, Sc).
Cheeger’s Inequality [55]:

1− 2h 6 λslem 6 1− h2

2

These bounds are intuitive, but does not really guide the design in practice. In practice heuristics
are used such as DDMCMC or the SW cut algorithm to speed up the Markov Chain.

7.4 Peskun’s Ordering and Ergodicity Theorem

Now, we return to our early motivation for designing MCMC. Recall the Ergodicity theorem 3.5
from Chapter 3.

θ =

∫
f(x)π(x)dx ∼= θ̂ =

1

n

n∑
t=1

f(x(t))

by samples {x(1), · · · , x(n)} ∼ π(X) obtained by MCMC.
The efficiency of an MC is ultimately measured by the variance

var(θ̂) = lim
n→∞

1

n
var
{ n∑
t=1

f(x(t))
}

Suppose two MCs K1 and K2 have the same invariant probability π. We introduce a partial
order among all such K’s

Ωπ = {K : πK = π, K irreducible and aperiodic}.

We say that K1 dominates K2, i.e., K1 � K2, if K1(x, y) > K2(x, y), ∀x 6= y.

Theorem 7.3 (Peskun). If K1 � K2 then var(θ̂1) 6 var(θ̂2).

Example 7.1. Consider the following two Markov chains:

MC1: K1(x, y) = Q(x, y)·α(x, y) = Q(x, y)·min
(

1,
Q(y, x)π(y)

Q(x, y)π(x)

)
– Metropolis-Hastings design.

MC2: K2(x, y) = Q(x, y) · π(y)Q(y, x)

π(x)Q(x, y) + π(y)Q(y, x)
– Baker’s design.

One can prove that K1 � K2.

Example 7.2. Metropolized Gibbs sample � Gibbs sampler.

7.5 Path Coupling and Exact Sampling

Example 7.3. We consider a n× n lattice (e.g. n = 64) and its graph consisting of the 4-nearest
neighbors. The Ising model comes from physics where it models magnetic material on a lattice of
charged particles with two possible spin states, −1(down) or 1 (up). Let X be the spin states of the
lattice, so the variable Xs at each site s is the spin state, taking values in {−1, 1}. The model for
spin interaction of ferromagnetic material assigns positive interaction energy to spins of the opposite
direction. Formally, the energy of the system is the Ising model:

H(X) = −
∑

<s,t>∈C
βXsXt,
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where C are all the graph edges (4-nearest neighbors) of the lattice and β is interaction strength
(possibly inhomogeneous).

This induces the probability measure for each possible state of the lattice:

P (X) =
1

Z
exp−H(X)

We simulate two Markov Chains with the Gibbs sampler:

MC1 starts with all sites being 1 (call it the white chain) and its state is denoted by X1;

MC2 starts with all sites being 0 (call it the black chain) and its state is denoted by X2.

At each step, the Gibbs sampler picks up a site s in both images, and calculates the conditional
probabilities, p(X1

s |X1
∂s) and p(X2

s |X2
∂s). It updates the variables X1

s and X2
s according to the

above two conditional probabilities, and shares the same random number r ∈ [0, 1] to sample the
two variables. The two Markov Chains are said to be “coupled”.

Figure 7.4: The total magnetization
∑

sXs on the Ising model with β = 0.35 for the MC1 and
MC2, which coalesced at τ = 105.

It can be proved that X1
s ≥ X2

s , ∀s in any step. That is, the white chain is always above the
black chain. An example for β = 0.35 is shown in Figure 7.4.

When the two chains meet each other, i.e. X1
s = X2

s ,∀s after many sweeps, they are said to
“coalesce”. They will stay in the same state forever as they are driven by the same random number
at each step. We denote the coalescence time (number of sweeps) by τ . The images after time τ
are said to be exact samples from the Ising model.

The main tool and concepts for exact sampling:

1. Coupling

2. Simulation from the past

3. Monotonicity
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7.5.1 Coupling from the past

The idea of coupling from the past is to run the simulation backward in time from each state,
keeping track of the states where each chain ends up in. It is intuitive that once two states map to
a single state after a simulation from time −t to time 0, they will remain the same for simulations
from −t− 1 if the same randomness numbers are used.

Coupling from the past ensures that after a finite number of rounds of simulationM , the measure
ρ(i) of the state i we end up with is sufficiently close to the equilibrium distribution of the chain
π(i), i.e. ||ρ(i)− π(i)|| < ε.

The output of a fixed-time backwards simulation is given by F 0
−M (i), where F t2t1 is defined as

the composition ft2−1 ◦ ft2−2 ◦ · · · ◦ ft1+1 ◦ ft1 .

1. Each ft(i) maps the state space to itself, with −M ≤ t ≤ 1

2. F 0
t is updated via F 0

t = F 0
t+1 ◦ ft

3. Coalescence is at the time point when F 0
t becomes a constant map, F 0

t (i) = F 0
t (i′), ∀i, i′.

Theorem 7.4. With probability 1 the coupling from the past procedure returns a value that is
distributed according to the stationary distribution of the Markov chain.

Figure 7.5: A Markov chain with four states, where p = 1
3 , q = 1

4 , r = 1− p− 2q.

Example 7.4. Consider the four-state Markov chain shown in Figure 7.5. We simulate all of the
states from the past. Coalescence happened after 5 iterations of simulation, as seen in Figure 7.6.

The state space S has a natural partial ordering, so that

x ≤ y ⇒ φ(x, u) ≤ φ(y, u),

where φ is the update rule, and u is the source of randomness.
The coalescence can be verified by tracking the maximal and minimal elements of the state space

S.
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Figure 7.6: Coupling from the past for the MC from Figure 7.5. Coalescence happened after 5
iterations of simulation.

7.5.2 Application: sampling the Ising model

We now go back to the Ising model from example 7.3.
Problem: It is not trivial to sample the Ising model because of its high dimensionality.
Solution: We use Gibbs sampler to update the chain based on the conditional distribution of

each particular spin of the lattice, P (s/∂s), where ∂s is the neighbor system of s.
It is very easy to sample directly from this distribution.

β = 0.35, τ = 105 β = 0.40, τ = 780 β = 0.43, τ = 5265
Figure 7.7: Samples of 2D ferromagnetic Ising model at different temperatures (different values of
β). Lattice size: 200× 200.

It has been shown that if a deterministic (or semi-deterministic) scheme for updating all of the
points in the lattice with the Gibbs sampler is employed, the induced Markov chain will converge
to the joint distribution for the lattice, P (I).

In Figure 7.7 are shown samples from the Ising model with different values of β at coalescence.
Below each image is shown the value of β and the coalescence time τ .

In Figure 7.4 is shown the total magnetization
∑

sXs for the MC1 (white chain) and MC2 (black
chain), for β = 0.35.

The energy at coalescence can vary for different random sequences, as shown in Figure 7.8.
In Figure 7.9 is shown the correlation

R(t) =
1

N

N∑
i=1

< X(i), X(i+t) >
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Figure 7.8: The energy at coalescence of 150 trials. β = 0.40, lattice size: 50× 50.

Figure 7.9: Correlation of equilibrium states at different temperatures. LIMITS ARE WRONG

between the states at different times i and time i+ t.
If an external field Xobs is added to the model, the potential H(X) becomes:

H(X) = −
∑

<s,t>∈C
αXsXt −

∑
<s>∈I

XsX
obs
s

The Ising model with external field can be used for image denoising, by using the observed noisy
image as the external field Xobs and the sampled image X as the denoised image.

In Figure 7.10 is shown the obtained sampled image X by coupling from the past with the
external field shown in top left, and different values of the interaction strength parameter β. The
total magnetization for the upper and lower bound chains for β = 1 is shown in Figure 7.11.
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original image µ = 0.2, τ = 6 µ = 0.4, τ = 11

β = 0.6, τ = 19 β = 0.8, τ = 53 β = 1.0, τ = 513

Figure 7.10: Simulation of the coupled Markov chains with external field for noise reduction.

Figure 7.11: The upper bound and lower bound coalesced at τ = 513, β = 1.
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Chapter 8

Data Driven Markov Chain Monte Carlo

Image segmentation is a long standing problem in computer vision, and it is found difficult and
challenging for two main reasons.

The first challenge is the fundamental complexity of modeling a vast amount of visual patterns
that appear in generic images. The objective of image segmentation is to parse an image into its
constituent components. The latter are various stochastic processes, such as attributed points, lines,
curves, textures, lighting variations, and deformable objects. Thus a segmentation algorithm must
incorporate many families of image models, and its performance is upper bounded by the accuracy
of its image models.

The second challenge is the intrinsic ambiguities in image perception, especially when there
is no specific task to guide the attention. Real world images are fundamentally ambiguous, and
our perception of an image changes over time. Furthermore, an image often demonstrates details
at multiple scales. Thus the more one looks at an image, the more one sees. Therefore, it must
be wrong to think that a segmentation algorithm outputs only one result. In our opinion, image
segmentation should be considered a computing process not a vision task. It should output multiple
distinct solutions dynamically and endlessly so that these solutions “best preserve” the intrinsic
ambiguity.

Motivated by the above two observations, we present a stochastic computing paradigm called
data-driven Markov chain Monte Carlo (DDMCMC) for image segmentation. We proceed in five s.

Firstly, we formulate the problem in a Bayesian/MDL framework [104, 112, 224] with seven
families of image models which compete to explain various visual patterns in an image, for example,
flat regions, clutter, texture, smooth shading, etc.

Secondly, we decompose the solution space into an union of many subspaces of varying dimen-
sions, and each subspace is a product of a number of subspaces for the image partition and image
models (see Figure 8.3 for a space structure). The Bayesian posterior probability is distributed over
such a heterogeneously structured space.

Thirdly, we design ergodic Markov chains to explore the solution space and sample the posterior
probability. The Markov chains consist of two types of dynamics: jumps and diffusion. The jump
dynamics simulate reversible split-and-merge, and model switching. The diffusion dynamics simulate
boundary deformation, region growing, region competition [224], and model adaptation. We make
the split and merge processes reversible, and the ergodicity and reversibility enable the algorithm
to achieve nearly global optimal solution independent of initial segmentation conditions. Thus,
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this demonstrates major progress over the previous region competition algorithm (Zhu and Yuille,
1996) [224].

Fourthly, we utilize data-driven techniques to guide the Markov chain search, and thus achieves
tremendous speedup in comparison to previous MCMC algorithms [75,87,88]. In the literature, there
are various techniques for improving the Markov chain speed, such as multi-resolution approaches
[21,202], causal Markov models [21,152], and clustering [10,64,180,202]. In our DDMCMC paradigm,
data-driven methods such as edge detection [29] and tracing, data clustering [33,40] are used. The
results of these algorithms are expressed as weighted samples (or particles), which encode non-
parametric probabilities in various subspaces. These probabilities respectively approximate the
marginal probabilities of the Bayesian posterior probability, and they are used to design importance
proposal probabilities to drive the Markov chains.

Fifthly, we propose a mathematical principle and a “K-adventurers” algorithm for selecting and
pruning a set of important and distinct solutions from the Markov chain sequence and at multiple
scales of details. The set of solutions encode an approximation to the Bayesian posterior probability.
The multiple solutions are computed to minimize a Kullback-Leibler divergence from the approxi-
mative posterior to the true posterior, and they preserve the ambiguities in image segmentation.

In summary, the DDMCMC paradigm is about effectively creating particles (by bottom-up
clustering/edge detection), composing particles (by importance proposals), and pruning particles
(by a K-adventurers algorithm), and these particles represent hypotheses of various grainularities
in the solution space.

Conceptually, the DDMCMC paradigm also reveals the roles of some well-known segmentation
algorithms. Algorithms such as split-and-merge, region growing, Snake [100] and balloon/bubble
[174], region competition [224], and variational methods [104], and PDEs [156] can be viewed as
various MCMC jump-diffusion dynamics with minor modifications. Other algorithms, such as edge
detection [29] and clustering [40,52] compute importance proposal probabilities.

We test the algorithm on a wide variety of grey level and color images, and some results are
shown in this section. We also demonstrate multiple solutions and verify the segmentation results
by synthesizing (reconstructing) images through sampling the likelihood models.

8.1 Problem Formulation and Image Models

In this section, we formulate the problem in a Bayesian framework, and discuss the prior and
likelihood models that are selected in our experiments.

8.1.1 The Bayesian Formulation for Segmentation

Let Λ = {(i, j) : 1 ≤ i ≤ L, 1 ≤ j ≤ H} be an image lattice, and IΛ an image defined on Λ. For
any point v ∈ Λ, Iv ∈ {0, ..., G} is the pixel intensity for a grey level image, or Iv = (Lv, Uv, Vv)
for a color image.1 The problem of image segmentation refers to partitioning the lattice into an
unknown number of K disjoint regions

Λ = ∪Ki=1Ri, Ri ∩Rj = ∅, ∀i 6= j. (8.1)

Each region R ⊂ Λ needs not to be connected for reason of occlusion. We denote by Γi = ∂Ri the
boundary of Ri. As a slight complication, two notations are used interchangeably in the literature.

1We transfer the (R,G,B) representation to (L∗, u∗, v∗) for better color distance measure.
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One treats a region R ∈ Λ as a discrete label map, and the other treats a region boundary Γ(s) =
∂R as a continuous contour parameterized by s. The continuous representation is convenient for
diffusions while the label map representation is better for maintaining the topology. The level set
method [155,156] provides a good transform between the two.

Each image region IR is supposed to be coherent in the sense that IR is a realization from a
probabilistic model p(IR; Θ). Θ represents a stochastic process whose type is indexed by `.

Thus a segmentation is denoted by a vector of hidden variables W , which describes the world
state for generating the image I.

W = (K, {(Ri, `i,Θi); i = 1, 2, ...,K}).

In a Bayesian framework, we make inference about W from I over a solution space Ω.

W ∼ p(W |I) ∝ p(I|W )p(W ), W ∈ Ω.

As we mentioned before, the first challenge in segmentation is to obtain realistic image models.
In the following, we briefly discuss the prior and likelihood models selected in our experiments.

8.1.2 The Prior Probability

The prior probability p(W ) is a product of the following four probabilities.
1. An exponential model for the number of regions p(K) ∝ e−λ0K .
2. A general smoothness Gibbs prior for the region boundaries p(Γ) ∝ e−µ

∮
Γ ds.

3. A model for the size of each region. Recently both empirical and theoretical studies [3, 114]
on the statistics of natural images indicate that the size of a region A = |R| in natural images
follows a distribution, p(A) ∝ 1

Aα , α ∼ 2.0. Such a prior encourages large regions to form. In our
experiments, we found this prior is not strong enough to enforce large regions, instead we take a
distribution

p(A) ∝ e−γAc , (8.2)

where c = 0.9 is a constant. γ is a scale factor which controls the scale of the segmentation. This
scale factor is in spirit similar to the “clutter factor” found by Mumford and Gidas [146] in studying
natural images. It is an indicator for how “busy” an image is. In our experiments, it is typically set
to γ = 2.0 and is the only free parameter in this section.

4. The prior for the type of model p(`) is assumed to be uniform, and the prior for the parameters
Θ of an image model penalizes model complexity in terms of the number of parameters Θ, p(Θ|`) ∝
e−ν|Θ|.

In summary, we have the following prior model

p(W ) ∝ p(K)
K∏
i=1

p(Ri)p(`i)p(Θi|`i) ∝ exp{−λ0K −
K∑
i=1

[µ

∮
∂Ri

ds+ γ|Ri|c + ν|Θi|]}.
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8.1.3 The Likelihood for Grey Level Images

Visual patterns in different regions are assumed to be independent stochastic processes specified by
(Θi, `i), i = 1, 2, ...,K. Thus the likelihood is,2

p(I|W ) =
K∏
i=1

p(IRi ; Θi, `i).

The choice of models needs to balance model sufficiency and computational efficiency. In studying
a large image set, we found that four types of regions appear most frequently in real world images.
Figure 8.1 shows examples for the four types of regions in windows: a). flat regions with no
distinct image structures, b). cluttered regions, c).regions with homogeneous textures, and d).
inhomogeneous regions with globally smooth shading variations.

(a) uniform (b) clutter (c) texture (d) shading

Figure 8.1: Four types of regions in the windows are typical in real world images.

We adopt the following four families of models for the four types of regions. The algorithm can
switch between them by Markov chain jumps. The four families are indexed by ` ∈ {g1, g2, g3, g4}
and denoted by $g1 , $g2 , $g3 , and $g4 respectively. Let G(0;σ2) be a Gaussian density centered
at 0 with variance σ2.

1. Grey image model family ` = g1: $g1 . This assumes that pixel intensities in a region R
are subject to independently and identically distributed (iid) Gaussian distribution,

p(IR; Θ, g1) =
∏
v∈R

G(Iv − µ;σ2), Θ = (µ, σ) ∈ $g1 . (8.3)

2. Grey image model family ` = g2: $g2 . This is a non-parametric intensity histogram h().
In practice h() is discretized as a step function expressed by a vector (h0, h1, ..., hG). Let nj be the
number of pixels in R with intensity level j.

p(IR; Θ, g2) =
∏
v∈R

h(Iv) =
G∏
j=0

h
nj
j , Θ = (h0, h1, ..., hG) ∈ $g2 . (8.4)

3. Grey image model family ` = g3: $g3 . This is a texture model FRAME [223] with
pixel interactions captured by a set of Gabor filters. This family of models was demonstrated to be
sufficient in realizing a wide variety of texture patterns. To facilitate the computation, we choose a
set of 8 filters and formulate the model in pseudo-likelihood form [220]. The model is specified by
a long vector Θ = (β1, β2, ..., βm) ∈ $g3 , m is the total number of bins in the histograms of the 8

2As a slight notation complication, Θ, ` could be viewed as parameters or hidden variables in W . We use p(I; Θ, `)
in both situations for simplicity.
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Gabor filtered images. Let ∂v denote the Markov neighborhood of v ∈ R, and h(Iv|I∂v) the vector
including 8 local histograms of filter responses in the neighborhood of pixel v. Each of the filter
histogram counts the filter responses at pixels whose filter windows cover v. Thus we have

p(IR; Θ, g3) =
∏
v∈R

p(Iv|I∂v; Θ) =
∏
v∈R

1

Zv
exp{− < Θ,h(Iv|I∂v) >}, (8.5)

< ·, · > is the inner product between two vectors, and the model is considered non-parametric. The
reason for choosing the pseudo-likelihood expression is obvious: its normalizing constant can be
computed exactly and Θ can be estimated easily from images. We refer to a recent paper [220] for
discussions on the computation of this model and its variations, such as patch likelihood, etc.

4. Grey image model family g4: $g4 . The first three families of models are homogeneous,
which fail in characterizing regions with shading effects, such as sky, lake, wall, perspective texture,
etc. In the literature, such smooth regions are often modeled by low order Markov random fields,
which again do not model the inhomogeneous pattern over space and often lead to over-segmentation.
In our experiments, we adopt a 2D Bezier-spline model with sixteen equally spaced control points
on Λ (i.e. we fix the knots). This is a generative type model. Let B(x, y) be the Bezier surface, for
any v = (x, y) ∈ Λ,

B(x, y) = UT(x) ×M × U(y), (8.6)

where U(x) = ((1−x)3, 3x(1−x)2, 3x2(1−x), x3))T and M = (m11,m12,m13,m14; ...;m41, ...,m44).
Therefore, the image model for a region R is,

p(IR; Θ, g4) =
∏
v∈R

G(Iv −Bv;σ2), Θ = (M,σ) ∈ $g4 . (8.7)

In summary, four types of models compete to explain a grey intensity region. Whoever fits the
region better will have a higher likelihood. We denote by $g

Θ the grey level model space,

Θ ∈ $g
Θ = $g1 ∪$g2 ∪$g3 ∪$g4 .

8.1.4 Model calibration

The four image models should be calibrated for two reasons. Firstly, for computational efficiency,
we prefer simple models with less parameters. However, penalizing the number of parameters is not
enough in practice. When a region is of size over ∼ 100 pixels, the data term dominates the prior
and demands more complex models. Secondly, the pseudo-likelihood models in family $g3 are not a
true likelihood as they depend on a rather big neighborhood, thus they are not directly comparable
to the other three types of models.

To calibrate the likelihood probabilities, we did an empirical study. We collected a set of typical
regions from natural images and manually divided them into four categories. For example, Figure 8.2
shows four typical images in the first column, which are cropped from the images in Figure 8.1.
We denote the four images by Iobs

i , i = 1, 2, 3, 4 on a lattice Λo. For each image Iobs
i , we compute

its per pixel coding length (minus log-likelihood) according to an optimal model within family $gj

computed by a maximum likelihood estimation for j = 1, 2, 3, 4.

Lij = min
$gj3Θ

− log p(Iobs
i ; Θ, gj)

|Λo|
, for 1 ≤ i, j ≤ 4. (8.8)
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observed $g1 $g2 $g3 $g4

Iobs
1 Isyn

11 Isyn
12 Isyn

13 Isyn
14L11 = 1.957 L12 = 1.929 L13 = 1.680 L14 = 1.765

Iobs
2 Isyn

21 Isyn
22 Isyn

23 Isyn
24L21 = 3.503 L22 = 3.094 L23 = 2.749 L24 = 3.422

Iobs
3 Isyn

31 Isyn
32 Isyn

33 Isyn
34L31 = 3.852 L32 = 3.627 L33 = 2.514 L34 = 3.658

Iobs
4 Isyn

41 Isyn
42 Isyn

43 Isyn
44L41 = 3.121 L42 = 3.050 L43 = 1.259 L44 = 0.944

Figure 8.2: Comparison study of four families of models. The first column is the original image
regions cropped from four real world images shown in figure 8.1. The images in the 2-5 columns
are synthesized images Isyn

ij ∼ p(IR; Θ∗ij) sampled from the four families respectively each after an
MLE fitting. The number below each synthesized image shows the per-pixel coding bits Lij using
each family of model.

We denote by Θ∗ij ∈ $gj optimal fit within each family and draw a typical sample (synthesis) from
each fitted model,

Isyn
ij ∼ p(I; Θ∗ij , gj), for 1 ≤ i, j ≤ 4.

We show Iobs
i , Isyn

ij , and Lij in Figure 8.2 for 1 ≤ i, j ≤ 4.
The results in Figure 8.2 show that the spline model has obviously the shortest coding length

for the shading region, while the texture model fits the best for the three other regions. Then we
choose to rectify these models by a constant factor e−cj for each pixel v,

p̂(Iv; Θ, gj) = p(Iv; Θ, gj)e
−cj for j = 1, 2, 3, 4.

cj , j = 1, 2, 3, 4 are chosen so that the rectified coding length L̂ij reaches minimum when i = j. I.e.
uniform regions, clutter regions, texture regions, and shading regions are best fitted by the models
in $1, $2, $3, and $4 respectively.

8.1.5 Image models for color

In experiments, we work on both grey level and color images. For color images, we adopt a
(L∗, u∗, v∗) color space and adopted three families of models indexed by ` ∈ {c1, c2, c3}. Let G(0; Σ)
denote a 3D Gaussian density.

1. Color image model family c1: $c1 . This is an iid Gaussian model in (L∗, u∗, v∗) space.

p(IR; Θ, c1) =
∏
v∈R

G(Iv − µ; Σ), Θ = (µ,Σ) ∈ $c1 . (8.9)
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2. Color image model family c2: $c2 . This is a mixture of two Gaussians and is used for
modeling textured color regions,

p(IR; Θ, c2) =
∏
v∈R

[α1G(Iv − µ1; Σ1) + α2G(Iv − µ2; Σ2)].

Thus Θ = (α1,µ1,Σ1, α2,µ2,Σ2) ∈ $c2 are the parameters.
3. Color image model family c3: $c3 . We use three Bezier spline surfaces (see equation (8.6))

for L∗, u∗, and v∗ respectively to characterize regions with gradually changing colors such as sky,
wall, etc. Let B(x, y) be the color value in (L∗, u∗, v∗) space for any v = (x, y) ∈ Λ,

B(x, y) = (UT(x) ×ML × U(y), U
T
(x) ×Mu × U(y), U

T
(x) ×Mv × U(y))

T .

Thus the model is
p(IR; Θ, c3) =

∏
v∈R

G(Iv −Bv; Σ),

where Θ = (ML,Mu,Mv,Σ) are the parameters.
In summary, three types of models compete to explain a color region. Whoever fits the region

better will have higher likelihood. We denote by $c
Θ the color model space, then

$c
Θ = $c1 ∪$c2 ∪$c3 .

8.2 Anatomy of Solution Space

Before we design an algorithm, we need to study the structures of the solution space Ω in which
the posterior probability p(W |I) is distributed.

We start with the partition space for all possible partitions of a lattice Λ. When a lattice Λ is
segmented into k disjoint regions, we call it a k-partition denoted by πk,

πk = (R1, R2, ..., Rk), ∪ki=1Ri = Λ, Ri ∩Rj = ∅, ∀i 6= j. (8.10)

If all pixels in each region are connected, then πk is a connected component partition [202]. The set
of all k-partitions, denoted by $πk , is a quotient space of the set of all possible k-colorings divided
by a permutation group PG for the labels.

$πk = {(R1, R2, ..., Rk) = πk; |Ri| > 0, ∀i = 1, 2, ..., k}/PG. (8.11)

Thus we have a general partition space $π with the number of regions 1 ≤ k ≤ |Λ|,

$π = ∪|Λ|k=1$πk .

Then the solution space for W is a union of subspaces Ωk, and each Ωk is a product of one
k-partition space $πk and k spaces for the image models

Ω = ∪|Λ|k=1Ωk = ∪|Λ|k=1[ $πk ×$Θ × · · · ×$Θ︸ ︷︷ ︸
k

], (8.12)

where $Θ = ∪4
i=1$gi for grey level images, and $Θ = ∪3

i=1$ci for color images.
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Figure 8.3: The anatomy of the solution space. The arrows represent Markov chain jumps, and the
reversible jumps between two subspace Ω8 and Ω9 realize a split-and-merge of a region.

Figure 8.3 illustrates the structures of the solution space. In Figure 8.3, the four image families
$`, ` = g1, g2, g3, g4 are represented by the triangles, squares, diamonds and circles respectively.
$Θ = $g

Θ is represented by a hexagon containing the four shapes. The partition space $πk is
represented by a rectangle. Each subspace Ωk consists of a rectangle and k hexagons, and each
point W ∈ Ωk represents a k-partition plus k image models for k regions.

We call Ωk the scene spaces. $πk and $`, ` = g1, g2, g3, g4 (or ` = c1, c2, c3) are the basic
components for constructing Ω and thus are called the atomic spaces. Sometimes we call $π a
partition space and $`, ` = g1, g2, g3, g4, c1, c2, c3 the cue spaces.

8.3 Exploring the Solution Space by Ergodic Markov chains

The solution space in Figure 8.3 is typical for vision problems. The posterior probability p(W |I)
not only has an enormous number of local maxima but is distributed over subspaces of varying
dimensions. To search for globally optimal solutions in such spaces, we adopt the Markov chain
Monte Carlo (MCMC) techniques.

8.3.1 Three basic criteria for Markov chain design.

There are three basic requirements for Markov chain design.
Firstly, the Markov chain should be ergodic. That is, from an arbitrary initial segmentation

Wo ∈ Ω, the Markov chain can visit any other states W ∈ Ω in finite time. This disqualifies all
greedy algorithms. Ergodicity is ensured by the jump-diffusion dynamics [88]. Diffusion realizes
random moves within a subspace of fixed dimensions. Jumps realize reversible random walks between
subspaces of different dimensions, as shown by the arrows in Figure 8.3.

Secondly, the Markov chain should be aperiodic. This is ensured by using the dynamics at
random.

Thirdly, the Markov chain has stationary probability p(W |I). This is replaced by a stronger
condition of detailed balance equations which demands that every move should be reversible [87,88].
All jumps in this section satisfy detailed balance and reversibility.
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8.3.2 Five Markov chain dynamics

We adopt five types of Markov chain dynamics which are used at random with probabilities
p(1), ..., p(5) respectively. The dynamics 1-2 are diffusion, and dynamics 3-5 are reversible jumps.

Dynamics 1: boundary diffusion/competition. For mathematical convenience, we switch to a
continuous boundary representation for regions Ri, i = 1, ...,K. These curves evolve to maximize
the posterior probability through a region competition equation [224]. Let Γij be the boundary
between Ri, Rj , ∀i, j, and Θi,Θj the models for the two regions respectively. The motion of points
Γij(s) = (x(s), y(s)) follows the steepest ascent equation of the log p(W |I) plus a Brownian motion
dB along the curve normal direction ~n(s). By variational calculus, this is [224],

dΓij(s)

dt
= [fprior(s) + log

p(I(x(s), y(s)); Θi, `i)

p(I(x(s), y(s)); Θj , `j)
+
√

2T (t)dB] ~n(s).

The first two terms are derived from the prior and likelihood respectively. The Brownian motion is a
normal distribution whose magnitude is controlled by a temperature T (t) which decreases with time
t. The Brownian motion helps to avoid local small pitfalls. The log-likelihood ratio requires that
the image models are comparable. Dynamics 1 realizes diffusion within the atomic (or partition)
space $πk (i.e. moving within a rectangle of Figure 8.3).

Dynamics 2: model adaptation. This is simply to fit the parameters of a region by steepest
ascent. One can add a Brownian motion, but it does not make much a difference in practice.

dΘi

dt
=
∂ log p(IRi ; Θi, `i)

∂Θi
.

This realizes diffusion in the atomic (or cue) spaces $l, ` ∈ {g1, g2, g3, g4, c1, c2, c3} (move within a
triangle, square, diamond, or circle of Figure 8.3).

Dynamics 3-4: split and merge. Suppose at a certain time step, a region Rk with model Θk is
split into two regions Ri and Rj with models Θi,Θj , or vice verse, and this realizes a jump between
two states W to W ′ as shown by the arrows in Figure 8.3.

W = (K, (Rk, `k,Θk), W−)←→ (K + 1, (Ri, `i,Θi), (Rj , `j ,Θj), W−) = W ′,

where W− denotes the remaining variables that are unchanged during the move. By the classic
Metropolis-Hastings method [139], we need two proposal probabilities G(W → dW ′) and G(W ′ →
dW ). G(W → dW ′) is a conditional probability for how likely the Markov chain proposes to move
to W ′ at state W , and G(W ′ → dW ) is the proposal probability for coming back. The proposed
split is then accepted with probability

α(W → dW ′) = min(1,
G(W ′ → dW )p(W ′|I)dW ′

G(W → dW ′)p(W |I)dW
).

There are two routes (or “pathways” in a psychology language) for computing the split proposal
G(W → dW ′).

In route 1, it first chooses a split move with probability q(3), then chooses region Rk from a
total of K regions at random, we denote this probability by q(Rk). Given Rk, it chooses a candidate
splitting boundary Γij within Rk with probability q(Γij |Rk). Then for the two new regions Ri, Rj
it chooses two new model types `i and `j with probabilities q(`i) and q(`j) respectively. Then it
chooses Θi ∈ $`i with probability q(Θi|Ri, `i) and chooses Θj with probability q(Θj |Rj , `j). Thus,

G(W → dW ′) = q(3)q(Rk)q(Γij |Rk)q(`i)q(Θi|Ri, `i)q(`j)q(Θj |Rj , `j)dW ′. (8.13)
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In route 2, it first chooses two new region models Θi and Θj , and then decides the boundary
Γij . Thus,

G(W → dW ′) = q(3)q(Rk)q(`i)q(`j)q(Θi,Θj |Rk, `i, `j)q(Γij |Rk,Θi,Θj)dW
′. (8.14)

We shall discuss in later subsection that either of the two routes can be more effective than the
other depending on the region Rk.

Similarly we have the merge proposal probability,

G(W ′ → dW ) = q(4)q(Ri, Rj)q(`k)q(Θk|Rk, `k)dW. (8.15)

q(Ri, Rj) is the probability of choosing to merge two regions Ri and Rj at random.
Dynamics 5: switching image models. This switches the image model within the four families

(three for color images) for a region Ri. For example, from texture description to a spline surface
etc.

W = (`i,Θi, W−)←→ (`′i,Θ
′
i, W−) = W ′.

The proposal probabilities are

G(W → dW ′) = q(5)q(Ri)q(`
′
i)q(Θ

′
i|Ri, `′i)dW ′, (8.16)

G(W ′ → dW ) = q(5)q(Ri)q(`i)q(Θi|Ri, `i)dW. (8.17)

8.3.3 The bottlenecks

The speed of a Markov chain depends critically on the design of its proposal probabilities in the
jumps. In our experiments, the proposal probabilities, such as q(1), ..., q(5), q(Rk), q(Ri, Rj), q(`)
are easy to specify and do not influence the convergence significantly. The real bottlenecks are
caused by two proposal probabilities in the jump dynamics.

1. q(Γ|R) in eqn.(8.13): Where is a good Γ for splitting a given region R? q(Γ|R) is a probability
in the atomic (or partition) space $π.

2. q(Θ|R, `) in eqns (8.13), (8.15) and (8.17): For a given region R and a model family ` ∈
{g1, ..., g4, c1, c2, c3}, what is a good Θ? q(Θ|R, `) is a probability in the atomic (cue) space
$`.

It is worth mentioning that both probabilities q(Γ|R) and q(Θ|R, `) cannot be replaced by
deterministic decisions which were used in region competition [224] and others [112]. Otherwise,
the Markov chain will not be reversible and thus reduce to a greedy algorithm. On the other
hand, if we choose uniform distributions, it is equivalent to blind search, and the Markov chain will
experience exponential “waiting” time before each jump. In fact, the length of the waiting time is
proportional to the volume of the cue spaces. The design of these probabilities need to strike a
balance between speed and robustness (non-greediness).

While it is hard to analytically derive a convergence rate for complicated algorithms that we are
dealing with, it is revealing to observe the following theorem in a simple case [138]

Theorem 8.1. Sampling a target density p(x) by independence Metropolis-Hastings algorithm with
proposal probability q(x). Let Pn(xo, y) be the probability of a random walk to reach point y at n
s. If there exists ρ > 0 such that,

q(x)

p(x)
≥ ρ, ∀x,
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then the convergence measured by a L1 norm distance

||Pn(xo, ·)− p|| ≤ (1− ρ)n.

This theorem states that the proposal probability q(x) should be very close to p(x) for fast
convergence. In our case, q(Γ|R) and q(Θ|R, `) should be equal to the conditional probabilities of
some marginal probabilities of the posterior p(W |I) within the atomic spaces$π and$` respectively.
That is,

q∗Γ(Γij |Rk) = p(Γij |I, Rk), q∗Θ(Θ|R, `) = p(Θ|I, R, `), ∀`. (8.18)

Unfortunately, q∗Γ and q∗Θ have to integrate information from the entire image I, and thus are
intractable. We must seek approximations, and this is where the data-driven methods step in.

In the next section, we discuss data clustering for each atomic space $`, ` ∈ {c1, c2, c3} and
` ∈ {g1, g2, g3, g4} and edge detection in $π. The results of clustering and edge detection are
expressed as non-parametric probabilities for approximating the ideal marginal probabilities q∗Γ and
q∗Θ in these atomic space respectively.

8.4 Data-Driven Methods

8.4.1 Method I: clustering in atomic spaces

Given an image I (grey or color) on lattice Λ, we extract a feature vector F `v at each pixel v ∈ Λ.
The dimension of F `v depends on the image model indexed by `. Then we have a collection of vectors

f` = {F `v : v ∈ Λ}.

In practice, v can be subsampled for computational ease. The set of vectors are clustered by
either an EM method [51] or a mean-shift clustering [33, 40] algorithm to f`. The EM-clustering
approximates the points density in f` by a mixture of m Gaussians, and it extends from the m-
mean clustering by a soft cluster assignment to each vector Fv. The mean-shift algorithm assumes
a non-parametric distribution for f` and seeks the modes (local maxima) in its density (after some
Gaussian window smoothing). Both algorithms return a list of m weighted clusters Θ`

1,Θ
`
2, ...,Θ

`
m

with weights ω`i , i = 1, 2, ...,m, and we denote by

P` = { (ω`i ,Θ
`
i) : i = 1, 2, ...,m. }. (8.19)

We call (ω`i ,Θ
`
i) a weighted atomic (or cue) particle in $` for ` ∈ {c1, c3, g1, g2, g3, g4}. 3 The size m

is chosen to be conservative, or it can be computed in a coarse-to-fine strategy with a limitm = |f`|.
This is well discussed in the literature [33,40].

In the clustering algorithms, each feature F `v and thus its location v is classified to a cluster Θ`
i

with probability S`i,v,

S`i,v = p(F `v ; Θ`
i), with

m∑
i=1

S`i,v = 1, ∀v ∈ Λ, ∀`.

This is a soft assignment and can be computed by the distance from Fv to the cluster centers. We
call

S`i = {S`i,v : v ∈ Λ}, for i = 1, 2, ...,m, ∀` (8.20)

a saliency map associated with cue particle Θ`
i .

In the following, we discuss each model family with experiments.
3The atomic space $c2 is a composition of two $c1 , and thus is computed from $c1 .
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Computing cue particles in $c1

Input I Color clusters and their saliency maps Sc1i , i = 1, ..., 6

Figure 8.4: A color image and its clusters in (L∗, u∗, v∗) space for $c1 , the second row are six of the
saliency maps associated with the color clusters.

For color images, we take Fv = (Lv, Uv, Vv) and apply a mean-shift algorithm [33, 40] to com-
pute color clusters in $c1 . For example, Figure 8.4 shows a few color clusters (balls) in a cubic
((L∗, u∗, v∗)-space) for a simple color image (left), the size of the balls represents the weights ωc1i .
Each cluster is associated with a saliency map Sc1i for i = 1, 2, ..., 6 in the second row, and the
bright areas mean high probabilities. From left to right are respectively, background, skin, shirt,
shadowed skin, pant and hair, highlighted skin.

Computing cue particles in $c3

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8.5: (a)-(d) are saliency maps associated with four clusters in $c3 . (e)-(h) are the color
spline surfaces for the four clusters.

Each point v contributes its color Iv = (Lv, Uv, Vv) as “surface heights”, and we apply an EM-
clustering to find the spline surface models. Figure 8.5 shows the clustering result for the woman
image. Figures 8.5.a-d are saliency maps Sc3i for i = 1, 2, 3, 4. Figures 8.5.e-h are the four recon-
structed images according to fitted spline surfaces which recover some global illumination variations.
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Computing cue particles in $g1

In this model, the feature space Fv = Iv is simply the intensity, and fg1 is the image intensity
histogram. We simply apply a mean-shift algorithm to get the modes (peaks) of the histogram and
the breadth of each peak decides its variance.

Figure 8.6 shows six saliency maps Sg1
i , i = 1, 2, ..., 6 for a zebra image (the original image is

shown in Figure 8.14.a. In the clustering map on the left in Figure 8.6, each pixel is assigned to its
most likely particle.

Figure 8.6: A clustering map (left) for $g1 and six saliency maps Sg1
i , i = 1, ..., 6 of a zebra image

(input is in Fig. 8.14.a).

Computing the cue particles in $g2

For clustering in $g2 , at each subsampled pixel v ∈ Λ, we compute Fv as a local intensity histogram
Fv = (hv0, ..., hvG) accumulated over a local window centered at v. Then an EM clustering is applied
to compute the cue particles, and each particle Θg2

i , i = 1, ...,m is a histogram. This model is used
for clutter regions.

Figure 8.7 shows the clustering results on the same zebra image.

Figure 8.7: A clustering map (left) for $g2 and six saliency maps Sg2
i , i = 1..6 of a zebra image

(input is inFig. 8.14.a).
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Computing cue particles $g3

At each subsampled pixel v ∈ Λ, we compute a set of 8 local histograms for 8 filters over a local
window of 12 × 12 pixels. We choose 8 filters for computational convenience: one δ filter, two
gradient filters, one Laplacian of Gaussian filter, and four Gabor filters. Each histogram has 9
bins. Then F g3

v = (hv,1,1, ..., hv,8,9) is the feature. An EM clustering is applied to find the m mean
histograms h̄i, i = 1, 2, ...,m. We can compute the cue particles for texture models Θg3

i from h̄i for
i = 1, 2, ...,m. A detailed account of this transform is referred to a previous paper [220].

Figure 8.8: Texture clustering. A clustering map (left) and four saliency maps for four particles
Θg3
i , i = 1, 2, ..., 4.

Figure 8.8 shows the texture clustering results on the zebra image with one clustering map on
the left, and five saliency maps for five particles Θg3

i , i = 1, 2, ..., 5.

Computing cue particles in $g4

Each point v contributes its intensity Iv = Fv as a “surface height”, and we apply an EM-clustering
to find the spline surface models. Figure 8.9 shows a clustering result for the zebra image with four
surfaces. The second row shows the four surfaces which recover some global illumination variations.
Unlike the texture clustering results which capture the zebra strips as a whole region, the surface
models separate the black and white stripes as two regions – another valid perception. Interestingly,
the black and white strips in the zebra skin both have shading changes which are fitted by the spline
models.

A clustering map Four saliency maps and surfaces
Figure 8.9: Clustering result on the zebra image under Bezier surface model. The left image is the
clustering map. The first row of images on the right side are the saliency maps. The second row
shows the fitted surfaces using the surface height as intensity.

8.4.2 Method II: Edge detection

We detect intensity edges using Canny edge detector [29] and color edges using a method in [115],
and trace edges to form a partition of the image lattice. We choose edges at three scales according
to edge strength, and thus compute the partition maps in three coarse-to-fine scales. We choose
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not to discuss the details, but show some results using the two running examples: the woman and
zebra images.

Figure 8.10.a shows a color image and three scales of partitions. Since this image has strong
color cue, the edge maps are very informative about where the region boundaries are. In contrast,
the edge maps for the zebra image are very messy, as Figure 8.11 shows.

(a) (b) (c) (d)

Figure 8.10: Partition maps at three scales of details for a color image. (a) Input image. (b)
Partition map at scale 1. (c) Partition map at scale 2. (d) Partition map at scale 3.

(a) (b) (c) (d)

Figure 8.11: A grey level image and three partition maps at three scales. (a) Input image. (b)
Partition map at scale 1. (c) Partition map at scale 2. (d) Partition map at scale 3.

8.5 Computing importance proposal probabilities

It is generally acknowledged in the community that clustering and edge detection algorithms can
sometimes produce good segmentations or even perfect results for some images, but very often they
are far from being reliable for generic images, as the experiments in Figures 8.4-8.11 demonstrate. It
is also true that sometimes one of the image models and edge detection scales could do a better job
in segmenting some regions than other models and scales, but we do not know a priori what types
of regions present in a generic image. Thus we compute all models and edge detection at multiple
scales and then utilize the clustering and edge detection results probabilistically. MCMC theory
provides a framework for integrating these probabilistic information in a principled way under the
guidance of a globally defined Bayesian posterior probability.

We explain how the the importance proposal probabilities q(Θ|R, `) and q(Γij |Rk) in Sec-
tion 8.3.3. are computed from the data-driven results.
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Computing importance proposal probability q(Θ|R, `)

The clustering method in an atomic (cue) space $` outputs a set of weighted cue particles P`. P`
encodes a non-parametric probability in $`,

q(Θ|Λ, `) =

m∑
i=1

ω`iG(Θ−Θ`
i), with

m∑
i=1

ω`i = 1, (8.21)

where G(x) is a Parzen window centered at 0. As a matter of fact, q(Θ|Λ, `) = q(Θ|I)) is an approx-
imation to a marginal probability of the posterior p(W |I) on cue space $`, ` ∈ {g1, g2, g3, g4, c1, c3},
since the partition π is integrated out in EM-clustering.

q(Θ|Λ, `) is computed once for the whole image, and q(Θ|R, `) is computed from q(Θ|Λ, `) for
each R at run time. It proceeds in the following. Each cluster Θ`

i , i = 1, 2, ...,m receives a real-
valued vote from the pixel v ∈ R in region R, and the accumulative vote is the summation of the
saliency map S`i associated with Θ`

i , i.e.,

pi =
1

|R|
∑
v∈R

S`i,v, i = 1, 2, ...,m, ∀`.

Obviously the clusters which receive high votes should have high chance to be chosen. Thus we
sample a new image model Θ for region R,

Θ ∼ q(Θ|R, `) =

m∑
i=1

piG(Θ−Θ`
i). (8.22)

Equation (8.22) explains how we choose (or propose) an image model for a region R. We first draw a
cluster i at random according to probability p = (p1, p2, ..., pm), and then do a random perturbation
at Θ`

i . Thus any Θ ∈ $` has a non-zero probability to be chosen for robustness and ergodicity.
Intuitively the clustering results with local votes propose the “hottest” portions of the space in a
probabilistic way to guide the jump dynamics.

In practice, one could implement a multi-resolution (on a pyramid) clustering algorithm over
smaller local windows, thus the clusters Θ`

i , i = 1, 2, ...,m will be more effective at the expense of
some overhead computing.

Computing importance proposal probability q(Γ|R)

By edge detection and tracing, we obtain partition maps denoted by ∆(s) at multiple scales s =

1, 2, 3. In fact, each partition map ∆(s) consists of a set of “meta-regions” r(s)
i , i = 1, 2, ..., n,

∆(s)(Λ) = {r(s)
i : i = 1, 2, ..., n,∪ni=1 r

(s)
i = Λ}, for s = 1, 2, 3.

These meta regions are then used in combination to form K ≤ n regions R(s)
1 , R

(s)
2 , ..., R

(s)
K ,

R
(s)
i = ∪jr(s)

j , with r
(s)
j ∈ ∆(s), ∀i = 1, 2, ...,K.

One could put a constraint that all meta-regions in a region R(s)
i are connected.
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Let π(s)
k = (R

(s)
1 , R

(s)
2 , ..., R

(s)
k ) denote a k-partition based on ∆(s). π

(s)
k is different from the

general k-partition πk because regions R(s)
i , i = 1, ...,K in π(s)

k are limited to the meta-regions. We
denote by Π

(s)
k the set of all k-partitions based on a partition map ∆(s).

Π
(s)
k = {(R(s)

1 , R
(s)
2 , ..., R

(s)
k ) = π

(s)
k : ∪ki=1R

(s)
i = Λ}. (8.23)

We call each π(s)
k in Π

(s)
k a k-partition particle in atomic (partition) space $πk . Like the clusters in

a cue space, Π
(s)
k is a sparse subset of $πk , and it narrows the search in $πk to the most promising

portions.
So each partition map ∆(s) encodes a probability in the atomic (partition) space $πk .

q(s)(πk) =
1

|Π(s)
k |

|Π(s)
k |∑

j=1

G(πk − π
(s)
k,j), for s = 1, 2, 3. ∀k. (8.24)

G() is a smooth window centered at 0 and its smoothness accounts for boundary deformations
and forms a cluster around each partition particle, and πk − π

(s)
k,j measures the difference between

two partition maps πk and π(s)
k,j . Martin et al. [136] recently proposed a method of measuring such

difference and we use a simplified version. In the finest resolution, all meta regions reduce to pixels,
and Π

(s)
k is then equal to the atomic space $πk . We adopt equal weights for all partitions π(s)

k , and
one may add other geometric preferences to some partitions.

In summary, the partition maps at all scales encode a non-parametric probability in $πk ,

q(πk) =
∑
s

q(s)q(s)(πk), ∀k.

This q(πk) can be considered as an approximation to the marginal posterior probability p(πk|I).

scale 1 scale 2 scale 3

Figure 8.12: A candidate region Rk is superimposed on the partition maps at three scales for
computing a candidate boundary Γij for the pending split.

The partition maps ∆(s), ∀s (or q(πk), ∀k implicitly) are computed once for the whole image,
then the importance proposal probability q(Γ|R) is computed from q(πk) for each region as a
conditional probability at run time, like in the cue spaces.

Figure 8.12 illustrates an example. We show partition maps ∆(s)(Λ) at three scales, and the
edges are shown at width 3, 2, 1 respectively for s = 1, 2, 3. A candidate region R is proposed to
split. q(Γ|R) is the probability for proposing a splitting boundary Γ.

We superimpose R on the three partition maps. The intersections between R and the meta
regions generate three sets

∆(s)(R) = {r(s)
j : r

(s)
j = R ∩ rj for rj ∈ ∆(s)(Λ), and ∪i r(s)

i = R}, s = 1, 2, 3.
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For example, in Figure 8.12, ∆(1)(R) = {r(1)
1 , r

(1)
2 }, ∆(2)(R) = {r(2)

1 , r
(2)
2 , r

(2)
3 , r

(2)
4 }, and so on.

Thus we can define π(s)
c (R) = (R

(s)
1 , R

(s)
2 , ..., R

(s)
c ) as a c-partition of region R based on ∆(s)(R),

and define a c-partition space of R as

Π(s)
c (R) = {(R(s)

1 , R
(s)
2 , ..., R(s)

c ) = π(s)
c (R) : ∪ci=1R

(s)
i = R}, ∀s. (8.25)

We can define distributions on Π
(s)
c (R).

q(s)(πc(R)) =
1

|Π(s)
c (R)|

|Π(s)
c (R)|∑
j=1

G(πc − π(s)
c,j (R)), for s = 1, 2, 3, ∀c. (8.26)

Thus one can propose to split R into c pieces, in a general case,

πc(R) ∼ q(πc(R)) =
∑
s

q(s)q(s)(πc(R)).

That is, we first select a scale s with probability q(s). q(s) depends on R. For example, for a large
region R we can choose coarse scale with higher probability, and choose a fine scale for small regions.
Then we choose a c-partition from the set Π

(s)
c (R). In our implementation, c = 2 is chosen as a

special case for easy implementation. It is trivial to show that an arbitrary c-partition of region R,
πc(R), can be generated through composing π2(R) in multiple s. Obviously there is a big overhead
for choosing large c.

Computing q(Θi,Θj |R, `i, `j) and q(Γij |R,Θi,Θj)

In some cases, we find the second route useful for splitting a region which we discussed in designing
MCMC dynamics 3-4 (see equation (8.14)).

For example, there are two ways to perceive the zebra in Figure 8.14. One perceives the zebra
as one textured region (by a model in $g3). The other sees it as one region of black stripes plus one
region of white strips and thus uses two models in $g1 or $g4 . The Markov chain should be able
to switch between the two perceptions effectively (see results in Figure 8.14.b-d). This is necessary
and typical for the transitions between any texture regions and intensity regions.

Because the number of strips in such textures is large, the first split procedure (route 1) is
very ineffective, and it works on one strip at a time. This motivates the second pathway for split
dynamics.

For a candidate region R, we first propose two new region models (we always assume the same
labels `i = `j), this can be done by twice sampling the importance proposal probabilities q(Θ|R, `),
so

(Θi,Θj) ∼ q(Θi,Θj |R, `i, `j) = q(Θi|R, `i)q(Θj |R, `j).

Obviously we exclude Θi from the candidate set when we select Θj . Then we decide on the boundary
Γ q(Γij |R,Θi,Θj) by randomly labeling the pixels in R according to probabilities of the saliency
maps.

A unifying framework

To summarize this section, the DDMCMC paradigm provides a unifying framework for understand-
ing the roles of many existing image segmentation algorithms. Firstly, edge detection and tracing
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methods [29,115] compute implicitly a marginal probability q(π|I) on the partition space $π. Sec-
ondly, clustering algorithms [33, 40] compute a marginal probability on the model space $` for
various models `. Thirdly, the split-and-merge and model switching [10] realize jump dynamics.
Fourthly, region growing and competition methods [156,224] realize diffusion dynamics for evolving
the region boundaries.

8.6 Computing Multiple Distinct Solutions

8.6.1 Motivation and a mathematical principle

The DDMCMC paradigm samples solutions from the posteriorW ∼ p(W |I) endlessly. To extract an
optimal result, one can take an annealing strategy and use the conventional maximum a posteriori
(MAP) estimator

W ∗ = arg max
W∈Ω

p(W |I).

In this section we argue that it is desirable and often critical to have the ability of computing
multiple distinct solutions for the following reasons.

Firstly, natural scenes are intrinsically ambiguous, and for an image I many competing organi-
zations and interpretations exist in visual perception.

Secondly, for robustness, decisions should be left to the last stage of computation when a seg-
mentation process is integrated with a specific task. Therefore it is best to maintain a set of typical
solutions.

Thirdly, preserving multiple solutions is necessary when the prior and likelihood models are not
perfect. Because the globally optimal solution may not be semantically more meaningful than some
other inferior local maxima.

However, simply keeping a set of samples from the Markov chain sequence is not enough, because
it often collects a set of segmentations that are trivially different from each other. Here we present
a mathematical principle for computing important and distinctive solutions in the space Ω, relying
on the techniques presented in Section 2.5 for preserving sample diversity in importance sampling.

Let S = {(ωi,Wi) : i = 1, ...,K} be a set of K weighted solutions which we call “scene particles”,
with weights their posterior probabilities ωi = p(W |I), i = 1, 2, ...,K. (Note that there is a slight
abuse of notation, we use K for the number of regions in W before. Here it is a different K). S
encodes a non-parametric probability in Ω,

p̂(W |I) =
K∑
i=1

ωi
ω
G(W −Wi),

K∑
i=1

ωi = ω.

G is a Gaussian window in Ω.
As all image ambiguities are captured in the Bayesian posterior probability, to reflect the intrinsic

ambiguities, we should compute the set of solutions S that best preserve the posterior probability.
Thus we let p̂(W |I) approach p(W |I) by minimizing a Kullback-Leibler divergence D(p||p̂) under a
complexity constraint |S| = K,

S∗ = arg min
|S|=K

D(p||p̂) = arg min
|S|=K

∫
p(W |I) log

p(W |I)
p̂(W |I)

dW. (8.27)

This criterion extends the conventional MAP estimator.
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8.6.2 A K-adventurers algorithm for multiple solutions

Fortunately, the KL-divergence D(p||p̂) can be estimated fairly accurately by a distance measure
D̂(p||p̂) which is computable, thanks to two observations of the posterior probability p(W |I) which
has many separable modes. The idea is simple. We can always represent p(W |I) by a mixture of
Gaussian, i.e. a set of N particles with N large enough. By ergodicity, the Markov chain is supposed
to visit these significant modes over time! Thus our goal is to extract K distinct solutions from the
Markov chain sampling process.

Here we present a greedy algorithm for computing S∗ approximately. We call the algorithm –
“K-adventurers algorithm. 4

Suppose we have a set of K particles S at step t. At time t+ 1, we obtain a new particle (or a
number of particles) by MCMC, usually following a successful jump. We augment the set S to S+

by adding the new particle(s). Then we eliminate one particle (or a number of particles) from S+

to get a new Snew by minimizing the approximative KL divergence. divergence D̂(p+||pnew).
The k-adventurers algorithm
1. Initializing S and p̂ by repeating one initial solution K times.
2. Repeat
3. Compute a new particle (ωK+1,xK+1) by DDMCMC after a successful jump.
4. S+ ← S

⋃
{(ωK+1,xK+1)}.

5. p̂← S+.
6. For i = 1, 2, . . . ,K + 1 do
7. S−i ← S+/{(ωi,xi)}.
8. p̂−i ← S−i.
9. di = D(p||p̂−i).
10. i∗ = arg mini∈{1,2,...,K+1} di.
11. S ← S−i∗ , p̂← p̂−i∗

In practice, we run multiple Markov chains and add new particles to the set S in a batch fashion.

8.7 Image Segmentation Experiments

The DDMCMC paradigm was tested extensively on many grey level, color, and textured images.
This section shows some examples and more are available on our website5. It was also tested in a
benchmark dataset of 50 natural images in both color and grey level [136] by the Berkeley group6,
where the results by DDMCMC and other methods such as [175] are displayed in comparison to
those by a number of human subjects. Each tested algorithm uses the same parameter setting for
all the benchmark images and thus the results were obtained purely automatically.

We first show our working example on the color woman image. Following the importance
proposal probabilities for the edges in Figure 8.10 and for color clustering in Figure 8.4, we simulated
three Markov chains with three different initial segmentations shown in Figure 8.13 (top row). The
energy changes (− log p(W |I)) of the three MCMCs are plotted in Figure 8.13 against time s.
Figure 8.13 shows two different solutions W1,W2 obtained by a Markov chain using K-adventurers
algorithm. To verify the computed solution Wi, we synthesized an image by sampling from the
likelihood Isyn

i ∼ p(I|Wi), i = 1, 2. The synthesis is a good way to examine the sufficiency of models
in segmentation.

Figure 8.14 shows three segmentations on a grey level zebra image. As we discussed before, the
DDMCMC algorithm in this section has only one free parameter γ which is a “clutter factor” in

4The name follows a statistics metaphor told by Mumford to S.C. Zhu. A team of K adventurers want to occupy
K largest islands in an ocean while keeping apart from each other’s territories.

5See http://vcla.stat.ucla.edu/old/Segmentation/Segment.htm
6See www.cs.berkeley.edu/∼dmartin/segbench/BSDS100/html/benchmark
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input step t1 step t2 W1 Isyn
1 W2 Isyn

2

Figure 8.13: Segmenting a color image by DDMCMC with two solutions. See text for explanation.

(a)

(b) (c) (d)

(e) (f) (g)

Figure 8.14: Experiments on the grey level zebra image with three solutions. (a) input image.
(b)-(d) are three solutions, Wi, i = 1, 2, 3, for the zebra image. (e)-(g) are synthesized images
Isyn
i ∼ p(I|W ∗i ) for verifying the results.

the prior model (See equation (8.2)). It controls the extents of segmentations. A big γ encourages
coarse segmentation with large regions. We normally extract results at three scales by setting
γ = 1.0, 2.0, 3.0 respectively. In our experiments, the K-adventurers algorithm is effective only for
computing distinct solutions in a certain scale. We expect the parameter γ can be fixed to a constant
if we form an image pyramid with multiple scales and conduct segmentation with K-adventurers
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algorithm at each scale, and then propagate and refine the results to the next finer scale sequentially.
This will be done in future research.

For the zebra image, W1 segments out the black and white stripes while W2 and W3 treat the
zebra as a texture region. The synthesized images Isyn

i ∼ p(I|Wi), i = 1, 2, 3 show that the texture
model is not sufficient because we choose only 8 small filters for computational ease. Also the spline
surface model plays an important role in segmenting the ground and background grass, and this is
verified by the global shading changes in Isyn

2 and Isyn
3 .

Figure 8.15: Grey level image segmentation by DDMCMC. Top: input images, middle: segmentation
results W , bottom: synthesized images Isyn ∼ p(I|W ) with the segmentation results W .

input segmentation synthesis

Figure 8.16: Color image segmentation by DDMCMC. Left: input images, middle: segmentation
results W , right: synthesized images Isyn ∼ p(I|W ) with the segmentation results W .

Figures 8.15 and 8.16 display some other grey level and color images using the same algorithm.
We show the input (left) and a segmentation (middle) starting with arbitrary initial conditions and
a synthesized image (right) drawn from the likelihood Isyn ∼ p(I|W ). The γ values for these images
are mostly set up as 1.5 with a few obtained at 1.0-3.5. It took about 10-30 minutes, depending
upon the complexity of image contents, on a Pentium III PC to segment an image with medium
size such as 350× 250 pixels after learning the pseudo-likelihood texture models at the beginning.

The synthesis images show that we need to engage more stochastic models such as point, curve
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input segmentation by manual
DDMCMC segmentation

Figure 8.17: Some segmentation results by DDMCMC for the benchmark test by Martin. The
errors for the above results by DDMCMC (middle) compared with the results by a human subject
(right) are 0.1083, 0.3082, and 0.5290 respectively according to their metrics.

process, and object like faces etc. For example, in the first row of Figure 8.16. The music band
in a football stadium forms a point process which is not captured. The face is also missing in the
synthesis.

Figure 8.17 shows three grey level images out of the 50 natural images in both color and grey
level for the benchmark study. The input (left), the segmentation results by DDMCMC (middle),
and the manual segmentation by a human subject (right) are displayed.

8.8 Application: Image Parsing

We define image parsing to be the task of decomposing an image I into its constituent visual patterns.
The output is represented by a hierarchical graph W — called the “parsing graph”. The goal is to
optimize the Bayesian posterior probability p(W |I). Figure 8.18 illustrates a typical example where
a football scene is first divided into three parts at a coarse level: a person in the foreground, a sports
field, and the spectators. These three parts are further decomposed into nine visual patterns in the
second level: a face, three texture regions, some text, a point process (the band on the field), a curve
process (the markings on the field), a color region, and a region for nearby people. In principle, we
can continue decomposing these parts until we reach a resolution criterion. The parsing graph is
similar in spirit to the parsing trees used in speech and natural language processing [133] except that
it can include horizontal connections (see the dashed curves in Figure 8.18) for specifying spatial
relationships and boundary sharing between different visual patterns.

As in natural language processing, the parsing graph is not fixed and depends on the input
image(s). An image parsing algorithm must construct the parsing graph on the fly7. Our im-
age parsing algorithm consists of a set of reversible Markov chain jumps [87] with each type of
jump corresponding to an operator for reconfiguring the parsing graph (i.e. creating or deleting
nodes or changing the values of node attributes). These jumps combine to form an ergodic and
reversible Markov chain in the space of possible parsing graphs. The Markov chain probability is
guaranteed to converges to the invariant probability p(W |I) and the Markov chain will simulate fair

7Unlike most graphical inference algorithms in the literature which assume fixed graphs, see belief propagation
[212].
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Figure 8.18: Image parsing example. The parsing graph is hierarchical and combines generative
models (downward arrows) with horizontal connections (dashed lines), which specify spatial rela-
tionships between the visual patterns. See Figure 8.21 for a more abstract representation including
variables for the node attributes.

178



samples from this probability.8. Our approach is built on previous work on Data-Driven Markov
Chain Monte Carlo (DDMCMC) for recognition [225], segmentation [193], grouping [194] and graph
partitioning [8, 9].

Image parsing seeks a full generative explanation of the input image in terms of generative mod-
els, p(I|W ) and p(W ), for the diverse visual patterns which occur in natural images, see Figure 8.18.
This differs from other computer vision tasks, such as segmentation, grouping, and recognition.
These are usually performed by isolated vision modules which only seek to explain parts of the
image. The image parsing approach enables these different modules to cooperate and compete to
give a consistent interpretation of the entire image.

The integration of visual modules is of increasing importance as progress on the individual
modules starts approaching performance ceilings. In particular, work on segmentation [65, 175,
193] and edge detection [22, 106] has reached performance levels where there seems little room
for improvement when only low-level cues are used. For example, the segmentation failures in
Figure 8.19 can only be resolved by combining segmentation with object detection and recognition.
There has also recently been very successful work on the detection and recognition of objects [13,
126, 161, 199, 203, 206] and the classification of natural scenes [11, 147] using, broadly speaking,
discriminative methods based on local bottom-up tests.

/
a. Input image b. Segmentation c. Synthesized image d. Manual segmentation

Figure 8.19: Examples of image segmentation failure by an algorithm [193] which uses only generic
visual patterns (i.e. only low-level visual cues). The results (b) show that low-level visual cues are
not sufficient to obtain good intuitive segmentations. The limitations of using only generic visual
patterns are also clear in the synthesized images (c) which are obtained by stochastic sampling
from the generative models after the parameters have been estimated by DDMCMC. The right
panels (d) show the segmentations obtained by human subjects who, by contrast to the algorithm,
appear to use object specific knowledge when doing the segmentation (though they were not in-
structed to) [136]. We conclude that to achieve good segmentation on these types of images requires
combining segmentation with object detection and recognition.

But combining different visual modules requires a common framework which ensures consistency.
Despite the effectiveness of discriminative methods for computing scene components, such as object
labels and categories, they can also generate redundant and conflicting results. Mathematicians
have argued [20] that discriminative methods must be followed by more sophisticated processes to
(i) remove false alarms, (ii) amend missing objects by global context information, and (iii) reconcile

8For many natural images the posterior probabilities P (W |I) are strongly peaked and so stochastic samples are
close to the maxima of the posterior. So in this section we do not distinguish between sampling and inference
(optimization).
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conflicting (overlapping) explanations through model comparison. In this section, we impose such
processes by using generative models for the entire image.

As we will show, our image parsing algorithm is able to integrate discriminative and generative
methods so as to take advantage of their complementary strengths. Moreover, we can couple
modules such as segmentation and object detection by our choice of the set of visual patterns used
to parse the image. In this section, we focus on two types of patterns: – generic visual patterns for
low/middle level vision, such as texture and shading, and object patterns at high level vision, such
as frontal human faces and text.

These two types of patterns illustrate different ways in which the parsing graph can be con-
structed (see Figure 8.34 and the related discussion). The object patterns (face and text) have
comparatively little variability so they can often be effectively detected as a whole by bottom-up
tests and their parts can be located subsequentially. Thus their parsing sub-graphs can be con-
structed in a “decompositional” manner from whole to parts. By contrast, a generic texture region
has arbitrary shape and its intensity pattern has high entropy. Detecting such a region by bottom-
up tests will require an enormous number of tests to deal with all this variability, and so will be
computationally impractical. Instead, the parsing subgraphs should be built by grouping small
elements in a “compositional” manner [18].

We illustrate our algorithm on natural images of complex city scenes and give examples where
image segmentation can be improved by allowing object specific knowledge to disambiguate low-level
cues, and conversely object detection can be improved by using generic visual patterns to explain
away shadows and occlusions.

8.8.1 Bottom-Up and Top-Down Processing

A major element of our work is to integrate discriminative and generative methods for inference. In
the recent computer vision literature, top-down and bottom-up procedures can be broadly catego-
rized into two popular inference paradigms – generative methods for “top-down” and discriminative
methods for “bottom-up”, illustrated in Figure 8.20. From this perspective, integrating generative
and discriminative models is equivalent to combining bottom-up and top-down processing.

The role of bottom-up and top-down processing in vision has been often discussed. There is
growing evidence (see [117,182]) that humans can perform high level scene and object categorization
tasks as fast as low level texture discrimination and other so-called pre-attentive vision tasks. This
suggests that humans can detect both low and high level visual patterns at early stages in visual
processing. It contrasts with traditional bottom-up feedforward architectures [135] which start with
edge detection, followed by segmentation/grouping, before proceeding to object recognition and
other high-level vision tasks. The experiments also relate to long standing conjectures about the
role of the bottom-up/top-down loops in the visual cortical areas [145, 196], visual routines and
pathways [195], the binding of visual cues [186], and neural network models such as the Helmholtz
machine [49]. But although combining bottom-up and top-down processing is clearly important,
there has not yet been a rigorous mathematical framework for how to achieve it.

In this section, we unify generative and discriminative approaches by designing an DDMCMC
algorithm which uses discriminative methods to perform rapid inference of the parameters of gen-
erative models. From a computer vision perspective, DDMCMC combines bottom-up processing,
implemented by the discriminative models, together with top-down processing by the generative
models. The rest of this section gives an overview of our approach.

8.8.2 Generative and Discriminative Methods

Generative methods specify how the image I is generated from the scene representation W ∈ Ω.
It combines a prior p(W ) and a likelihood function p(I|W ) to give a joint posterior probability
p(W |I). These can be expressed as probability probabilities on graphs, where the input image I is
represented on the leaf nodes and W denotes the remaining nodes and node attributes of the graph.
The structure of the graph, for example the number of nodes, is unknown and must be estimated
for each input image.
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Inference can be performed by stochastic sampling W from the posterior:

W ∼ p(W |I) ∝ p(I|W )p(W ). (8.28)

This enables us to estimate W ∗ = arg maxP (W |I).9 But the dimension of the sample space Ω
is very high and so standard sampling techniques are computationally expensive.

By contrast, discriminative methods are very fast to compute. They do not specify mod-
els for how the image is generated. Instead they give discriminative (conditional) probabilities
q(wj |Tstj(I)) for components {wj} of W based on a sequence of bottom-up tests Tstj(I) performed
on the image. The tests are based on local image features {Fj,n(I)} which can be computed from
the image in a cascade manner (e.g. AdaBoost filters, see Section (8.8.5)),

Tstj(I) = (Fj,1(I), Fj,2(I), ..., Fj,n(I)), j = 1, 2, ...,K. (8.29)

The following theorem shows that the KL-divergence between the true marginal posterior p(wj |I)
and the optimal discriminant approximation q(wj |Tst(I)) using test Tst(I) will decrease monoton-
ically as new tests are added10.

Theorem 8.1. The information gained for a variable w by a new test Tst+(I) is the decrease of
Kullback-Leibler divergence between p(w|I) and its best discriminative estimate q(w|Tstt(I)) or the
increase of mutual information between w and the tests.

EI[KL(p(w|I) || q(w|Tst(I)))]− EI[KL(p(w|I) || q(w|Tst(I),Tst+(I)))]

= MI(w || Tst,Tst+)−MI(w || Tst) = ETst,Tst+KL(q(w |Tstt,Tst+) || q(w |Tstt) ≥ 0,

where EI is the expectation with respect to P (I), and ETst,Tst+ is the expectation with respect to the
probability on the test responses (Tst,Tst+) induced by P (I).

The decrease of the Kullback-Leibler divergence equals zero if and only if Tst(I) are sufficient
statistics with respect to w.

In practice discriminative methods, particularly standard computer vision algorithms – see sub-
section (8.8.4), will typically only use a small number of features for computational practicality.
Also their discriminative probabilities q(wj |Tst(I)) will often not be optimal. Fortunately the im-
age parsing algorithm in this section only requires the discriminative probabilities q(wj |Tst(I)) to
be rough approximations to p(wj |I).

The difference between discriminative and generative models is illustrated in Figure 8.20. Dis-
criminative models are fast to compute and can be run in parallel because different components
are computed independently (see arrows in Figure 8.20). But the components {wi} may not yield
a consistent solution W and, moreover, W may not specify a consistent model for generating the
observed image I. These inconsistencies are indicated by the crosses in Figure 8.20. Generative
models ensure consistency but require solving a difficult inference problem. It is an open problem
whether discriminative models can be designed to infer the entire state W for the complicated gen-
erative models that we are dealing with. Mathematicians [20] have argued that this will not be
practical and that discriminative models will always require additional post-processing.

8.8.3 Markov Chain kernels and sub-kernels

Formally, our DDMCMC image parsing algorithm simulates a Markov chain MC =< Ω, ν,K >
with kernel K in space Ω and with probability ν for the starting state. An element W ∈ Ω is a
parsing graph. We let the set of parsing graphs Ω be finite as images have finite pixels and grey
levels.

9We are assuming that there are no known algorithms for estimating W ∗ directly.
10The optimal approximation occurs when q(wj |Tst(I)) equals the probability p(wj |Tst(I)) induced by

P (I|W )P (W ).
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Figure 8.20: Comparison of two inference paradigms: Top-down generative methods versus bottom-
up discriminative methods. The generative method specifies how the image I can be synthesized
from the scene representation W . By contrast, the discriminative methods are based by performing
tests Tstj(I) and are not guaranteed to yield consistent solutions, see crosses explained in the text.

We proceed by defining a set of moves for reconfiguring the graph. These include moves to: (i)
create nodes, (ii) delete nodes, and (iii) change node attributes. We specify stochastic dynamics for
these moves in terms of transition kernels11.

For each move we define a Markov Chain sub-kernel by a transition matrix Ka(W ′|W : I) with
a ∈ A being an index. This represents the probability that the system makes a transition from state
W to state W ′ when sub-kernel a is applied (i.e.

∑
W ′ Ka(W ′|W : I) = 1, ∀ W ). Kernels which

alter the graph structure are grouped into reversible pairs. For example, the sub-kernel for node
creation Ka,r(W ′|W : I) is paired with the sub-kernel for node deletion Ka,l(W ′|W : I). This can be
combined into a paired sub-kernel Ka = ρarKa,r(W ′|W : I)+ρalKa,l(W ′|W : I) (ρar+ρal = 1). This
pairing ensures that Ka(W ′|W : I) = 0 if, and only if, Ka(W |W ′ : I) = 0 for all states W,W ′ ∈ Ω.
The sub-kernels (after pairing) are constructed to obey the detailed balance condition:

p(W |I)Ka(W ′|W : I) = p(W ′|I)Ka(W |W ′ : I). (8.30)

The full transition kernel is expressed as:

K(W ′|W : I) =
∑
a

ρ(a : I)Ka(W ′|W : I),
∑
a

ρ(a : I) = 1, ρ(a : I) > 0. (8.31)

To implement this kernel, at each time step the algorithm selects the choice of move with
probability ρ(a : I) for move a, and then uses kernel Ka(W ′|W ; I) to select the transition from state
W to state W ′. Note that both probabilities ρ(a : I) and Ka(W ′|W ; I) depend on the input image
I. This distinguishes our DDMCMC methods from conventional MCMC computing [25,123].

The full kernel obeys detailed balance, equation (8.30), because all the sub-kernels do. It will
also be ergodic, provided the set of moves is sufficient (i.e. so that we can transition between any
two states W,W ′ ∈ Ω using these moves). These two conditions ensure that p(W |I) is the invariant
(target) probability of the Markov Chain [25] in the finite space Ω.

Applying the kernelKa(t) updates the Markov chain state probability µt(W ) at step t to µt+1(W ′)

at t+ 1, 12:
µt+1(W ′) =

∑
W

Ka(t)(W
′|W : I)µt(W ). (8.32)

11We choose stochastic dynamics because the Markov chain probability is guaranteed to converge to the posterior
P (W |I). The complexity of the problem means that deterministic algorithms for implementing these moves risk
getting stuck in local minima.

12Algorithms like belief propagation [212] can be derived as approximations to this update equation by using a
Gibbs sampler and making independence assumptions.
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In summary, the DDMCMC image parser simulates a Markov chainMC with a unique invariant
probability p(W |I). At time t, the Markov chain state (i.e. the parse graph)W follows a probability
µt which is the product of the sub-kernels selected up to time t,

W ∼ µt(W ) = ν(Wo) · [Ka(1) ◦ Ka(2) ◦ · · · ◦ Ka(t)](Wo,W ) −→ p(W |I). (8.33)

where a(t) indexes the sub-kernel selected at time t. As the time t increases, µt(W ) approaches the
posterior p(W |I) monotonically [25] at a geometric rate [54]. The following convergence theorem is
useful for image parsing because it helps quantify the effectiveness of the different sub-kernels.

Theorem 8.2. The Kullback-Leibler divergence between the posterior p(W |I) and the Markov chain
state probability decreases monotonically when a sub-kernel Ka(t),∀ a(t) ∈ A is applied,

KL(p(W |I) ||µt(W ))−KL(p(W |I) ||µt+1(W )) ≥ 0 (8.34)

The decrease of KL-divergence is strictly positive and is equal to zero only after the Markov chain
becomes stationary, i.e. µ = p.

Proof. See [191].
The theorem is related to the second law of thermodynamics [44], and its proof makes use of

the detailed balance equation (8.30). This KL divergence gives a measure of the “power” of each
sub-kernel Ka(t) and so it suggests an efficient mechanism for selecting the sub-kernels at each time
step. By contrast, classic convergence analysis shows that the convergence of the Markov Chain is
exponentially fast, but does not give measures of power of sub-kernels.

8.8.4 DDMCMC and Proposal Probabilities
We now describe how to design the sub-kernels using proposal probabilities and discriminative
models. This is at the heart of DDMCMC.

Each sub-kernel13 is designed to be of Metropolis-Hastings form [91,139]:

Ka(W ′|W : I) = Qa(W
′|W : Tsta(I)) min{1, p(W

′|I)Qa(W |W ′ : Tsta(I))

p(W |I)Qa(W ′|W : Tsta(I))
}, W ′ 6= W (8.35)

where a transition fromW toW ′ is proposed (stochastically) by the proposal probability Qa(W ′|W :
Tsta(I)) and accepted (stochastically) by the acceptance probability:

α(W ′|W : I) = min{1, p(W
′|I)Qa(W |W ′ : Tsta(I))

p(W |I)Qa(W ′|W : Tsta(I))
}. (8.36)

Metropolis-Hastings ensures that the sub-kernels obey detailed balance (after pairing).
The proposal probability Qa(W ′|W : Tsta(I)) is a product (factorized) of some discriminative

probabilities q(wj |Tstj(I)) for the respective elements wj changed in the move between W and
W ′ (see later section). Tsta(I) is the set of bottom-up tests used in the proposal probabilities
Qa(W

′|W : Tsta(I)) and Qa(W |W ′ : Tsta(I)). The proposal probabilities must be fast to compute
(because they should be evaluated for all the possible state W ′ that sub-kernel a can reach) and
they should propose transitions to states W ′ where the posterior p(W ′|I) is likely to be high.
The acceptance probabilities are more computationally expensive, because of their dependence on
p(W ′|I), but they only need to be evaluated for the proposed state.

The design of the proposals is a trade-off. Ideally the proposals would be sampled from the
posterior p(W ′|I), but this is impractical. Instead the trade-off requires: (i) the possibility of
making large moves in Ω at each time step, (ii) the proposals should encourage moves to states with
high posterior probability, and (iii) the proposals must be fast to compute.

13Except for one that evolves region boundaries.
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More formally, we define the scope Ωa(W ) = {W ′ ∈ Ω : Ka(W ′|W : I) > 0} to be the set of
states which can be reached from W in one time step using sub-kernel a. We want the scope Sa(W )
to be large so that we can make large moves in the space Ω at each time step (i.e. jump towards the
solution and not crawl). The scope should also, if possible, include states W ′ with high posterior
p(W ′|I) (i.e. it is not enough for the scope to be large, it should also be in the right part of Ω).

The proposals Qa(W ′|W : Tsta(I)) should be chosen so as to approximate

p(W ′|I)∑
W ′′∈Ωa(W ) p(W

′′|I)
if W ′ ∈ Ωa(W ), = 0, otherwise. (8.37)

The proposals will be functions of the discriminative models for the components of W ′ and of
the generative models for the current state W (because it is computationally cheap to evaluate the
generative models for the current state). The details of the model p(W |I) will determine the form
of the proposals and how large we can make the scope while keeping the proposals easy to compute
and able to approximate equation (8.37). See the detailed examples given in Section (8.8.5).

This description gives the bare bones of DDMCMC. We refer to [194] for a more sophisticated
discussion of these issues from an MCMC perspective. In the discussion section, we describe strate-
gies to improve DDMCMX. Preliminary theoretical results for the convergence of DDMCMC are
encouraging for a special case (see Appendix C).

Finally, in Appendix D, we address the important practical issue of how to maintain detailed
balance when there are multiple routes to transition between two state W and W ′. We describe
two ways to do this and the trade-offs involved.

Generative models and Bayesian formulation

This section describes the parsing graph and the generative models used for our image parsing
algorithm in this section.

Figure 8.21: Abstract representation of the parsing graph used in this section. The intermediate
nodes represent the visual patterns. Their child nodes correspond to the pixels in the image.

Figure 8.18 illustrates the general structure of a parsing graph. In this section, we take a
simplified two-layer-graph illustrated in Figure 8.21, which is fully specified in a generative sense.
The top node (“root”) of the graph represents the whole scene (with a label). It has K intermediate
nodes for the visual patterns (face, text, texture, and shading). Each visual pattern has a number
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of pixels at the bottom (“leaves”). In this graph no horizontal connections are considered between
the visual patterns except that they share boundaries and form a partition of the image lattice.

The number K of intermediate nodes is a random variable, and each node i = 1, ...,K has
a set of attributes (Li, ζi,Θi) defined as follows. Li is the shape descriptor and determines the
region Ri = R(Li) of the image pixels covered by the visual pattern of the intermediate node.
Conceptually, the pixels within Ri are child nodes of the intermediate node i. (Regions may contain
holes, in which case the shape descriptor will have internal and external boundaries). The remaining
attribute variables (ζi,Θi) specify the probability models p(IR(Li)|ζi, Li,Θi) for generating the sub-
image IR(Li) in region R(Li). The variables ζi ∈ {1, ..., 66} indicate the visual pattern type (3 types
of generic visual patterns, 1 face pattern, and 62 text character patterns), and Θi denotes the model
parameters for the corresponding visual pattern (details are given in the following sections). The
complete scene description can be summarized by:

W = (K, {(ζi, Li,Θi) : i = 1, 2, ...,K}).

The shape descriptors {Li : i = 1, ...,K} are required to be consistent so that each pixel in the
image is a child of one, and only one, of the intermediate nodes. The shape descriptors must provide
a partition of the image lattice Λ = {(m,n) : 1 ≤ m ≤ Height(I), 1 ≤ n ≤ Width(I)} and hence
satisfy the condition

Λ = ∪Ki=1R(Li), R(Li) ∩R(Lj) = ∅, ∀i 6= j.

The generation process from the scene descriptionW to I is governed by the likelihood function:

p(I|W ) =
K∏
i=1

p(IR(Li)|ζi, Li,Θi).

The prior probability p(W ) is defined by

p(W ) = p(K)
K∏
i=1

p(Li)p(ζi|Li)p(Θi|ζi).

Under the Bayesian formulation, parsing the image corresponds to computing the W ∗ that
maximizes a posteriori probability over Ω, the solution space of W ,

W ∗ = arg max
W∈Ω

p(W |I) = arg max
W∈Ω

p(I|W )p(W ). (8.38)

It remains to specify the prior p(W ) and the likelihood function p(I|W ). We set the prior terms
p(K) and p(Θi|ζi) to be uniform probabilities. The term p(ζi|Li) is used to penalize high model
complexity and was estimated for the three generic visual patterns from training data in [193].

Shape models

We use two types of shape descriptor in this section. The first is used to define shapes of generic
visual patterns and faces. The second defines the shapes of text characters.
1. Shape descriptors for generic visual patterns and faces

In this case, the shape descriptor represents the boundary14 of the image region by a list of
pixels Li = ∂Ri. The prior is defined by:

p(Li) ∝ exp{−γ|R(Li)|α − λ|Li|}. (8.39)

In this section, we set α = 0.9. For computational reasons, we use this prior for face shapes
though more complicated priors [42] can be applied.
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Figure 8.22: Random samples drawn from the shape descriptors for text characters.

2. Shape descriptors for text characters
We model text characters by 62 deformable templates corresponding to the ten digits and the

twenty six letters in both upper and lower cases. These deformable templates are defined by 62
prototype characters and a set of deformations. The prototypes are represented by an outer bound-
ary and, at most, two inner boundaries. Each boundary is modeled by a B-spline using twenty five
control points. The prototype characters are indexed by ci ∈ {1, ..., 62} and their control points are
represented by a matrix TP (ci).

We now define two types of deformations on the templates. One is a global affine transformation,
and the other is a local elastic deformation. First we allow the letters to be deformed by an affine
transform Mi. We put a prior p(Mi) to penalize severe rotation and distortion. This is obtained by
decomposing Mi as:

Mi =

(
σx 0
0 σy

)(
cosθ −sinθ
sinθ cosθ

)(
1 h
0 1

)
.

where θ is the rotation angle, σx and σy denote scaling, and h is for shearing. The prior on Mi is

p(Mi) ∝ exp{−a|θ|2 + b(
σx
σy

+
σy
σx

)2 + ch2},

where a, b, c are parameters.
Next, we allow local deformations by adjusting the positions of the B-spline control points.

For a digit/letter ci and affine transform Mi, the contour points of the template are given by
GTP (Mi, ci) = U ×Ms ×Mi × TP (ci). Similarly the contour points on the shape with control
points Si are given by GS(Mi, ci) = U ×Ms × Si (U and Ms are the B-Spline matrices). We define
a probability distribution p(Si|Mi, ci) for the elastic deformation given by Si,

p(Si|Mi, ci) ∝ exp{−γ|R(Li)|α −D(GS(Mi, ci)||GTP (Mi, ci))},

where D(GS(Mi, ci)||GTP (Mi, ci)) is the overall distance between contour template and the de-
formed contour (these deformations are small so the correspondence between points on the curves
can be obtained by nearest neighbor matches, see [192] for how we can refine this). Figure 8.22
shows some samples drawn from the above model.

In summary, each deformable template is indexed by ci ∈ {1..62} and has a shape descriptor:

Li = (ci,Mi, Si),

The prior distribution on Li is specified by:

p(Li) = p(ci)p(Mi)p(Si|Mi, ci).

14The boundary can include an “internal boundary” if there is a hole inside the image region explained by a different
visual pattern.
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Here p(ci) is a uniform distribution on all the digits and letters (we do not place a prior distri-
bution on text strings, though it is possible to do so [102]).

Generative intensity models

We use four families of generative intensity models for describing intensity patterns of (approxi-
mately) constant intensity, clutter/texture, shading, and face. The first three are similar as those
defined in [193].
1. Constant intensity model ζ = 1:.

This assumes that pixel intensities in a region R are subject to independently and identically
distributed (iid) Gaussian distribution,

p1(IR(L)|ζ = 1, L,Θ) =
∏

v∈R(L)

G(Iv − µ;σ2), Θ = (µ, σ)

2. Clutter/texture model ζ = 2:.
This is a non-parametric intensity histogram h() discretized to take G values (i.e. is expressed

as a vector (h1, h2, ..., hG)). Let nj be the number of pixels in R(L) with intensity value j.

p2(IR(L)|ζ = 2, L,Θ) =
∏

v∈R(L)

h(Iv) =
G∏
j=1

h
nj
j , Θ = (h1, h2, ..., hG).

3. Shading model ζ = 3 and ζ = 5, ..., 66:.
This family of models are used to describe generic shading patterns, and text characters. We

use a quadratic form
J(x, y; Θ) = ax2 + bxy + cy2 + dx+ ey + f,

with parameters Θ = (a, b, c, d, e, f, σ). Therefore, the generative model for pixel (x, y) is

p3(IR(L)|ζ ∈ {3, (5, ..., 66)}, L,Θ) =
∏

v∈R(L)

G(Iv − Jv;σ2), Θ = (a, b, c, d, e, f, σ).

4. The PCA face model ζ = 4:.

Figure 8.23: Random samples drawn from the PCA face model.
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The generative model for faces is simpler and uses Principal Component Analysis (PCA) to
obtain representations of the faces in terms of principal components {Bi} and covariances Σ. Lower
level features, also modeled by PCA, can be added [143]. Figure 8.23 shows some faces sampled
from the PCA model. We also add other features such as the occlusion process, as described in
Hallinan et al [89].

p4(IR(L)|ζ = 4, L,Θ) = G(IR(L) −
∑
i

λiBi; Σ), Θ = (λ1, .., λn,Σ).

Overview of the Algorithm

This section gives the control structure of an image parsing algorithm, and Figure 8.25 shows the
algorithm’s diagram. Our algorithm must construct the parse graph on the fly and to estimate the
scene interpretation W .

Figure 8.24 illustrates how the algorithm selects the Markov chain moves (dynamics or sub-
kernels) to search through the space of possible parse graphs of the image by altering the graph
structure (by deleting or adding nodes) and by changing the node attributes. An equivalent way
of visualizing the algorithm is in terms of a search through the solution space Ω, see [193, 194] for
more details of this viewpoint.

Figure 8.24: Examples of Markov chain dynamics that change the graph structure or the node
attributes of the graph giving rise to different ways to parse the image.

We first define the set of moves to reconfigure the graph. These are: (i) birth or death of face
nodes, (ii) birth or death of text characters, (iii) splitting or merging of regions, (iv) switching node
attributes (region type ζi and model parameters Θi), (v) boundary evolution (altering the shape
descriptors Li of nodes with adjacent regions). These moves are implemented by sub-kernels. The
first four moves are reversible jumps [87], and will be implemented by the Metropolis-Hastings equa-
tion (8.35). The fifth move, boundary evolution, is implemented by a stochastic partial differential
equation.

The sub-kernels for these moves require proposal probabilities driven by elementary discrimi-
native methods, which we review in the next subsection. The proposal probabilities are designed
using the criteria in subsection (8.8.4), and full details are given in Section (8.8.5).

The control structure of the algorithm is described in Section (8.8.4). The full transition kernel
for the image parser is built by combining the sub-kernels, as described in subsection (8.8.3) and
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Figure 8.25. The algorithm proceeds (stochastically) by selecting a sub-kernel, selecting where in
the graph to apply it, and then deciding whether or not to accept the operation.

Discriminative Methods

The discriminative methods give approximate posterior probabilities q(wj |Tstj(I)) for the elemen-
tary components wj of W . For computational efficiency, these probabilities are based only on a
small number of simple tests Tstj(I).

We briefly overview and classify the discriminative methods used in our implementation. Sec-
tion (8.8.5) shows how these discriminative methods are composed, see crosses in Figure 8.25, to
give proposals for making moves in the parsing graph.

1. Edge Cues. These cues are based on edge detectors [29], [22], [106]. They are used to
give proposals for region boundaries (i.e. the shape descriptor attributes of the nodes). Specifically,
we run the Canny detector at three scales followed by edge linking to give partitions of the image
lattice. This gives a finite list of candidate partitions which are assigned weights, see section (8.8.5)
and [193]. The discriminative probability is represented by this weighted list of particles. In princi-
ple, statistical edge detectors [106] would be preferable to Canny because they give discriminative
probabilities q(wj |Tstj(I)) learnt from training data.

2. Binarization Cues. These cues are computed using a variant of Niblack’s algorithm [151].
They are used to propose boundaries for text characters (i.e. shape descriptors for text nodes), and
will be used in conjunction with proposals for text detection. The binarization algorithm, and an
example of its output, are given in Section (8.8.5). Like edge cues, the algorithm is run at different
parameters settings and represents the discriminative probability by a weighted list of particles
indicating candidate boundary locations.

3. Face Region Cues. These cues are learnt by a variant of AdaBoost [173], [199] which
outputs discriminative probabilities [68], see Section (8.8.5). They propose the presence of faces in
sub-regions of the image. These cues are combined with edge detection to propose the localization
of faces in an image.

4. Text Region Cues. These cues are also learnt by a probabilistic version of AdaBoost, see
Section (8.8.5). The algorithm is applied to image windows (at a range of scales). It outputs a
discriminative probability for the presence of text in each window. Text region cues are combined
with binarization to propose boundaries for text characters.

5. Shape Affinity Cues. These act on shape boundaries, produced by binarization, to propose
text characters. They use shape context cues [13] and information features [192] to propose matches
between the shape boundaries and the deformable template models of text characters.

6. Region Affinity Cues. These are used to estimate whether two regions Ri, Rj are likely to
have been generated by the same visual pattern family and model parameters. They use an affinity
similarity measure [175] of the intensity properties IRi , IRj .

7. Model Parameter and Visual Pattern Family cues. These are used to propose model
parameters and visual pattern family identity. They are based on clustering algorithms, such as
mean-shift [40]. The clustering algorithms depend on the model types and are described in [193].

In our current implementation, we conduct all the bottom-up tests Tstj(I), j = 1, 2, ...,K at an
early stage for all the discriminative models qj(wj |Tstj(I)), and they are then combined to form
composite tests Tsta(I) for each subkernel Ka in equations (8.35,8.36).

Control Structure of the Algorithm

The control strategy used by our image parser is illustrated in Figure 8.25. The image parser
explores the space of parsing graphs by a Markov Chain Monte Carlo sampling algorithm. This
algorithm uses a transition kernel K which is composed of sub-kernels Ka corresponding to different
ways to reconfigure the parsing graph. These sub-kernels come in reversible pairs15 (e.g. birth and
death) and are designed so that the target probability distribution of the kernel is the generative
posterior p(W |I). At each time step, a sub-kernel is selected stochastically. The sub-kernels use the

15Except for the boundary evolution sub-kernel which will be described separately, see Section 8.8.5.
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Figure 8.25: Integrating generative (top-down) and discriminative (bottom-up) methods for im-
age parsing. This diagram illustrates the main points of the image parser. The dynamics are
implemented by an ergodic Markov chain K, whose invariant probability is the posterior p(W |I),
and which is composed of reversible sub-kernels Ka for making different types of moves in the
parse graph (e.g. giving birth to new nodes or merging nodes). At each time step the algo-
rithm selects a sub-kernel stochastically. The selected sub-kernel proposes a specific move (e.g.
to create or delete specific nodes) and this move is then evaluated and accepted stochastically,
see equation (8.35). The proposals are based on both bottom-up (discriminative) and top-down
(generative) processes, see subsection (8.8.4). The bottom-up processes compute discriminative
probabilities q(wj |Tstj(I)), j = 1, 2, 3, 4 from the input image I based on feature tests Tstj(I). An
additional sub-kernel for boundary evolution uses a stochastic partial differential equation will be
described later.

Metropolis-Hasting sampling algorithm, see equation (8.35), which proceeds in two stages. First, it
proposes a reconfiguration of the graph by sampling from a proposal probability. Then it accepts
or rejects this reconfiguration by sampling the acceptance probability.

To summarize, we outline the algorithm below. At each time step, it specifies (stochastically)
which move to select (i.e. which sub-kernel), where to apply it in the graph, and whether to accept
the move. The probability to select moves ρ(a : I) was first set to be independent of I, but we got
better performance by adapting it using discriminative cues to estimate the number of faces and
text characters in the image (see details below). The choice of where to apply the move is specified
(stochastically) by the sub-kernel. For some sub-kernels it is selected randomly and for others is
chosen based on a fitness factor (see details in section (8.8.5)), which measures how well the current

190



model fits the image data. Some annealing is required to start the algorithm because of the limited
scope of the moves in the current implementation (the need for annealing will be reduced if the
compositional techniques described in [9]) are used).

We improved the effectivenss of the algorithm by making the move selection adapt to the image
(i.e. by making ρ(a : I) depend on I). In particular, we increased the probability of giving birth
and death of faces and text, ρ(1) and ρ(2), if the bottom-up (AdaBoost) proposals suggested that
there are many objects in the scene. For example, let N(I) be the number of proposals for faces
or text above a threshold Ta. Then we modify the probabilities in the table by ρ(a1) 7→ {ρ(a1) +
kg(N(I))}/Z, ρ(a2) 7→ {ρ(a2) + kg(N)}/Z, ρ(a3) 7→ ρ(a3)/Z, ρ(a4) 7→ ρ(a4)/Z, where g(x) =
x, x ≤ Tb g(x) = Tb, x ≥ Tb and Z = 1 + 2k is chosen to normalize the probability.

The basic control strategy of the image parsing algorithm

1. Initialize W (e.g. by dividing the image into four regions), setting their shape de-
scriptors, and assigning the remaining node attributes at random.

2. Set the temperature to be Tinit.

3. Select the type a of move by sampling from a probability ρ(a), with ρ(1) = 0.2 for
faces, ρ(2) = 0.2 for text, ρ(3) = 0.4 for splitting and merging, ρ(4) = 0.15 for
switching region model (type or model parameters), and ρ(5) = 0.05 for boundary
evolution. This was modified slightly adaptively, see caption and text.

4. If the selected move is boundary evolution, then select adjacent regions (nodes) at
random and apply stochastic steepest descent, see section (8.8.5).

5. If the jump moves are selected, then a new solutionW ′ is randomly sampled as follows:

− For the birth or death of a face, see section (8.8.5), we propose to create or
delete a face. This includes a proposal for where in the image to do this.

− For the birth of death of text, see section (8.8.5), we propose to create a text
character or delete an existing one. This includes a proposal for where to do
this.

− For region splitting, see section (8.8.5), a region (node) is randomly chosen
biased by its fitness factor. There are proposals for where to split it and for the
attributes of the resulting two nodes.

− For region merging, see section (8.8.5), two neighboring regions (nodes) are
selected based on a proposal probability. There are proposals for the attributes
of the resulting node.

− For switching, see section (8.8.5), a region is selected randomly according to its
fitness factor and a new region type and/or model parameters is proposed.

• The full proposal probabilities, Q(W |W : I) and Q(W ′|W : I) are computed.

• The Metropolis-Hastings algorithm, equation (8.35), is applied to accept or
reject the proposed move.

6. Reduce the temperature T = 1+Tinit×exp(−t×c|R|), where t is the current iteration
step, c is a constant and |R| is the size of the image.

7. Repeat the above steps and until the convergence criterion is satisfied (by reaching
the maximum number of allowed steps or by lack of decrease of the negative log
posterior).

8.8.5 The Markov Chain Kernels

Boundary Evolution

These moves evolve the positions of the region boundaries but preserve the graph structure. They are
implemented by a stochastic partial differential equation (Langevin equation) driven by Brownian
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Figure 8.26: The evolution of the region boundaries is implemented by stochastic partial differential
equations which are driven by models competing for ownership of the regions.

noise and can be derived from a Markov Chain [77]. The deterministic component of the PDE is
obtained by performing steepest descent on the negative log-posterior, as derived in [224].

We illustrate the approach by deriving the deterministic component of the PDE for the evolution
of the boundary between a letter Tj and a generic visual pattern region Ri. The boundary will be
expressed in terms of the control points {Sm} of the shape descriptor of the letter. Let v denote a
point on the boundary, i.e. v(s) = (x(s), y(s)) on Γ(s) = ∂Ri ∩ ∂Rj . The deterministic part of the
evolution equation is obtained by taking the derivative of the negative log-posterior − log p(W |I)
with respect to the control points.

The relevant parts of the negative log-posterior, see equation (8.38,8.8.4) are given by E(Ri)
and E(Tj) where:

E(Ri) =

∫ ∫
Ri

− log p(I(x, y)|θζi)dxdy + γ|Ri|α + λ|∂Ri|.

and
E(Tj) =

∫ ∫
Lj

log p(I(x, y)|θζj )dxdy + γ|R(Lj)|α − log p(Lj).

Differentiating E(Ri)+E(Tj) with respect to the control points {Sm} yields the evolution PDE:

dSm
dt

= −δE(Ri)

δSm
− δE(Tj)

δSm

=

∫
[−δE(Ri)

δv
− δE(Tj)

δv
]

1

|J(s)|
ds

=

∫
n(v)[log

p(I(v); θζi)

p(I(v); θζj )
+ αγ(

1

|Dj |1−α
− 1

|Di|1−α
)− λκ+D(GSj (s)||GT (s))]

1

|J(s)|
ds,

where J(s) is the Jacobian matrix for the spline function. (Recall that α = 0.9 in the implementa-
tion).

The log-likelihood ratio term log
p(I(v);θζi )

p(I(v);θζj ) implements the competition between the letter and
the generic region models for ownership of the boundary pixels.

Markov chain sub-kernels

Changes in the graph structure are realized by Markov chain jumps implemented by four different
sub-kernels.
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Sub-kernel I: birth and death of text

Figure 8.27: An example of the birth-death of text. State W consists of three generic regions and
a character “T”. Proposals are computed for 3 candidate characters, “E”, “X”, and “T”, obtained by
AdaBoost and binarization methods (see section (8.8.5)). One is selected, see arrow, which changes
the state to W ′. Conversely, there are 2 candidate in state W ′ and the one selected, see arrow,
returns the system to state W .

This pair of jumps is used to create or delete text characters. We start with a parse graph W
and transition into parse graph W ′ by creating a character. Conversely, we transition from W ′ back
to W by deleting a character.

The proposals for creating and deleting text characters are designed to approximate the terms
in equation (8.37). We obtain a list of candidate text character shapes by using AdaBoost to detect
text regions followed by binarization to detect candidate text character boundaries within text
regions (see section (8.8.5)). This list is represented by a set of particles which are weighted by the
similarity to the deformable templates for text characters (see below):

S1r(W ) = { (z
(µ)
1r , ω

(µ)
1r ) : µ = 1, 2, ..., N1r}.

Similarly, we specify another set of weighted particles for removing text characters:

S1l(W
′) = { (z

(ν)
1l , ω

(ν)
1l ) : ν = 1, 2, ..., N1l}.

{z(µ)
1r } and {z

(ν)
1l } represent the possible (discretized) shape positions and text character deformable

templates for creating or removing text, and {ω(µ)
1r } and {ω(ν)

1l } are their corresponding weights.
The particles are then used to compute proposal probabilities

Q1r(W
′|W : I) =

ω1r(W
′)∑N1r

µ=1 ω
(µ)
1r

, Q1l(W|W′, I) =
ω1l(W)∑N1l
ν=1 ω

(ν)
1l

.

The weights ω(µ)
1r and ω(ν)

1l for creating new text characters are specified by shape affinity mea-
sures, such as shape contexts [13] and informative features [192]. For deleting text characters we
calculate ω(ν)

1l directly from the likelihood and prior on the text character. Ideally these weights will
approximate the ratios p(W ′|I)

p(W |I) and p(W |I)
p(W ′|I) .
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Sub-kernel II: birth and death of face

The sub-kernel for the birth and death of faces is very similar to the sub-kernel of birth and death of
text. We use AdaBoost method discussed in sect. (8.8.5) to detect candidate faces. Face boundaries
are obtained directly from using edge detection to give candidate face boundaries. The proposal
probabilities are computed similarly to those for sub-kernel I.

Sub-kernel III: splitting and merging regions

This pair of jumps is used to create or delete nodes by splitting and merging regions (nodes). We
start with a parse graph W and transition into parse graph W ′ by splitting node i into nodes j and
k. Conversely, we transition back to W by merging nodes j and k into node i. The selection of
which region i to split is based on a robust function on p(IRi |ζi, Li,Θi) (i.e. the worse the model
for region Ri fits the data, the more likely we are to split it). For merging, we use a region affinity
measure [175] and propose merges between regions which have high affinity.

Formally, we define W,W ′:

W = (K, (ζk, Lk,Θk),W−) 
 W ′ = (K + 1, (ζi, Li,Θi), (ζj , Lj ,Θj),W−)

where W− denotes the attributes of the remaining K − 1 nodes in the graph.
We obtain proposals by seeking approximations to equation (8.37) as follows.
We first obtain three edge maps. These are given by Canny edge detectors [29] at different scales

(see [193] for details). We use these edge maps to create a list of particles for splitting S3r(W ). A
list of particles for merging is denoted by S3l(W

′).

S3r(W ) = { (z
(µ)
3r , ω

(µ)
3r ) : µ = 1, 2, ..., N3r.}, S3l(W

′) = { (z
(ν)
3l , ω

(ν)
3l ) : ν = 1, 2, ..., N3l.}

where {z(µ)
3r } and {z

(ν)
3l } represent the possible (discretized) positions for splitting and merging, and

their weights {ω3r}, {ω3l} will be defined shortly. In other words, we can only split a region i into
regions j and k along a contour zµ3r (i.e. z

µ
3r forms the new boundary). Similarly we can only merge

regions j and k into region i by deleting a boundary contour zµ3l.
We now define the weights {ω3r}, {ω3l}. These weights will be used to determine probabilities

for the splits and merges by:

Q3r(W
′|W : I) =

ω3r(W
′)∑N3r

µ=1 ω
(µ)
3r

, Q3l(W|W′ : I) =
ω3l(W)∑N3l
ν=1 ω

(ν)
3l

.

Again, we would like ωµ3r and ων3l to approximate the ratios p(W |I)
p(W ′|I) and p(W ′|I)

p(W |I) respectively.
p(W ′|I)
p(W |I) is given by:

p(W ′|I)
p(W |I)

=
p(IRi |ζi, Li,Θi)p(IRj |ζj , Lj ,Θj)

p(IRk |ζk, Lk,Θk)
· p(ζi, Li,Θi)p(ζj , Lj ,Θj)

p(ζk, Lk,Θk)
· p(K + 1)

p(K)

This is expensive to compute, so we approximate p(W ′|I)
p(W |I) and p(W |I)

p(W ′|I) by:

ω
(µ)
3r =

q(Ri, Rj)

p(IRk |ζk, Lk,Θk)
· [q(Li)q(ζi,Θi)][q(Lj)q(ζj ,Θj)]

p(ζk, Lk,Θk)
. (8.40)

ω
(ν)
3l =

q(Ri, Rj)

p(IRi |ζi, Li,Θi)p(IRj |ζj , Lj ,Θj)
· q(Lk)q(ζk,Θk)

p(ζi, Li,Θi)p(ζj , Lj ,Θj)
, (8.41)

Where q(Ri, Rj) is an affinity measure [175] of the similarity of the two regions Ri and Rj (it
is a weighted sum of the intensity difference |Ii − Ij | and the chi-squared difference between the
intensity histograms), q(Li) is given by the priors on the shape descriptors, and q(ζi,Θi) is obtained
by clustering in parameter space (see [193]).
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Jump II: Switching Node Attributes

These moves switch the attributes of a node i. This involves changing the region type ζi and the
model parameters Θi.

The move transitions between two states:

W = ((ζi, Li,Θi),W−) 
 W ′ = ((ζ ′i, L
′
i,Θ
′
i),W−)

The proposal, see equation (8.37), should approximate:

p(W ′|I)
p(W |I)

=
p(IRi |ζ ′i, L′i,Θ′i)p(ζ ′i, L′i,Θ′i)
p(IRi |ζi, Li,Θi)p(ζi, Li,Θi)

.

We approximate this by a weight ω(µ)
4 given by

ω
(µ)
4 =

q(L′i)q(ζ
′
i,Θ
′
i)

p(IRi |ζi, Li,Θi)p(ζi, Li,Θi)
,

where q(L′i)q(ζ
′
i,Θ
′
i) are the same functions used in the split and merge moves. The proposal

probability is the weight normalized in the candidate set, Q4(W′|W : I) = ω4(W′)∑N4
µ=1 ω

(µ)
4

.

AdaBoost for discriminative probabilities for face and text

This section describes how we use AdaBoost techniques to compute discriminative probabilities for
detecting faces and text (strings of letters). We also describe the binarization algorithm used to
detect the boundaries of text characters.

Computing discriminative probabilities by Adaboost

The standard AdaBoost algorithm, for example for distinguishing faces from non-faces [199], learns
a binary-valued strong classifier HAda by combining a set of n binary-valued “weak classifiers” or
feature tests TstAda(I) = (h1(I), ..., hn(I)) using a set of weights αAda = (α1, ..., αn) [67],

HAda(TstAda(I)) = sign(
n∑
i=1

αihi(I)) = sign < αAda,TstAda(I) > . (8.42)

The features are selected from a pre-designed dictionary ∆Ada. The selection of features and
the tuning of weights are posed as a supervised learning problem. Given a set of labeled examples,
{(Ii, `i) : i = 1, 2, ...,M} (`i = ±1), AdaBoost learning can be formulated as greedily optimizing
the following function [173]

(α∗Ada,Tst∗Ada) = arg min
TstAda⊂∆Ada

arg min
αAda

M∑
i=1

exp−`i<αAda,TstAda(Ii)> . (8.43)

To obtain discriminative probabilities we use a theorem [68] which states that the features and
test learnt by AdaBoost give (asymptotically) posterior probabilities for the object labels (e.g. face
or non-face). The AdaBoost strong classifier can be rederived as the log posterior ratio test.

Theorem 8.3. (Friedman et al 1998) With sufficient training samples M and features n, AdaBoost
learning selects the weights α∗Ada and tests Tst∗Ada to satisfy

q(` = +1|I) =
e`<αAda,TstAda(Ii)>

e<αAda,TstAda(Ii)> + e−<αAda,TstAda(Ii)>
.
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Moreover, the strong classifier converges asymptotically to the posterior probability ratio test

HAda(TstAda(I)) = sign(< αAda, TstAda(I) >) = sign(
q(` = +1|I)
q(` = −1|I)

).

In practice, the AdaBoost classifier is applied to windows in the image at different scales. Each
window is evaluated as being face or non-face (or text versus non-text). For most images the
posterior probabilities for faces or text are negligible for almost all parts of an image. So we use a
cascade of tests [199,206] which enables us to rapidly reject many windows by setting their marginal
probabilities to be zero.

Of course, AdaBoost will only converge to approximations to the true posterior probabilities
p(`|I) because only a limited number of tests can be used (and there is only a limited amount of
training data).

Note that AdaBoost is only one way to learn a posterior probability, see theorem (8.1). It has
been found to be very effective for object patterns which have relatively rigid structures, such as faces
and text (the shapes of letters are variable but the patterns of a sequence are fairly structured [32]).

AdaBoost Training

We used standard AdaBoost training methods [67, 68] combined with the cascade approach using
asymmetric weighting [199, 206]. The cascade enables the algorithm to rule out most of the image
as face, or text, locations with a few tests and allows computational resources to be concentrated
on the more challenging parts of the images.

Figure 8.28: Some scenes from which the training text patches are extracted.

The AdaBoost for text was designed to detect text segments. Our test data was extracted by
hand from 162 images of San Francisco, see Figure 8.28, and contained 561 text images. More than
half of the images were taken by blind volunteers (which reduces bias). We divided each text image
into several overlapping text segments with fixed width-to-height ration 2:1 (typically containing
between two and three letters). A total of 7,000 text segments were used as the positive training
set. The negative examples were obtained by a bootstrap process similar to Drucker et al [58]. First
we selected negative examples by randomly sampling from windows in the image dataset. After
training with these samples, we applied the AdaBoost algorithm at a range of scales to classify all
windows in the training images. Those misclassified as text were then used as negative examples
for the next stage of AdaBoost. The image regions most easily confused with text were vegetation,
and repetitive structures such as railings or building facades. The features used for AdaBoost were
image tests corresponding to the statistics of elementary filters. The features were chosen to detect
properties of text segments that were relatively invariant to the shapes of the individual letters or
digits. They included averaging the intensity within image windows, and statistics of the number
of edges. We refer to [32] for more details.

The AdaBoost posteriors for faces was trained in a similar way. This time we used Haar basis
functions [199] as elementary features. We used the FERET [159] database for our positive examples,
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and by allowing small rotation and translation transformation we had 5,000 positive examples. We
used the same strategy as described above for text to obtain negative examples.

In both cases, we evaluated the log posterior ratio test on testing datasets using a number of
different thresholds (see [199]). In agreement with previous work on faces [199], AdaBoost gave very
high performance with very few false positives and false negatives, see table (8.1). But these low
error rates are slightly misleading because of the enormous number of windows in each image, see
table (8.1). A small false positive rate may imply a large number of false positives for any regular
image. By varying the threshold, we can either eliminate the false positives or the false negatives
but not both at the same time. We illustrate this by showing the face regions and text regions
proposed by AdaBoost in Figure 8.29. If we attempt classification by putting a threshold then we
can only correctly detect all the faces and the text at the expense of false positives.

Object False Positive False Negative Images Subwindows
Face 65 26 162 355,960,040
Face 918 14 162 355,960,040
Face 7542 1 162 355,960,040
Text 118 27 35 20,183,316
Text 1879 5 35 20,183,316

Table 8.1: Performance of AdaBoost at different thresholds.

Figure 8.29: The boxes show faces and text as detected by the AdaBoost log posterior ratio test
with fixed threshold. Observe the false positives due to vegetation, tree structure, and random
image patterns. It is impossible to select a threshold which has no false positives and false negatives
for this image. As it is shown in our experiments later, the generative models will remove the false
positives and also recover the missing text.

When Adaboost is integrated with the generic region models in the image parser, the generic
region proposals can remove false positives and find text that AdaBoost misses. For example, the
’9’ in the right panel of Figure 8.29 is not detected because our AdaBoost algorithm was trained on
text segments. Instead it is detected as a generic shading region and later recognized as a letter ‘9’,
see Figure 8.31. Some false positive text and faces in figure 8.29 are removed in Figures 8.31 and
8.33.

The AdaBoost algorithm for text needs to be supplemented with a binarization algorithm,
described below, to determine text character location. This is followed by applying shape contexts
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[13] and informative features [192] to the binarization results to make proposals for the presence of
specific letters and digits.

In many cases, see Figure 8.30, the results of binarization are so good that the letters and digits
can be detected immeadiately (i.e. the proposals made by the binarization stage are automatically
accepted). But this will not always be the case. We note that binarization gives far better results
than alternatives such as edge detection [29].

Figure 8.30: Example of binarization on the detected text.

The binarization algorithm is a variant of one proposed by Niblack [151]. We binarize the image
intensity using an adaptive thresholding based on a adaptive window size. Adaptive methods are
needed because image windows containing text often have shading, shadow, and occlusion. Our
binarization method determines the threshold Tb(v) for each pixel v by the intensity distribution of
its local window r(v) (centered on v).

Tb(v) = µ(Ir(v)) + k · std(Ir(v)),

where µ(Ir(v)) and std(Ir(v)) are the intensity mean and standard deviation within the local window.
The size of the local window is selected to be the smallest possibble window whose intensity variance
is above a fixed threshold. The parameter k = ±0.2, where the ± allows for cases where the
foreground is brighter or darker than the background.

8.8.6 Image Parsing Experiments

The image parsing algorithm is applied to a number of outdoor/indoor images. The speed in
PCs (Pentium IV) is comparable to segmentation methods such as normalized cuts [132] or the
DDMCMC algorithm in [193]. It typically runs around 10-40 minutes. The main portion of the
computing time is spent at segmenting generic regions and boundary diffusion [224].

Figures 8.31, 8.32, and 8.33 show some challenging examples which have heavy clutter and
shading effects. We present the results in two parts. One shows the segmentation boundaries for
generic regions and objects, and the other shows the text and faces detected with text symbols to
indicate text recognition, i.e. the letters are correctly read by the algorithm. Then we synthesize
images sampled from the likelihood model p(I|W ∗) where W ∗ is the parsing graph (the faces, text,
regions parameters and boundaries) obtained by the parsing algorithm. The synthesized images are
used to visualize the parsing graph W ∗, i.e. the image content that the computer “understand”.

In the experiments, we observed that the face and text models improved the image segmentation
results by comparison to our previous work [193] which only used generic region models. Conversely,
the generic region models improve object detection by removing some false alarms and recovering
objects which were not initially detected. We now discuss specific examples.

In Figure 8.29, we showed two images where the text and faces were detected purely bottom-up
using AdaBoost. It is was impossible to select a threshold so that our AdaBoost algorithm had no
false positives or false negatives. To ensure no false negatives, apart from the ’9’, we had to lower
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a. Input image b. Segmentation c. Object recognition d. Synthesized image

Figure 8.31: Results of segmentation and recognition on two images. The results are improved
compare to the purely bottom-up (AdaBoost) results displayed in Figure 8.29.

a. Input image b. Synthesis 1 c. Synthesis 2

Figure 8.32: A close-up look of an image in Figure 8.31. The dark glasses are explained by the
generic shading model and so the face model does not have to fit this part of the data. Otherwise the
face model would have difficulty because it would try to fit the glasses to eyes. Standard AdaBoost
only correctly classifies these faces at the expense of false positives, see Figure 8.29. We show two
examples of synthesized faces, one (Synthesis 1) with the dark glasses (modelled by shading regions)
and the other (Synthesis 2) with the dark glasses removed (i.e. using the generative face model to
sample parts of the face (e.g. eyes) obscured by the dark glasses.

the threshold and admit false positives due to vegetation and heavy shadows (e.g. the shadow in
the sign “HEIGHTS OPTICAL”).

The letter ’9’ was not detected at any threshold. This is because our AdaBoost algorithm was
trained to detect text segments, and so did not respond to a single digit.

By comparison, Figure 8.31 shows the image parsing results for these two images. We see that the
false alarms proposed by AdaBoost are removed because they are better explained by the generic
region models. The generic shading models help object detection by explaining away the heavy
shading on the text “HEIGHTS OPTICAL” and the dark glasses on the women, see Figure 8.32.
Moreover, the missing digit ’9’ is now correctly detected. The algorithm first detected it as a generic
shading region and then reclassified as a digit using the sub-kernel that switches node attributes.

The ability to synthesize the image from the parsing graph W ∗ is an advantage of the Bayesian
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a. Input image b. Segmentation c. Object recognition d. Synthesized image

Figure 8.33: Results of segmentation and recognition on outdoor images. Observe the ability to
detect faces and text at multiple scale.

approach. The synthesis helps illustrate the successes, and sometimes the weaknesses, of the gener-
ative models. Moreover, the synthesized images show how much information about the image has
been captured by the models. In table (8.2), we give the number of variables used in our represen-
tation W ∗ and show that they are roughly proportional to the jpeg bytes. Most of the variables in
W ∗ are used to represent points on the segmentation boundary, and at present they are counted
independently. We could reduce the coding length of W ∗ substantially by encoding the boundary
points effectively, for example, using spatial proximity. Image encoding is not the goal of our cur-
rent work, however, and more sophisticated generative models would be needed to synthesize very
realistic images.

In this section, we describe two challenging technical problems for image parsing. Our current
work addresses these issues.

1. Two mechanisms for constructing the parsing graph
In the introduction to this section we stated that the parsing graph can be constructed in

compositional and decompositional modes. The compositional mode proceeds by grouping small
elements while the decompositional approach involves detecting an object as a whole and then
locating its parts, see Figure 8.34.
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Image Stop Soccer Parking Street Westwood
jpg bytes 23,998 19,563 23,311 26,170 27,790
|W ∗| 4,886 3,971 5,013 6,346 9,687

Table 8.2: The number of variables in W ∗ for each image compared to the JPG bytes.

(a) “composition” (b) “decomposition”

Figure 8.34: Two mechanisms for constructing the parsing graph. See text for explanation.

The compositional mode appears most effective for Figure 8.34(a). Detecting the cheetah by
bottom-up tests, such as those learnt by AdaBoost, seems difficult owing to the large variability of
shape and photometric properties of cheetahs. By contrast, it is quite practical using Swendsen-
Wang Cuts [8] to segment the image and obtain the boundary of the cheetah using a bottom-up
compositional approach and a parsing tree with multiple levels. The parsing graph is constructed
starting with the pixels as leaves (there are 46, 256 pixels in Figure 8.34(a)). The next level of
the graph is obtained using local image texture similarities to construct graph nodes (113 of them)
corresponding to “atomic regions” of the image. Then the algorithm contructs nodes (4 of them)
for “texture regions” at the next level by grouping the atomic regions (i.e. each atomic region node
will be the child of a texture region node). At each level, we compute a discriminative (proposal)
probability for how likely adjacent nodes (e.g. pixels or atomic regions) belong to the same object
or pattern. We then apply a transition kernel implementing split and merge dynamics (using the
proposals). We refer to [8] for more detailed discussion.

For objects with little variability, such as the faces shown in Figure 8.34(b), we can use bottom-
up proposals (e.g. AdaBoost) to activate a node that represents the entire face. The parsing graph
can then be constructed downwards (i.e. in the decompositional mode) by expanding the face node
to create child nodes for the parts of the face. These child nodes could, in turn, be expanded to
grandchild nodes representing finer scale parts. The amount of node expansion can be made adaptive
to depend on the resolution of the image. For example, the largest face in Figure 8.34(b) is expanded
into child nodes but there is not sufficient resolution to expand the face nodes corresponding to the
three smaller faces.

The major technical problem is to develop a mathematical criterion for which mode is most
effective for which types of objects and patterns. This will enable the algorithm to adapt its search
strategy accordingly.

2. Optimal ordering strategy for tests and kernels
The control strategy of our current image parsing algorithm does not select the tests and sub-

kernels in an optimal way. At each time step, the choice of sub-kernel is independent of the current
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state W (though the choice of where in the graph to apply the sub-kernel will depend on W ).
Moreover, bottom-up tests are performed which are never used by the algorithm.

It would be more efficient to have a control strategy which selects the sub-kernels and tests adap-
tively, provided the selection process requires low computational cost. We seek to find an optimal
control strategy for selection which is effective for a large set of images and visual patterns. The
selection criteria should select those tests and sub-kernels which maximize the gain in information.

We propose the two information criteria. The first is stated in Theorem 8.1. It measures
the information gained for variable w in the parsing graph by performing a new test Tst+. The
information gain is δ(w||Tst+) = KL(p(w|I) || q(w|Tst(I)))−KL(p(w|I) || q(w|Tstt(I), F+)), where
Tst(I) denotes the previous tests (and KL is the Kullback-Leibler divergence).

The second is stated in Theorem 8.2. It measures the power of a sub-kernel Ka by the decrease of
the KL-divergence δ(Ka) = KL(p ||µt)−KL(p ||µtKa). The amount of decrease δa gives a measure
of the power of the sub-kernel Ka when informed by Tstt(I).

We need also take into account the computational cost of the selection procedures. See [20] for
a case study for how to optimally select tests taking into account their computational costs.

202



Chapter 9

Hamiltonian Monte Carlo

Hamilton Monte Carlo (originally known as Hybrid Monte Carlo, and referred to throughout this
chapter as HMC) is powerful framework for sampling in continuous spaces. Like many other MCMC
methods (slice sampling, SW sampling, ...), HMC is an auxiliary variable method, which means that
a set of helper variables is introduced to facilitate movement in the original space. In HMC, the
original set of variables are treated as "position" variables in the energy landscape, and the auxiliary
variables give the "momentum" in the position dimensions. Each position dimension has a single
corresponding momentum variable, so the joint space of the original and auxiliary variable has twice
as many dimensions as the original space. Once the momentum variables have been introduced,
Hamiltonian mechanics is used to simulate the time evolution of the physical system defined by
the position and momenta, allowing for movement in the joint space of the original and auxiliary
variables in a way that preserves the distribution in the original space.

9.1 Introduction to Hamiltonian Mechanics

To understand the HMC sampling method, it is necessary to have some knowledge of the basic
principles of Hamiltonian Mechanics. Hamiltonian Mechanics is an alternative formulation of La-
grangian mechanics, and it equivalent to both Lagrangian Mechanics and Newtonian Mechanics.
In Hamiltonian Mechanics, any configuration of a physical system can be expressed by a pair of
n-dimensional variables q and p, which respectively represent the position and momentum of the
physical system at a single point in time. In simple cases, position and momentum have their usual
interpretation, but in general they should be thought of as abstract quantities representing the de-
grees of freedom in a system. The behavior of the physical system is governed by a function H(q, p),
called the Hamiltonian, which represents the energy of the system. In some cases, the Hamiltonian
can be written in the form H(q, p) = U(q) + K(p), where U(q) represents the potential energy of
the system and K(p) represents the kinetic energy.

As a simple example of Hamiltonian Mechanics, imagine a point mass moving in a hilly and
frictionless landscape. Any state of this system can be described by a pair (q, p), where q is a
2-dimensional variable giving the position of the point mass (latitude and longitude coordinates)
and p is a 2-dimensional variable giving the momentum in each direction. The Hamiltonian can
be written as H(q, p) = U(q) + K(p), where U(q) is proportional to the height of the point mass
relative to some reference point and K(p) = ||p||2/(2m), where m is the mass.

The movement of the point mass will be determined by the tradeoff and kinetic and potential
energy that occurs as it travels through the landscape. For example, a state with no momentum on
the side of a slope will be pulled downward, and its potential energy will be transferred into kinetic
energy moving towards the bottom of the slope. On the other hand, if the point mass is moving
forward along a flat plain and then encounters a barrier, kinetic energy is transferred to potential
energy and the mass will slow or even reverse direction back towards the plain if the barrier is
sufficiently steep.
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This simple model is quite similar to the "physical system" of Hamiltonian Monte Carlo. In
HMC, the position q represents a point in the parameter space of the target density (n-dimensional
instead of 2-dimensional), and U(q) is the "potential energy" of the point q given by the negative log
density at q. The momentum p in HMC is a normally distributed variable with an energy function
of the form pᵀΣ−1p for some positive definite covariance matrix Σ. The simplest choice is Σ = σ2In,
which gives the standard kinetic energy equation when σ =

√
m. The joint state (q, p) is then

evolved in time to reach a proposal state (q∗, p∗) in a way intuitively similar to a point mass moving
through a frictionless hilly landscape. The introduction of the auxiliary momentum p ultimately
allows for movement in the target density space of q.

The time evolution of the physical system is given by a pair of partial differential equations
known as Hamilton’s Equations, which are

dq

dt
=

∂H

∂p
, (9.1)

dp

dt
= −∂H

∂q
. (9.2)

Hamilton’s equations can be derived by taking a Legendre transform of the Lagrangian of the
physical system. Updating q and p according to Hamilton’s Equations ensures the conservation of
many properties of properties of the system, including energy, so that the value of the Hamiltonian
H(q, p) should remain constant over time.

Consider the two scenarios of the point mass mentioned earlier, in the first case moving down
a slope and in the second case encountering a barrier while moving along a flat plain. These
two scenarios have a natural interpretation in HMC. The first corresponds to the optimization
phase of sampling, which occurs when the current state is far away from a local minima. In
this case, HMC behaves similarly to gradient descent, since movement towards a local minima is
encouraged. The second corresponds to the case when the current state is already near a local
minima, and the auxiliary momentum variables allow movement in the local minima basin. In some
cases, the momentum may be able to overcome local obstacles and find other local minima in the
energy landscape, and in some cases the chain may simply become stuck in a strong energy basin,
restricted to sampling from a single mode. If the mode local mode is tightly constrained in some
linear directions (similar to a canyon in the point mass example), then movement through the mode
will require momenta in the unconstrained directions.

9.2 Properties of Hamiltonian Mechanics

Hamiltonian Mechanics has several important properties which ensure that HMC satisfies detailed
balance and preserves the target distribution. These properties will be discussed from a continuous
viewpoint first, and from the viewpoint of discrete numeric implementation in the next section.

9.2.1 Conservation of Energy
Updating a physical system with Hamilton’s equations preserves the value of the Hamiltonian
H(q, p), so that the value of H(q, p) should remain constant over time, even though q and p will
vary. The proof of this property is straightforward:

dH

dt
=

n∑
i=1

[
∂H

∂qi

dqi
dt

+
∂H

∂pi

dpi
dt

]
=

n∑
i=1

[
∂H

∂qi

∂H

∂pi
− ∂H

∂qi

∂H

∂pi

]
= 0.

This property is important in HMC because it ensures that H(q, p) = H(q∗, p∗), where (q, p) is
the previous state in the joint space and (q∗, p∗) is the proposed state. Combined with the other
properties of Hamiltonian Mechanics, conservation of energy can be used to prove that ideal HMC
defines a reversible Metropolis-Hastings proposal with an acceptance probability of 1, as will be
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shown in a later section. In practice, this property is only approximately true, since discrete
numeric approximations must be used to solve Hamilton’s Equations, so that H(q, p) might differ
from H(q∗, p∗). If the numeric approximation is accurate, this difference should be relatively small,
and high acceptance probabilities can still be achieved.

9.2.2 Reversibility
The mapping from (q(t), p(t)) to (q(t + s), p(t + s)) defined by Hamiltonian Mechanics is unique
and therefore can be inverted. If H(q, p) = U(q) +K(p) and K(p) = K(−p), which is true in HMC
when Gaussian auxiliary variables centered at 0 are used, then the inverse mapping can be given
explicitly by negating p at the end of the path, evolving the system for the same time s, and then
negating p once more. Reversibility will be used to show that HMC satisfies detailed balance, which
is the simplest way to prove that an MCMC method preserves the correct distribution. Reversibility
can be exactly preserved in discrete implementation of Hamilton’s Equations.

9.2.3 Symplectic Structure and Volume Preservation

For any smooth function H : R2n → R, Hamilton’s Equations define a special type of vector field
and a symplectic structure on the manifold R2n. A symplectic manifold is a smooth manifold M
(in practice, usually R2n) with a differential 2-form ω called the symplectic form. The standard

symplectic form used in R2n is ω =

(
0 In
−In 0

)
, which is related to Hamilton’s Equations, since

d

dt
(q, p) = ω

dH

d(q, p)

In general, ω only needs to be closed and non-degenerate 2-form on M . The symplectic form can
be intuitively understood as a way of generating a vector field from the differential 1-form dH of a
Hamiltonian energy function H(q, p).

The solution obtained from integrating Hamilton’s Equations (or equivalently the flow induced
by the vector field of the Hamiltonian H on the symplectic manifoldM) has the important property
of preserving the symplectic form ω. In other words, the mapping (q(t), p(t)) 7→ (q(t+ s), p(t+ s))
over all (q, p) ∈ M defines a diffemorphism from M to itself that respects the structure of ω. The
invariance of ω under Hamiltonian flows is the mathematical foundation of the many conservation
properties of Hamiltonian Mechanics, including conservation of energy.

An important consequence of the conservation of the 2-form ω is the conservation of volume under
Hamiltonian flows, a result known as Louisville’s Theorem. Using symplectic geometry, the proof of
this theorem is quite simple. The non-degenerate 2-form ω on M can be raised to the nth power to
define a non-degenerate volume form ωn (ωn is a 2n-form, since ω is a 2-form), and the conservation
of ω under Hamiltonian flows implies the conservation of the volume form ωn. This property is
important for HMC because it ensures that the change of coordinates (q, p) 7→ (q∗, p∗) obtained
by updating the joint state according to Hamilton’s equations has a Jacobian with a determinant
that equals 1 in absolute value. Without volume preservation, the difficulty of calculating the
determinant of the Jacobian of the coordinate change to rescale the density when proposing a move
to (q∗, p∗) would likely be a large enough impediment to make HMC infeasible in practice. Volume
preservation can hold exactly even in discrete implementations of Hamilton’s Equations if the correct
updating scheme is used.

A simple proof of volume preservation can be given using only Hamilton’s Equations without
reference to symplectic geometry. Let V =

(
dq
dt ,

dp
dt

)
be the vector field defined by Hamilton’s

Equations. Then the divergence of V is 0 everywhere, because

div(V ) =

n∑
i=1

(
∂

∂qi

dqi
dt

+
∂

∂pi

dpi
dt

)
=

n∑
i=1

(
∂

∂qi

∂H

∂pi
− ∂

∂pi

∂Hi

∂qi

)
=

n∑
i=1

(
∂2H

∂qi∂pi
− ∂2H

∂qi∂pi

)
= 0,
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and a vector field with divergence 0 can be shown to preserve volume.

9.3 The Leapfrog Discretization of Hamilton’s Equations

It is impossible to solve Hamilton’s Equations exactly except in the simplest systems, so numeric
implementations of Hamiltonian Mechanics must rely on a discrete approximation to the true con-
tinuous solution defined by the equations. Before discussing the most effective and widely used
discretization, known as the Leapfrog Integrator, two less effective but instructive methods are
introduced.

9.3.1 Euler’s Method and Modified Euler’s Method

The most naive method of discretizing the time evolution of a Hamiltonian H under Hamilton’s
Equations is to update q and p simultaneously by some small step size ε as follows:

p(t+ ε) = p(t) + ε
dp

dt
(q(t), p(t)) = p(t)− ε ∂H

∂q
(q(t), p(t)),

q(t+ ε) = q(t) + ε
dq

dt
(q(t), p(t)) = q(t) + ε

∂H

∂p
(q(t), p(t)).

This discretization is known as Euler’s Method. It does not preserve volume and can lead to
inaccurate approximations after only a few steps.

An improvement of Euler’s Method is the Modified Euler’s Method, which uses alternating ε-size
updates of the q and p. If the energy function can be written in the form H(q, p) = U(q) + K(p),
then updating q only depends on p and vice versa, because

dq

dt
=
∂H

∂p
=
∂K

∂p
and

dp

dt
= −∂H

∂q
= −∂U

∂q
. (9.3)

One step the Modified Euler’s Method consists of updating the current q from the current p with
step size ε, and then updating the current p from the updated q with the same step size ε (the
reverse order of updating p then q is equally valid) as follows:

p(t+ ε) = p(t)− ε ∂U
∂q

(q(t)),

q(t+ ε) = q(t) + ε
∂K

∂p
(p(t+ ε)).

These alternating updates are shear transformation, and therefore preserve volume just like the true
continuous solution to Hamilton’s Equations. Shear transformations have a Jacobian with a deter-
minant which has absolute value 1, so these updates can be performed with no extra computational
cost in the HMC algorithm. The Modified Euler discretization is much more accurate and stable
than the original Euler’s Method.

However, the Modified Euler’s Method is not reversible because of the order of the updates.
Suppose that you have chosen to update q and then p, although the opposite order is equally valid.
After applying some number of updates and reaching a new state, one could invert the mapping by
negating p, letting the dynamics unfold, and negating p again at the end of the trajectory, but to
reach exactly the same state, it would be necessary to use the opposite update order p and then q at
each step to undo the forward updates. Trying to reverse the path by updating in the original order
q then p would likely result in a state close to the original state, but discretization error prevents
this reversal from being exact. An ideal integration scheme should be able to exactly reverse all
updates.
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9.3.2 The Leapfrog Integrator
The Leapfrog Integrator is a close relative of the Modified Euler’s Method, and it is the standard
discrete integration scheme used in HMC because it is straightforward to implement and it exactly
satisfies both volume preservation and reversibility, which are desirable properties of the true con-
tinuous solution to Hamilton’s Equations. The Leapfrog Integrator only satisfies these properties
when the Hamiltonian has the form H(q, p) = U(q) +K(p), in which case the the equations in (9.3)
hold. In standard HMC practice, the variables p are normally distributed, and p has the quadratic
energy function K(p) = pᵀΣ−1p/2 with the derivative ∂K

∂p (p) = Σ−1p for a p.d. covariance matrix
Σ. A single step of size of the Leapfrog Integrator is given below, where ε is a parameter for step
size:

p(t+ ε/2) = p(t)− (ε/2)
∂U

∂q
(q(t)), (9.4)

q(t+ ε) = q(t) + ε
∂K

∂p
(p(t+ ε/2)), (9.5)

p(t+ ε) = p(t+ ε/2)− (ε/2)
∂U

∂q
(q(t+ ε)). (9.6)

A Leapfrog update consists of a (ε/2)-size update of p with the old q, followed by a ε-size update of
q with the new p, followed by a (ε/2)-size update of p with the new q. When performing multiple
Leapfrog steps, the above scheme is equivalent to performing half-step updates of p only at the very
beginning and very end of the trajectory, and alternating between full step updates of q and p in
between, since the two (ε/2)-size updates of p and the end of an old step and beginning of a new
step are equivalent to a single ε-size update of p.

The only difference between the Modified Euler’s Method and the Leapfrog Method is the
splitting of the tail-end full step p-update in a Modified Euler trajectory into two half-step p-updates
at the beginning and the end of a Leapfrog trajectory.

9.3.3 Properties of the Leapfrog Integrator
The symmetry of the Leapfrog Integrator ensures reversibility, because a single Leapfrog step can
be reversed by negating p, applying the Leapfrog Integrator, and negating p again. The negation
of p at the end of a trajectory is needed for reversibility in HMC as well, but can be ignored in
standard HMC practice where Gaussian auxiliary variables are used because K(p) = K(−p) when
p is Gaussian.

The Leapfrog Integrator is volume-preserving for the same reason as the Modified Euler’s
Method: since the updates of q only depend on p and vice-versa, the change of coordinates de-
fined by a Leapfrog step is a composition of three volume-preserving shear transformations with
a Jacobian of determinant 1, which define a single coordinate change with Jacobian determinant
1, since the Jacobian determinant of the composition of coordinate changes is the product of the
Jacobian determinants of the individual coordinate changes.

An informal proof that the mapping (q(t), p(t)) 7→ (q(t), p(t + ε/2)) defined by Equation (9.4)
is a shear transformation is given below, and an almost identical proof can be used to show that
Equations (9.5) and (9.6) are also shear transformations. The key property is that updating p
depends only on a smooth function of q, or vice-versa, for each step of a Leapfrog update, which

holds because H(q, p) = U(q) + K(p). Let Jp =

(
∂q∗

∂q
∂q∗

∂p
∂p∗

∂q
∂p∗

∂p

)
be the Jacobian of the coordinate

change (q, p) 7→ (q∗, p∗) corresponding to (q(t), p(t)) 7→ (q(t), p(t + ε/2)). Consider some initial
state (q(0), p(0)) and its close neighbor (q′(0), p′(0)) = (q(0) + δuq, p(0) + δup) for some unit vector
u = (uq, up) and some small δ > 0. The first step of the Leapfrog update for these two states is
given by

p(ε/2) = p(0)− (ε/2)
∂U

∂q
(q(0)),
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p′(ε/2) = p′(0)− (ε/2)
∂U

∂q
(q′(0)) = p(0) + δup − (ε/2)

∂U

∂q
(q(0) + δuq),

and q(ε/2) = q(0), q′(ε/2) = q′(0) = q(0) + δuq since q is not updated during this step. Using a
Taylor Expansion, ∂U∂q (q(0) + δuq) ≈ ∂U

∂q (q(0)) + δ[∂
2U
∂q2 (q(0))]uq for small δ. Therefore

(
q′(ε/2)− q(ε/2)
p′(ε/2)− p(ε/2)

)
≈ δ

(
In 0

−(ε/2) ∂
2U
∂q2 (q(0)) In

)(
uq
up

)
and letting δ go to 0 implies

Jp =

(
∂q∗

∂q
∂q∗

∂p
∂p∗

∂q
∂p∗

∂p

)
=

(
In 0

−(ε/2) ∂
2U
∂q2 In

)

which is a shear matrix with determinant 1. Note that ε is arbitrary and fixed in this proof, and
that the limit is taken only in the spatial perturbation δ. The Leapfrog Integrator exactly preserves
volume for any ε. The other two steps of a Leapfrog update can be shown to be shear transformations
by using a Taylor Expansion of the derivative ∂U

∂q or ∂K
∂p in the same way. If a Gaussian auxiliary

variable is used in HMC, the q-update given by Equation (9.5) has a Jacobian of the form

Jq =

(
In εΣ−1

0 In

)
where Σ is the covariance matrix of p. Using a Gaussian proposal with Σ ≈ ∂2U

∂q2 can dramatically
improve movement through the q-space, especially when sampling from distributions with high ratios
between the constrained width of the largest and smallest linear directions, i.e. a large ratio between
the maximum and minimum eigenvalue of the local covariance. Unfortunately, if the energy function
U does not have constant curvature, then Σ must vary with the position q, in which case the H(q, p)
is no longer separable, the Leapfrog Integrator does not preserve volume, and solving Hamilton’s
Equations becomes much more difficult. See the RMHMC section for a detailed discussion.

9.4 Hamiltonian Monte Carlo and Langevin Monte Carlo

HMC arises very naturally from Hamiltonian Mechanics because the properties of Hamiltonian
Mechanics can be used in a straightforward way to show detailed balance for HMC, which ensures
invariance of the stationary distribution after an HMC step. First the HMC method is introduced,
along with a special case of HMC known as Langevin Monte Carlo (referred to throughout this
section as LMC, also known as the Metropolis-Adjusted Langevin Algorithm or MALA), which
has different properties and uses than "full" HMC. This is followed by a proof that HMC satisfies
detailed balance and defines a valid sampling scheme and a discussion of tuning HMC.

9.4.1 Formulation of HMC

To be consistent with the notation used in the preceding sections, the target density to be sampled
during HMC will be written as

P (q) =
1

Z
exp {−U(q)} (9.7)

for q ∈ Rn and a smooth potential energy function U : Rn → R with normalizing constant Z.
For a discussion of handling constraints in HMC so that q can be restricted to a set U ⊂ R

n,
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see [148]. In Bayesian inference problems, U is the negative log of the posterior distribution for a
set of parameters q and dataset X with a prior π and log-likelihood l, i.e.

U(q) = − log[π(q)]− l(X|q).

HMC is an auxiliary variable method, and the standard auxiliary variables are p ∼ N(0,Σ) with
negative log density

K(p) =
1

2
pᵀΣ−1p (9.8)

for some n× n positive-definite covariance matrix Σ. The pair (q, p) ∈ R2n has the joint density

P (q, p) =
1

Z
exp {−H(q, p)} =

1

Z
exp

{
−U(q)− 1

2
pᵀΣ−1p

}
(9.9)

and the joint energy function

H(q, p) = U(q) +K(p) = U(q) +
1

2
pᵀΣ−1p. (9.10)

The joint density P (q, p) = 1
Z e
−H(q,p) has a marginal distribution q ∼ 1

Z exp−U(q) because∫
Rn

P (q, p)dp =
1

Zq
e−U(q)

∫
Rn

1

Zp
e−

1
2
pᵀΣ−1pdp =

1

Zq
e−U(q). (9.11)

Therefore sampling from the joint energy H(q, p) will provide a sample of q distributed according
to the target energy U(q).

Only normally distributed auxiliary variables will be discussed in this book, and normal aux-
iliary variables are the natural choice for several reasons. The standard kinetic energy function
K(p) = ||p||2/m used in physics is equivalent to (9.8) with Σ = mIn. Normal distributions can be
simulated accurately and efficiently, and can provide reasonable approximations of local manifold
structure in high dimensional spaces (for example, PCA reconstructions of the human face). Normal
distributions also have the property that K(p) = K(−p), which makes the negation of p needed at
the end of an HMC step ignorable.

In this section, Σ will be fixed, but successfully sampling from complex high-dimensional distri-
butions likely requires a dependence p ∼ N(0,Σ(q)) on the current state q in the target distribution
so that useful updates of Hamilton’s Equations can be achieved in each Leapfrog Step. In the sim-
plest case, if q ∼ N(0,Φ), then a proposal p ∼ N(0,Φ−1) is ideal, because the q updates are scaled
according to p and vice-versa. More generally, Σ(q) = ∂2U

∂q2 and p ∼ N(0,Σ(q)) is the proposal best

suited for sampling an energy function U(q), and the local correlation [∂
2U
∂q2 ]−1 could vary through-

out the q-space. The dependence Σ(q) results in additional computational complexity, because the
corresponding Hamiltonian has the inseparable form H(q, p) = U(q) + 1

2

(
log |Σ(q)|+ pᵀΣ(q)−1p

)
,

so dq
dt = ∂H

∂p and dp
dt = −∂H

∂q are then functions of both q and p In this case, Equations (9.4) through
(9.6) are no longer a shear transformations and the Leapfrog Integrator no longer preserves volume.
See the RMHMC section for more details.

9.4.2 The HMC Algorithm
There are three parts of an HMC step. Suppose the current state in the target space is q. First, a
normal auxiliary variable p is sampled from N(0,Σ). Then, L Leapfrog updates of step size ε are
performed on the state (q, p), and at the end of the trajectory p is negated to give a proposal state
(q∗, p∗). The negation is p is needed to ensure detailed balance but can be ignored if K(p) = K(−p),
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which is true when p is Gaussian. Finally, a Metropolis-Hastings step is needed to accept or reject
the proposal (q∗, p∗) because the Leapfrog Integrator does not exactly preserve the Hamiltonian.
After the acceptance step, p∗ is discarded and a new p is generated for the next HMC step. In some
HMC variants, p∗ with a decay factor is used along with a freshly sampled pi in the next step to
encourage movement in the same direction between subsequent steps, but there is no evidence that
this significantly improves sampling (see [148]). The standard HMC algorithm is given below.

HMC Algorithm

Input: Differentiable energy function U(q), initial state q0 ∈ Rn, n × n p.d. covariance matrix
Σ, step size ε, number of Leapfrog steps L, number of iterations N
Output: Markov Chain sample {q1, . . . , qN} with stationary distribution U

For i = 1 : N ,

1. Generate momentum pi−1 ∼ N(0,Σ).

2. Let (q′0, p
′
0) = (qi−1, pi−1). Perform L Leapfrog updates starting at (q′0, p

′
0) to reach a

proposal state (q∗, p∗) as follows:

(a) Do the first half-step update for p,

p′1
2

= p′0 − (ε/2)
∂U

∂q
(q′0). (9.12)

(b) For l = 1 : (L− 1), perform alternating full-step updates of q and p:

q′l = q′l−1 + εΣ−1p′
l− 1

2

, (9.13)

p′
l+ 1

2

= p′
l− 1

2

− ε ∂U
∂q

(q′l). (9.14)

If L = 1, which is the LMC algorithm, skip this step.

(c) Compute the final full-step q-update and the final half-step p-update

q′L = q′L−1 + εΣ−1p′
L− 1

2

, (9.15)

p′L = p′
L− 1

2

− (ε/2)
∂U

∂q
(q′L). (9.16)

The proposed state is then (q∗, p∗) = (q′L, p
′
L).

3. Accept the proposed state (q∗, p∗) according the Metropolis-Hastings acceptance probability

α = min
(

1, exp

{
−
(
U(q∗) +

1

2
(p∗)ᵀΣ−1p∗

)
+

(
U(qi−1) +

1

2
pᵀi−1Σ−1pi−1

)})
. (9.17)

If the proposal is accepted, then qi = q∗. Otherwise, qi = qi−1. The momenta pi−1 and p∗

can be discarded after the proposal.

Remark 1: To be fully correct, the proposed state at the end of Step 2 in the HMC algorithm should
be (q∗, p∗) = (q′L,−p′L) since a negation of the momentum at the end of the Leapfrog trajectory is
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needed to ensure reversibility and detailed balance for HMC, as will be shown in the next section.
Since K(p) = K(−p) for Gaussian distributions, the calculation in Step 3 does not change whether
p∗ = p′L or p∗ = −p′L, and the negation can be safely ignored.

Remark 2: A different covariance matrix Σ can be used to generate each pi. However, the same Σ
must be used for the duration of a single proposal. Changing Σ between Leapfrog iterations breaks
the shear structure of the Leapfrog updates, and detailed balance can no longer be guaranteed. This
is a major obstacle for RMHMC approaches which take local manifold structure into account by
allowing a dependence Σ(q) based on the current location in the landscape.

The Metropolis-Hastings acceptance probability in Step 3 corresponds to a ratio of the joint
density of P (q, p):

α = min
(

1,
P (q∗, p∗)

P (qi−1, pi−1)

)
= min

(
1,

exp{−H(q∗, p∗)}
exp{−H(qi−1, pi−1)}

)
= min

(
1,

exp{−U(q∗)−K(p∗)}
exp{−U(qi−1)−K(pi−1)}

)
.

The Leapfrog Update is deterministic, volume preserving, and exactly reversible, so no transition
probabilities K((q, p) 7→ (q∗, p∗)) appear in the Metropolis-Hastings ratio, only the density P (q, p).
The true continuous solution to Hamilton’s Equations exactly satisfies H(q, p) = H(q∗, p∗) for a
proposal (q∗, p∗) generated according to Hamilton’s Equations from an initial state (q, p). Therefore,
the Metropolis-Hastings acceptance probability would always be equal to 1 if the exact solution for
Hamilton’s Equation could be used.

However, since the Leapfrog discretization must be used instead, the value of H is not exactly
conserved, and a Metropolis-Hastings step is needed to correct for this error. It is necessary to
tune the sampling variables Σ, ε, and L correctly in order to obtain an accurate approximation
to Hamilton’s Equations and a high acceptance probability. In theory, HMC has a stationary
distribution 1

Z e
−U(q) for any parameter setting, but good tuning is needed for good mixing as with

any MCMC method. If the parameters are not tuned correctly, then either acceptance probabilities
will be virtually 0 and the chain will never move, or the movements of the chain relative to the
largest width of the local distribution will be so small that an unreasonably large number of updates
must be used to achieve global movement.

9.4.3 The LMC Algorithm

Langevin Monte Carlo, or LMC, is simply the HMC algorithm where only L = 1 Leapfrog update
is performed. LMC is equivalent to the Langevin Equation

q(t+ ε) = q(t)− ε2

2
Σ−1∂U

∂q
(q(t)) + ε

√
Σ−1 z (9.18)

(with z ∼ N(0, In)) used in optimization with an additional p-update and Metropolis-Hastings
acceptance step which results in a sampling algorithm on 1

Z e
−U(q). The LMC algorithm could be

implemented using the HMC algorithm from the previous section with L = 1, but is usually done
in a slightly more compact way with only one q-update and one p-update, as written below.
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LMC Algorithm

Input: Differentiable energy function U(q), initial state q0 ∈ Rn, n × n p.d. covariance matrix
Σ, step size ε, number of iterations N
Output: Markov Chain sample {q1, . . . , qN} with stationary distribution U

For i = 1 : N ,

1. Generate momentum pi−1 ∼ N(0,Σ).

2. Let (q′0, p
′
0) = (qi−1, pi−1). Update q according the the Langevin Equation:

q′1 = q′0 −
ε2

2
Σ−1∂U

∂q
(q′0) + εΣ−1p (9.19)

and update p according to the Leapfrog Update

p′1 = p′0 −
ε

2

∂U

∂q
(q′0) +

ε

2

∂U

∂q
(q′1). (9.20)

The proposed state is then (q∗, p∗) = (q′1, p
′
1).

3. Accept the proposed state (q∗, p∗) according the Metropolis-Hastings acceptance probability

α = min
(

1, exp

{
−
(
U(q∗) +

1

2
(p∗)ᵀΣ−1p∗

)
+

(
U(qi−1) +

1

2
pᵀi−1Σ−1pi−1

)})
. (9.21)

If the proposal is accepted, then qi = q∗. Otherwise, qi = qi−1. The momentum pi−1 can
be discarded after the proposal.

The formulation of the q-update in (9.19) shows the two competing forces acting on the orig-
inal space in LMC, and the same principles are are work in each Leapfrog update of HMC. The
term − ε2

2 Σ−1 ∂U
∂q (q′0) is simply gradient descent rescaled by a p.d. matrix, corresponding roughly

to "gravitational pull" in the energy landscape. When the momentum covariance is the Fisher
Information Σ(θ) = EX|θ

[
∂2U
∂θ2 (X|θ)

]
for a Bayesian inference problem given observations X, this

term becomes the "natural gradient" Σ−1(θ)∂U∂θ (Amari, [4]) which adapts to the local curvature of
the parameter space. The Fisher Information is always positive-definite, and the natural gradient
has better performance and invariance properties than the naive gradient ∂U

∂θ .
The term εΣ−1p = ε

√
Σ−1z for z ∼ N(0, In) corresponds roughly to random "winds". The

gravitational pull of the gradient term should overpower the random forces of the diffusion term
when moving down an energy slope, but the diffusion term becomes dominant once a local minimum
has been reached and only movement along level curves is possible. An informed choice of Σ is needed
to ensure that the random diffusion forces can make meaningful proposals once the chain has reach

the bottom of an energy basin. If Σ(q) ≈ ∂2U
∂q2 , then

√
Σ(q)−1z ∼ N(0,Σ(q)−1) and the diffusion

forces follow the local covariance structure [∂
2U
∂q2 ]−1, so that the "wind" primarly blows along the

local manifold. Imagine that the local landscape is a canyon. If the winds blow perpendicular to
the direct of the canyon, the steep edges of the canyon will prevent any meaningful movement.
However, if the wind happens to blow parallel to the canyon, then movement through the canyon
becomes possible.

LMC has different properties than "full" HMC where a substantial number of Leapfrog updates
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L are used. Since the momenta are discarded after only a single step in LMC, successive proposals
are not encouraged to move in the same direction and LMC explores the landscape U(q) in a
random walk. The gradient information used in the LMC update allows some features of the energy
landscape to be taken into account unlike Random-Walk Metropolis, but HMC has better theoretical
scaling properties because repeatedly updating the same momentum p can lead to longer trajectories
in the joint space.

However, LMC can be more useful in some situations. It is more practical and accurate to
implement an approximation of the dynamics of a q-dependent momentum p ∼ N(0,Σ(q)) for LMC
than HMC, as will be discussed in the RMHMC section. In complex landscapes, the benefits of
HMC are limited by the instability of the Leapfrog dynamics, and often the number of Leapfrog
steps L must be kept small to achieve reasonable acceptance rates, in which case HMC and LMC
are very similar.

9.4.4 Proof of Detailed Balance for HMC
The simplest way show that an MCMC sampling method preserves a distribution P is to show that
the method satisfies the detailed balance relation

P (x)T (x 7→ x∗) = P (x∗)T (x∗ 7→ x) (9.22)

for the proposal density T defined by the MCMC method. A proof that HMC satisfies detailed
balance is given below. It can also be shown that HMC is ergodic and guaranteed to explore the
entire q-space, provided that ε is selected from a small random interval at the beginning of each
HMC update. This random selection of ε is needed to ensure ergodicity in theory, because there
is the possibility for exactly or nearly periodic orbits to occur during HMC, but this phenomenon
only exists for a narrow band of ε. See [128] for more details.

Theorem 9.1. The HMC Algorithm satisfies detailed balance and has a stationary distribution
P (q) = 1

Z e
−U(q).

Proof. It is sufficient to show that an HMC step satisfies detailed balance for the joint distribution
P (q, p) = 1

Z e
−U(q)−K(p) in order to show that the stationary distribution of q in the HMC process

follows 1
Z e
−U(q), as shown in Equation (1.11). For this proof, p ∼ 1

Z e
−K(p) for a smooth energy

function K on R
n, which might not be Gaussian or symmetric. In practice p ∼ N(0,Σ) and

K(p) = (1/2)pᵀΣ−1p.
Let q ∼ 1

Z e
−U(q). After generating p ∼ 1

Z e
−K(p) in Step 1 in the HMC algorithm, it is clear that

(q, p) ∼ P (q, p) because of the independence of q and p implied by the factorizable form of the joint
density. Let the proposal (q∗, p∗) be the state reached after performing L Leapfrog steps of size ε
from the state (q, p) and negating p at the end of the trajectory. As shown in Section 9.3.3, each
Leapfrog step is a change of coordinates with determinant 1, and the negation of p at the end of
the trajectory is a change of coordinates with Jacobian determinant of absolute value 1. Therefore
(q, p) 7→ (q∗, p∗) is a change of coordinates with a Jacobian determinant of absolute value 1, since
the determinant of the composition of coordinate changes is the product of the determinants of each
change. By the change of coordinate rule for probability densities

g(y) = f(x)

∣∣∣∣det(dxdy
)∣∣∣∣

where f(x) is the original density and g(y) is the new density for the mapping x 7→ y, it follows
that (q∗, p∗) has the same density function as (q, p) because |det (dx/dy)| = 1. The proposal is also
exactly reversible, since applying L Leapfrog steps of size ε to (q∗, p∗) and negating p∗ at the end
of the trajectory will give the original state (q, p).

Since the mapping (q, p) 7→ (q∗, p∗) is deterministic and reversible, the proposal density T defined
by the HMC Algorithm is

T ((q, p) 7→ (q∗, p∗)) = min (1, exp {− (U(q∗) +K(p∗)) + (U(q) +K(p))}) ,
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T ((q, p) 7→ (q′, p′)) = 0 if (q′, p′) 6= (q∗, p∗).

Similarly, the transition density starting from (q∗, p∗) is non-zero only for the proposal (q, p) and
has the form

T ((q∗, p∗) 7→ (q, p)) = min (1, exp {− (U(q) +K(p)) + (U(q∗) +K(p∗))}) .

The the detailed balance equation (9.22) for HMC is

1

Z
e−U(q)−K(p)min

(
1,

exp{−U(q∗)−K(p∗)}
exp{−U(q)−K(p)}

)
=

1

Z
e−U(q∗)−K(p∗)min

(
1,

exp{−U(q)−K(p)}
exp{−U(q∗)−K(p∗)}

)
which is clearly true. Therefore HMC satisfies detailed balance and preserves the joint distribution
1
Z e
−U(q)−K(p).

9.4.5 Tuning Standard HMC
This section discusses tuning the ε and L parameters in the standard HMC setting with a fixed
Σ. It is sufficient to only consider Σ = In, because the results can naturally be extended to an
arbitrary Σ by rescaling the q-space as in Lemma 9.1. Tuning Σ itself is the main topic of the
RMHMC section.

The step size ε must be small enough for the Leapfrog Integrator to accurately simulate Hamil-
ton’s Equations in order for H to stay approximately constant throughout the Leapfrog updates.
Since the Metropolis-Hastings acceptance depends on difference in H between the original state
and the proposal, smaller step sizes tend to have higher acceptance rates because H will not change
as much. On the other hand, if ε is too small then the chain will remain nearly stationary and
effective sampling becomes impossible. A simple way to tune HMC in a new environment is to set
Σ = In, L = 1, and vary ε until acceptance rates of 40% – 85% are obtained. This range provides a
good balance between high acceptance and good movement, and more extreme ε in either direction
are unlikely to substantially improve HMC performance. Different values of ε might be needed in
different areas of the state space.

When Σ = In, the ideal step size ε∗ should roughly equal the width of U(q) in the most
constrained linear direction of the local region of the energy landscape. If the landscape is Gaussian
or approximately Gaussian, ε∗ should be close to the square root of the smallest eigenvalue of
the local covariance matrix. The q-update in (9.13) will lead to low acceptance rates when ε is
substantially larger than the smallest marginal standard deviation of U(q) because the spherical
auxiliary variable will make unlikely proposals along the most constrained direction. On the other
hand, proposals should be accepted with reasonably high probability when ε and the smallest
standard deviation are about equal because local deviations in any direction will give states with
about the same energy as the current state.

Since each Leapfrog update moves a distance of about ε in the q-space, ignoring the effect
of the gradient, and ε is limited to at most the smallest marginal standard deviation of q, the
number of leapfrog steps L∗ needed to reach a nearly independent state in a single HMC step
is L∗ ≈

√
λmax/ε

∗, where λmax is the largest eigenvalue of the local covariance of the q-space.
Remember that the Hamiltonian trajectory is not a random walk and tends to move in the same
direction unless obstacles in the energy landscape are encountered, so displacement scales linearly
with the number of steps L. In simple landscapes, L can be quite large (over 100) because the
Leapfrog dynamics are very accurate, but in more complex landscapes the acceptance rates for
HMC trajectories can drop very quickly when L becomes too large. If εL is not on the order of the
largest standard deviation, HMC will exhibit strong autocorrelation and will not be able to move
through the space effectively. See the HMC in Practice section for experimental demonstrations of
these principles.

The local correlation could vary drastically throughout the state space, and a parameter setting
that is effective in one mode of the landscape might perform badly in another mode. However,
using RMHMC alleviates these problems because ε becomes a "dimensionless" quantity and small
numbers of Leapfrog steps (even L = 1) can still provide good movement through the space.
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9.5 Riemann Manifold HMC

Riemann Manifold HMC (or RMHMC) extends the standard HMC method by allowing the covari-
ance matrix for the auxiliary momentum variables p to have a dependency Σ(q) on the current
location q in the energy landscape. This can vastly improve the sampling properties of HMC, espe-
cially in situations where the distribution of q is concentrated along a low-dimensional manifold in
the state space.

Traditional HMC with Σ = In is ineffective in these situations because the step size needed for
acceptance must be on the order of the smallest standard deviation of q, which will be orders of
magnitude smaller than the standard deviations along the primary manifold dimensions. Using a
large number of Leapfrog steps L can only partially compensate for this discrepancy, and in complex
landscapes the trajectory can become unstable when L is too large.

RMHMC, on the other hand, uses local geometry to make proposals in meaningful directions
along the local manifold, leading to better sampling with only a few Leapfrog steps. The dependency
Σ(q) complicates the dynamics of RMHMC and requires additional computational considerations,
some of which are very problematic. While an exact RMHMC implementation is infeasible in many
practical situations, approximate implementations could provide many of the benefits of RMHMC
in a flexible and generalizable framework.

9.5.1 Linear Transformations in HMC

The lemma below states an important invariance property of HMC under a certain type of lin-
ear transformation which provides insight into the effect of the momentum covariance Σ in HMC
dynamics.

Lemma 9.1. Let U(q) be a smooth energy function and let p ∼ N(0,Σ) be the distribution of the
HMC auxiliary variables for p.d. matrix Σ, and let A be an invertible matrix. The HMC dynamics of
(q, p) initialized at (q0, p0) are equivalent to the HMC dynamics of (q′, p′) = (Aq, (Aᵀ)−1p) initialized
at (q′0, p

′
0) = (Aq0, (A

ᵀ)−1p0) because (Aqt, (A
ᵀ)−1pt) = (q′t, p

′
t) for any Leapfrog step t ≥ 1.

Proof. Let (q′, p′) = (Aq, (Aᵀ)−1p). By the change of variables formula for probability densi-
ties, P ′(q′) = P (q)/|det(A)|, and since A is constant, the new denominator is absorbed into
the normalizing constant, so the energy functions of q and q′ differ only by an additive constant:
U ′(q′) = U(A−1q′) + c. Using the chain rule,

∂U ′

∂q
(q∗) = (Aᵀ)−1∂U

∂q
(A−1q∗)

for any vector q∗. The transformed momenta have a distribution p′ ∼ N(0, (Aᵀ)−1ΣA−1) and energy
function K ′(p′) = AΣ−1Aᵀp′. One Leapfrog update of (q′0, p

′
0) = (Aq0, (A

ᵀ)−1p0) is given by

p′1/2 = p′0 −
ε

2

∂U ′

∂q
(q′0) = (Aᵀ)−1p0 −

ε

2
(Aᵀ)−1∂U

∂q
(q0) (9.23)

q′1 = q′0 + εAΣ−1Aᵀp′1/2 = Aq0 −
ε2

2
AΣ−1 ∂U

∂q
(q0) + εAΣ−1p0 (9.24)

p′1 = p′1/2 −
ε

2

∂U ′

∂q′
(q′1) = (Aᵀ)−1p0 −

ε

2
(Aᵀ)−1∂U

∂q
(q0)− ε

2
(Aᵀ)−1∂U

∂q
(A−1q′1). (9.25)

Multiplying (9.23) and (9.25) by Aᵀ and multiplying (9.24) by A−1 gives the Leapfrog update for
the original pair (q0, p0), and it is clear that (q′1, p

′
1) = (Aq1, (A

ᵀ)−1p1). By induction, this relation
must hold for any number of Leapfrog steps.
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Remark: In practice, the equivalence in Lemma 9.1 is not exact because of computational inac-
curacies arising from the matrix operations performed with A. However, if A is well-conditioned,
numeric implementations of the two chains should give very similar results.

This lemma provides a key insight about tuning HMC. Suppose that the distribution of q is
approximately Gaussian in some region around a point q∗ with p.d. covariance Σq∗ . The covariance
can be decomposed as Σq∗ = AAᵀ by several possible methods such as Choelsky or eigenvalue
decomposition. Consider the HMC dynamics of the chain (q, p) with p ∼ N(0,Σ−1

q∗ ). By Lemma
9.1, the dynamics of (q, p) are equivalent to the dynamics of (A−1q, Aᵀp). Now, Aᵀp ∼ N(0, In),
and Var(A−1q) = In in a region near q∗, so the transformed position and momentum variables are
approximately independent with variance 1 in each dimension. Since the transformed space is easy
to sample, the HMC dynamics of (A−1q, Aᵀp) should lead to nearly independent states in a small
number number of Leapfrog steps (even L = 1), and the same sampling properties hold for the
equivalent dynamics of the original (q, p).

This observation is one of several motivations for using local curvature information to improve
the performance of HMC dynamics, as is done in RMHMC. Let q∗ be a position in the energy
landscape, and suppose ∂U2

∂2q
(q∗) is positive definite, so that Σq∗ = [∂U

2

∂2q
(q∗)]−1 gives the local

correlation and scaling structure of U in a neighborhood around q∗. In general, ∂U2

∂2q
(q∗) may not

be positive definite, but a p.d. relative Σ′q∗ obtained by thresholding the eigenvalues of ∂U
2

∂2q
(q∗) and

inverting could provide the same benefits.
By the discussion above, using the momentum p ∼ N(0,Σ−1

q∗ ) should lead to a nearly indepen-
dent proposal in the q-space in a small number of Leapfrog steps, so Σ−1

q∗ is the ideal proposal
covariance at the point q∗. As discussed in Section 9.4.3, using Σ−1

q∗ as the covariance for the mo-
menta promotes movement along the local manifold and allows the chain to travel along level curves
near bottom of energy basins, which is impossible using gradient information alone. In order for
HMC to be an effective sampling method, instead of just an optimization method, it is necessary to
use an informative momentum covariance. If estimates si of the marginal standard deviation can be
obtained, then a diagonal covariance Λ where λi = 1/s2

i can account for differences in scale between
the variables. However, the si might vary throughout the state space, and a diagonal covariance
Λ cannot account for correlations between the dimensions, which are usually strong in real world
problems.

The following lemma gives three equivalent ways of implementing the HMC dynamics of a chain
(q, Cp) for an invertible matrix C, and where the original momentum distribution is p ∼ N(0,Σ). In
RMHMC, Σ = In and C =

√
∂U2/∂2q, assuming that the curvature is positive definite. Although

equivalent, the computational cost of these implementations can vary depending on the matrix
decompositions and inversions required. When working in high dimensions with large matrices, the
cost of matrix operations quickly balloons, and care is needed to make sure that the chain can be
updated in a reasonable amount of time.

Lemma 9.2. Let U(q) be a smooth energy function, Σ a p.d. matrix, and C an invertible matrix.
The dynamics of the following HMC chains are equivalent:

1. The momentum is sampled from p ∼ N(0, CᵀΣC) and the chain is updated according to the
standard HMC dynamics of (q, p).

2. The momentum is sampled from p ∼ N(0,Σ) and the chain is updated according to the
standard HMC dynamics of (q, Cᵀp), i.e.

3. The momentum is sampled from p ∼ N(0,Σ) and the chain is updated according to the altered
HMC dynamics defined by

dq

dt
= C−1 ∂K

∂p
, (9.26)
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dp

dt
= −[C−1]ᵀ

∂U

∂q
. (9.27)

Moreover, (2) and (3) can both be implemented using the altered Leapfrog update

pt+1/2 = pt −
ε

2
[C−1]ᵀ

∂U

∂q
(qt) (9.28)

qt+1 = qt + εC−1Σ−1pt+1/2 (9.29)

pt+1 = pt+1/2 −
ε

2
[C−1]ᵀ

∂U

∂q
(qt+1). (9.30)

Proof. Consider the dynamics of (2). Sample p0 ∼ N(0,Σ), and let p′0 = Cᵀp0, which means p′0 is
distributed N(0, CᵀΣC). The Leapfrog updates of (q, p′) = (q, Cᵀp) are given by

p′t+1/2 = p′t −
ε

2

∂U

∂q
(qt) (9.31)

qt+1 = qt + εC−1Σ−1[C−1]ᵀp′t+1/2 (9.32)

p′t+1 = p′t+1/2 −
ε

2

∂U

∂q
(qt+1) (9.33)

which are identical to the standard Leapfrog updates of (1), proving the equivalence between (1)
and (2). On the other hand, multiplying (9.31) and (9.33) by [C−1]ᵀ gives the same updates as
(9.28) through (9.30), because pt = [C−1]ᵀp′t at each step t. The updates (9.28) through (9.30) are
easily identified as the Leapfrog dynamics of the altered Hamiltonian Equations (9.26) and (9.27),
showing the equivalence of (2) and (3).

The above lemma is important for two reasons. First, it shows that HMC dynamics with
p ∼ N(0,M) with M = CᵀC can be interpreted as the HMC dynamics resulting from a momentum
p ∼ N(0, In) with the altered form of Hamilton’s Equations in (9.26) and (9.27). This provides an
important link between RMHMC and other "skew-symmetric" HMC methods that alter Hamilton’s
Equations in a similar way, most importantly stochastic gradient HMC.

Second, the lemma provides an alternative way to implement the dynamics of p ∼ N(0,M) that
only requires the calculation of

√
M−1, not M itself. This follows from letting Σ = In, C =

√
M ,

and observing that the updates in (9.28) through (9.30) require only C−1. The ideal momentum
covariance is ∂U2

∂2q
, and in convex regions

√
[∂U

2

∂2q
]−1 can be approximated from a sample of local

positions using a variant of the LBFGS algorithm. The calculation requires no matrix inversion or
decomposition, and provides a computationally efficient way to implement an approximate RMHMC
algorithm, as is discussed later. Still, obtaining an accurate estimate of the root inverse Hessian in
complex landscapes is a substantial obstacle for any RMHMC implementation.

9.5.2 RMHMC Dynamics

Linear transformation to adapt to local curvature has clear theoretical benefits, and allows for
nearly independent sampling in only a few Leapfrog steps. However, HMC dynamics that include
local curvature information are much more difficult to discretize than standard HMC dynamics, and
costly computational methods are needed.

In standard HMC, the same matrix Σ is used as the covariance of the momenta throughout
a single proposal. In RMHMC, there is a dependence of the momentum covariance Σ(q) on the
current position q in the energy landscape. For now, Σ(q) is any smooth matrix function of q that
returns a p.d. symmetric matrix, but in practice this matrix should reflect the local curvature near
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a position q in the energy landscape. A discussion of the choice of Σ(q) in practice can be found
later in this section. The RMHMC momentum distribution is p ∼ N(0,Σ(q)), with energy function

K(q, p) =
1

2
log((2π)n|Σ(q)|) +

1

2
pᵀΣ(q)−1p, (9.34)

and the joint Hamiltonian is

H(q, p) = U(q) +
1

2
log((2π)n|Σ(q)|) +

1

2
pᵀΣ(q)−1p. (9.35)

The momentum energy function must include an extra term 1
2 log((2π)n|Σ(q)|) not found in standard

HMC, and evaluating derivatives of this term is a source of computational difficulty. Observe that∫
Rn

1

Z
e−H(q,p)dp =

1

Z
e−U(q)

∫
Rn

1√
(2π)n|Σ(q)|

e−p
ᵀΣ(q)−1pdp =

1

Z
e−U(q), (9.36)

so the marginal distribution of q is the target distribution, and the q-sample obtained from updat-
ing (q, p) jointly will follow the correct distribution, just as in standard HMC. The Hamiltonian
Equations governing RMHMC are

dq

dt
=
∂H

∂p
= Σ(q)−1p, (9.37)

dp

dt
= −∂H

∂q
= −∂U

∂q
− 1

2
Tr
[
Σ(q)−1∂Σ(q)

∂q

]
+

1

2
pᵀΣ(q)−1∂Σ(q)

∂q
Σ(q)−1p. (9.38)

The updates of q and p and no longer separable, since the update of p depends on both q and
the current p. Therefore, the if the Leapfrog integrator were used, the coordinate changes would
no longer have a shear structure, so there is no guarantee that the Leapfrog coordinate change
has determinant 1 for RMHMC dynamics. This upsets the detailed balance of HMC, and naively
implementing the Leapfrog integrator in an RMHMC setting does not preserve the distribution of
1
Z e
−U(q).
To overcome the non-separability of the RMHMC update equations, the update values are de-

fined by an implicit set of equations that must be solved using fixed point iteration. One iteration
of the Generalized Leapfrog Integrator for discretizing the dynamics of a non-separable joint Hamil-
tonian H is given by

pt+1/2 = pt −
ε

2

∂H

∂q
(qt, pt+1/2), (9.39)

qt+1/2 = qt +
ε

2

[
∂H

∂p
(qt, pt+1/2) +

∂H

∂p
(qt+1, pt+1/2)

]
, (9.40)

pt+1 = pt+1/2 −
ε

2

∂H

∂q
(qt, pt+1/2). (9.41)

The update in the first two steps is implicitly defined, allowing for the simulation of the dynamics
of a non-separable H. In the case of standard HMC, H(q, p) = U(q) + K(p) and the Generalized
Leapfrog updates are identical to the standard Leapfrog scheme. When H is non-separable, fixed
point iteration must be used to solve (9.39) and (9.40). The details of the fixed point updates are
included with the RMHMC Algorithm later in the section.

It can be shown that the Generalized Leapfrog updates are volume-preserving, and that RMHMC
maintains detailed balance and preserves the target distribution. The proof is similar to the proof
of detailed balance for standard HMC, with appropriate adjustments made for the proofs of volume
preservation and reversibility based on the Generalized Leapfrog updates. However, RMHMC is not
explicitly reversible like standard HMC, because solutions to the fixed point equations will not be
exact in practice and reversing the fixed point calculations will not give the exact original position.
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9.5.3 RMHMC Algorithm and Variants

There are several variants of the RMHMC algorithm. First the full RMHMC algorithm is presented,
which requires fixed point iteration and the calculation of the derivative of Σ(q). Since Σ(q) in
practice is the local curvature, full RMHMC requires calculation of the third derivatives of the target
energy U , which is a large computational burden and is impossible in many practical situations.
There is an RMHMC variant for L = 1 Leapfrog updates which requires the calculations of third
derivatives of U at the original and proposed state but involves no fixed point iteration. The details
of this algorithm are slightly different than full RMHMC, and the interested reader should refer
to [85].

Full RMHMC Algorithm

Input: Differentiable energy function U(q), initial state q0 ∈ Rn, n × n differentiable p.d. co-
variance function Σ(q), step size ε, number of iterations N , number of Leapfrog steps L, number
of fixed point steps K
Output: Markov Chain sample {q1, . . . , qN} with stationary distribution U

For i = 1 : N ,

1. Generate momentum pi−1 ∼ N(0,Σ(qi−1)).

2. Let (q′0, p
′
0) = (qi−1, pi−1). For l = 1 : L, update (q′l−1, p

′
l−1) using the Generalized Leapfrog

integrator to reach a proposal state (q∗, p∗) = (q′L, p
′
L) as follows:

(a) Let p̂0 = p′l−1. For k = 1 : K, update p̂k−1 according to the fixed point equation

p̂k = p̂k−1 −
ε

2
Σ(q′l−1)−1p̂k−1 (9.42)

to obtain the half-step momentum update p′l−1/2 = p̂K .

(b) Let q̂0 = q′l−1. For k = 1 : K, update q̂k−1according to the fixed point equation

p̂k = p̂k−1 −
ε

2
Σ(q′l−1)−1p̂k−1 (9.43)

where ∂H/∂p is given in (9.38), to obtain the full step position update q′l = q̂K .

(c) Update p′l−1/2 according to the explicit equation

p′l = p′l−1/2 −
ε

2
Σ(q′l)

−1p′l−1/2 (9.44)

to obtain the full step momentum update p′l.

3. Accept the proposed state (q∗, p∗) according the Metropolis-Hastings acceptance probability

α = min (1, exp {−H(q∗, p∗) +H(qi−1, pi−1)}) (9.45)

where H(q, p) is the joint Hamiltonian of (9.35). If the proposal is accepted, then qi = q∗.
Otherwise, qi = qi−1. The momentum pi−1 can be discarded after the proposal.
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Remark: The step size ε is a "dimensionless" quantity, because the RMHMC dynamics should
locally correspond to the trivial HMC distribution where both q and p are N(0, In). The scale of
RMHMC is implicitly the standard normal scale, and therefore setting ε to a value slightly less than
1, the smallest (and largest) rescaled standard deviation, should yield good results for any RMHMC
algorithm.

To alleviate the difficulties of full RMHMC, one can use an approximate RMHMC algorithm
where the covariance Σ(qt−J+1, qt−J+2, . . . , qt) can depend on the previous states of the chain before
the momentum is sampled, but is fixed throughout the Leapfrog updates. This variant is essentially
the standard HMC algorithm with a principled way of changing Σ between proposals.

Changing Σ between proposals does not violate the preservation of the target distribution,
because if q has the correct distribution after an update with covariance Σ0, q will still follow the
correct distribution after an HMC update with any covariance Σ1, not necessarily equal to Σ0. At
first it might appear that using the previous states to obtain Σ(qt−J+1, qt−J+2, . . . , qt) might violate
the Markovian structure of HMC, but this is not the case, because detailed balance holds for any
Σ(x1, . . . , xJ), and in particular it is not required that (x1, . . . , xJ) have the target distribution.
Therefore there is no distributional dependence except of the current state qt, and the same proofs
of detailed balance still hold.

Although the simplified RMHMC algorithm cannot capture the full dependence implied by
RMHMC dynamics, since Σ(q) is not updated through the Leapfrog iterations, it is computationally
identical to standard HMC and provides an efficient way to incorporate curvature information by
using a quasi-Newton estimate of the inverse Hessian. Even if this information is approximate, it
can still substantially improve the movement of the chain in the energy landscape.

Simplified RMHMC Algorithm

Input: Differentiable energy function U(q), initial state q0 ∈ Rn, n× n p.d. covariance function
Σ(q1, . . . , qJ), step size ε, number of iterations N , number of previous states in memory J
Output: Markov Chain sample {q1, . . . , qN} with stationary distribution U

For i = 1 : N ,

1. Calculate the current covariance matrix Σ∗ = Σ(qi−1−J , qi−J , . . . , qi−1).

2. Update (qi−1, pi−1) according to standard HMC dynamics using the proposal covariance Σ∗.

Remark: Since Σ∗ is fixed throughout updates, only a small number of Leapfrog steps (usually
L = 1) are used in the simplified RMHMC algorithm, because the local curvature varies with each
update.

9.5.4 Covariance Functions in RMHMC
The RMHMC algorithm and its simplification preserve the target for any differentiable p.d. covari-
ance function Σ(q), but to actually improve sampling Σ(q) must reflect the local curvature of the
space. In general , ∂U/∂q is not necessarily p.d., so the naive choice Σ(q) = ∂U

∂q (q) is not always
possible in practice.

The original authors of RMHMC restrict their attention to sampling from a posterior probability
p(θ|X) for a family of probability models p(X|θ). In this case, there is a natural choice for the
proposal covariance given by the Fisher Information

Σ(θ) = −EX|θ
[
∂2

∂θ2
log p(X|θ)

]
(9.46)

which is guaranteed to be positive definite. In simple cases the Fisher Information can be obtained
analytically. If this is not possible, it can be estimated by taking the expectation of the curvature
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over the observed data and thresholding the eigenvalues of the resulting matrix for stability. The
positive definite structure of the Fisher Information is a nice property in theory but in practice
the matrix must be estimated and very small or even negative eigenvalues can still be encountered.
When the Fisher Information is used, the gradient term Σ(θ)−1 ∂U

∂θ (θ) that appears in the Langevin
equation corresponds to the natural gradient of Amari et al [4].

The Fisher Information is not a complete solution because it can only be used when sampling a
parameter θ for a family of distributions with a set of observed data X. When sampling from just
a probability distribution P (q) = 1

Z e
−U(q), there is no way to make the curvature p.d. by taking an

expectation. However, the largest eigenvalues of ∂U∂q should be the most important for the dynamics
of HMC. This is because of largest eigenvalues of the curvature represent the most constrained linear
dimensions of the distribution. When near a local minima, negative eigenvalues or eigenvalues near
0 are not problematic, because movement in these directions leave H approximately constant or
decrease H. Thresholding the eigenvalues of ∂U∂q can give a p.d. covariance that preserves the most
important local geometric information when the curvature itself is not p.d.

Another option is to estimate the local curvature Σ(q) as is done in quasi-Newton methods.
This type of method of method uses a sequence of past states qt+1−J , qt+2−J , . . . , qt to estimate
the inverse Hessian at the current state qt. As demonstrated in Lemma 9.2, only the root inverse
Hessian is needed to simulate the HMC dynamics of Σ(q) = ∂U

∂q , and there is a variant of the LBFGS
algorithm that estimates the root inverse Hessian directly. See [26] and [215] for details. Because
of the difficulty of estimating matrices, some adjustment of the estimated eigenvalues might be
necessary anyway, and an SVD decomposition may be necessary for good results. If this is the case,
it is simpler to use the ordinary LBFGS algorithm and find the root inverse by taking the square
root of the decomposed eigenvalues after adjustment. See Section 9.6.1 for an example of this in a
simulated experiment.

9.6 HMC in Practice

In this section, three applications of HMC and related algorithms are presented. The first appli-
cation is a toy experiment using Gaussian distributions that are highly constrained in all but a
few directions. This experiment is very useful for understanding the basic principles behind tuning
the HMC parameters. Next, sampling the parameters of a logistic regression model is considered.
This setting is one of the few scenarios where the full RMHMC algorithm can be implemented in
practice because the Fisher Information is available in closed form, and it allows for direct compari-
son between the different HMC models. Finally, the Alternating Backwards Propagation algorithm
is presented, which uses HMC as a key step when sampling from distributions defined over high-
dimensional parameters and images.

9.6.1 Simulated Experiments on Constrained Normal Distributions

In this section, HMC and variants are used to sample from normal distributions that are highly
constrained in all but a few directions. Such distributions are challenging for any MCMC method
that uses local updates based on the current position in the energy landscape, because it is difficult
to efficiently sample the unconstrained dimensions while still remaining in the tightly constrained
region of the landscape.

Two different distributions are considered: N(0,Σ1) and N(0,Σ2). Both Σ1 and Σ2 are 100×100
diagonal matrices. The first 15 entries of Σ1 and Σ2 are 1, representing the unconstrained sampling
direction. The last 85 entries of Σ1 are 0.012, and the last 85 entries of Σ2 are 0.00012. Σ1 is an easier
sampling case, because the ratio between the largest and smallest standard deviations is around 100,
so about 100 Leapfrog steps should be needed for effective sampling with standard HMC. Σ2 is a
more difficult scenario, because the ratio between the largest and smallest standard deviations is
10,000. When the local covariance exhibits such an extreme difference in scales, HMC is no longer
an effective sampling method because the Leapfrog approximation becomes very unstable when very
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large number of steps are used, as can be seen from the Australian Credit Data in Section 9.6.2.
This can be addressed by including approximate curvature information with a quasi-Newton HMC
variant. All experiments use 5000 burn-in iterations and 10,000 sampling iterations.

The energy functions of the two target distributions have the form U1(q) = 1
2q
ᵀΣ−1

1 p and U2 =
1
2q
ᵀΣ−1

2 q. Like all normal distributions, the target distributions have constant curvature Σ−1
1 and

Σ−1
2 respectively. The full RMHMC algorithm can be implemented by simply letting p ∼ N(0,Σ−1

1 )

or p ∼ N(0,Σ−1
2 ) for each update, and the standard dynamics can be used because the curvature Σ(q)

is constant throughout the state space, so the derivative of Σ(q) is 0 and the Generalized Leapfrog
update becomes identical to the standard Leapfrog update. In this experiment, the RMHMC
algorithm with only one Leapfrog update can obtain virtually independent samples from the target
distribution in every iteration.

Consider the target distribution N(0,Σ1). Three different methods are used to sample this
distribution: Random-Walk Metropolis Hastings, LMC, and HMC with L = 150 Leapfrog updates.
The momentum covariance was set to I100 for both HMC and LMC. A step size of 0.04 was used for
RW Metropolis, and a step size of 0.008 was used for LMC and HMC, since 0.008 is slightly less than
the smallest marginal standard deviation of 0.01. The first two methods cannot effectively sample
the target distribution, because both methods will be forced to explore the unconstrained directions
of the distribution with a random walk with a small step size. LMC has difficulty in this situation
because the momenta are refreshed after a single update, whereas HMC uses the same momentum
for a large number of updates, so HMC does not explore the distribution via random-walk like
the other two methods. Since εL = 1.5 for HMC, and the largest marginal standard deviation of
the target distribution is 1, HMC obtains nearly independent samples in every iteration. For fair
comparison between the methods, 150 RW Metropolis and LMC updates are counted as a single
iteration in the figures below.

Next, consider the target distribution N(0,Σ2). The ratio between the largest and smallest
standard deviations for this distribution is 10,000, so about 10,000 Leapfrog steps would be needed
in standard HMC with an identity covariance to obtain independent sample with each HMC update.
Even in fairly regular landscapes such as the logistic regression landscapes from Section 9.6.2, the
accuracy of the Leapfrog approximation degrades after more than a few hundred Leapfrog steps,
and in practical problems, it is simple not possible to compensate for the differences in scale in
the target distribution by using L = 10, 000 Leapfrog updates with standard HMC. To sample
effectively, it is necessary to take second order information into account.

Assume that the true position covariance Σ2 is unknown and impossible to calculate directly,
which is true in most practical situations. In this case, it is still possible to estimate Σ2 from the
previously sampled positions, and this approximate information can still facilitate fairly effective
sampling. First, 40 positions were sampled using standard HMC with ε = 0.000075 and momentum
covariance I100. After obtaining some initial points, the simplified RMHMC algorithm was imple-
mented using a LBFGS estimate of Σ2. The LBFGS recursion was started from an initial matrix
H0 = γI100 using the past 40 sampled positions.

Unfortunately, the raw LBFGS estimate cannot improve sampling significantly, since the true
matrix Σ2 is simply too large to be accurately estimated using only 40 points. However, after
decomposition and adjustment, a useful relative can be obtained. When looking at the eigenvalues
from the LBFGS estimate, one observes that the estimate for the smallest eigenvalue is very close to
the true value of 0.00012, and that the LBFGS estimate can identify several unconstrained directions
with large eigenvalues. The estimates for the largest eigenvalue tended to be very inaccurate and to
depend heavily on the value of γ selected. Between the largest and smallest eigenvalues, the majority
of the remaining eigenvalues are unchanged by LBFGS and remain γ, which is unsurprising because
a very small amount of data is being used to estimate a very large matrix.

Although the true covariance Σ2 is unknown, in some situations it is reasonable to assume that
only the first few largest eigenvalues of Σ2 matter, and that most of the other eigenvalues are close
to 0. This situation occurs when sampling a low-dimensional manifold in a high-dimensional space,
which is common when sampling distributions defined over images or other complex data structures.
The largest eigenvalues correspond to the relatively small number of unconstrained dimensions in
the target distribution. Given some knowledge about the local structure of the eigenvalues, the raw
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Figure 9.1: Simulation study using Σ1. The performance of the samplers is similar across the
constrained dimensions, but RW Metropolis and LMC have difficulty effectively sampling the un-
constrained dimensions, even though 150 iterations of each of these methods was counted as a single
update in the figures. On the other hand, the capability of HMC to move across the sample space
by reusing the same momentum for a large number of leapfrog iterations allows for very effective
sampling.

LBFGS estimate can be adjusted to provide a more useful covariance.
Let H∗ be the raw LBFGS estimated obtained from the past J = 40 HMC samples. Let UΛUᵀ

be the symmetric eigenvalue decomposition of H∗, where Λ is a diagonal matrix with eigenvalues
λ1, ..., λ100 sorted in decreasing order. Let λ∗i = λ100 for i = K + 1, . . . , 100 for some parameter
K, which is the estimated number of unconstrained directions in the target distribution. The true
value of K is 15, but in the experiment the conservative estimate K = 10 is used. The first K of
the λ∗i are equal to the original values. The momentum covariance is then given by Σ∗ = UΛ∗Uᵀ.
In theory, ε should be set to slightly less than 1 for any RMHMC method. However, due to the
inaccuracy of the estimate of the largest standard deviation, which tends to be too large, ε should
be set so that ελ1 ≈ 1. The value of γ did not have too much effect on sampling, and values
ranging from 0.000001 to 1 gave about the same results, as long as ε was set accordingly. Only
L = 1 Leapfrog step was needed to achieve good results. The third method of Lemma 9.2 with√
C
−1

= U(Λ∗)1/2Uᵀ was used during implementation.
Two methods are presented for sampling Σ2: HMC with L = 150, and the simplified RMHMC

algorithm described above. The simplified RMHMC algorithm using quasi-Newton information out-
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performs standard HMC with only L = 1 Leapfrog step. The eigenvalue decomposition required at
each iteration of the simplified RMHMC algorithm is computationally expensive, but it is necessary
for good results, since the LBFGS estimate simply cannot estimate all of the true eigenvalues of Σ2
with such a limited amount of data, so some adjustment of the eigenvalues is needed.

Figure 9.2: Simulation study using Σ2. HMC with L = 150 Leapfrog updates can no longer effec-
tively sample in the unconstrained dimensions. However, using the simplified RMHMC algorithm
with L = 1 and a covariance calculated as described above can sample much more effectively.

9.6.2 Sampling Logistic Regression Coefficients with RMHMC

Sampling coefficients from distributions defined by logistic regression is an ideal scenario for applying
the full RMHC method, because the Fisher Information at any point in the state space can be given
in closed form. In many practical situations (for example, L1-regularized regression) this is not the
case. Given an N ×P of observations X (each row gives a single case) and a binary 0 or 1 response
Y and regularizing coefficient λ (treated as a given constant), the energy of P -length vector of
coefficients β is given by

U(β) = − log[L(X,Y |β, λ)p(β|λ)] = −βᵀXᵀY +

N∑
j=1

log(1 + eβ
ᵀXᵀ

n) +
λ

2
βᵀβ (9.47)
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where Xn is row n of the matrix X. The derivative of the energy function is

∂U

∂β
(β) = −XᵀY +XᵀS + λβ (9.48)

where S is a length P vector with Sn = σ(βᵀXᵀn) where σ(∗) is the sigmoid function, and has Fisher
Information

I(β) = EY |X,β,λ

[
∂2U

∂β2
(β)

]
= XᵀΛX + λI (9.49)

where Λ is an N ×N diagonal matrix with elements Λn,n = σ(βᵀXᵀn)(1− σ(βᵀXᵀn)). Full RMHMC
also requires the derivatives of I(β), which are given by

∂I(β)

∂βi
= XᵀΛViX (9.50)

where Vi is diagonal matrix with elements Vi,(n,n) = (1− 2σ(βᵀXᵀn))Xn,i.

Presented below are the results of a study by Giorlami and Calderhead in [85] comparing the
performance of RMHMC, traditional HMC, and other common methods when sampling regression
coefficients. The authors used 6 different datasets with a binary response and features matrices of
various sizes, and the results for 4 datasets are presented here. We give the results for 6 of the
sampling algorithms studied by the authors: component-wise Metropolis-Hastings, LMC, HMC,
RMHMC, RMLMC, and simplified RMLMC.

For LMC and HMC samplers, the momentum covariance Σ = In was used. For all samplers,
the step size ε was set so that acceptance rates were around 70%. The step size L for RMHMC
and HMC was set so that εL ≈ 3, slightly larger than the largest marginal standard deviation,
so that approximately independent samples should be obtained with each HMC iteration. The
Hamiltonian dynamics defined by logistic regression are relatively well-behaved so L can be set to
be quite large (several hundred) without a significant drop in acceptance rates. The number of
leapfrog steps L is usually relatively small for RMHMC because nearly independent points can be
obtained with each leapfrog update. For HMC, a large number of leapfrog updates are needed to
compensate for the difference in scale between the smallest and largest marginal standard deviations.
Simplified RMLMC corresponds to the simplified RMHMC algorithm where Σ(βt) = I(βt), the
Fisher information at the current point (J = 1) and L = 1 Leapfrog update. RMLMC is a slight
variant of the RMHMC algorithm with L = 1. See the original paper for details.

All regression models included an intercept, so the number of coefficients P is one more than
the number of columns of the data matrix. Each sampling run consisted of 5000 burn-in iterations
and 5000 sampling iterations, and 10 trials were run for each sampling method.

Pima Indian Dataset, N = 532, P = 8
Method Time (sec) ESS(Min,Med,Max) s/ESS(Min) Rel. Speed

Metropolis 4.1 (14, 37, 201) 0.29 × 1.9
LMC 1.63 (3, 10, 39) 0.54 × 1
HMC 1499.1 (3149,3657,3941) 0.48 × 1.1

RMLMC 4.4 (1124,1266,1409) 0.0039 × 138
Simp. RMLMC 1.9 (1022,1185,1312) 0.0019 × 284

RMHMC 50.9 (5000,5000,5000) 0.01 × 54
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Australian Credit Dataset, N = 690, P = 14
Method Time (sec) ESS(Min,Med,Max) s/ESS(Min) Rel. Speed

Metropolis 9.1 (15, 208, 691) 0.61 × 1
LMC No Conv. - - -
HMC No Conv. - - -

RMLMC 11.8 (730, 872, 1033) 0.0162 × 37
Simp. RMLMC 2.6 (459, 598, 726) 0.0057 × 107

RMHMC 145.8 (4940,5000,5000) 0.023 × 26

German Credit Dataset, N = 1000, P = 24
Method Time (sec) ESS(Min,Med,Max) s/ESS(Min) Rel. Speed

Metropolis 20.9 (10, 82, 601) 2.09 × 1
LMC 2.7 (3, 5, 130) 0.9 × 2.6
HMC 3161.6 (2707, 4201, 5000) 1.17 × 2

RMLMC 36.2 (616, 769, 911) 0.059 × 39.6
Simp. RMLMC 4.1 (463, 611, 740) 0.0009 × 260

RMHMC 287.9 (4791, 5000,5000) 0.06 × 39

Caravan Dataset, N = 5822, P = 86
Method Time (sec) ESS(Min,Med,Max) s/ESS(Min) Rel. Speed

Metropolis 388.7 (3.8, 23.9, 804) 101.9 × 3.7
LMC 17.4 (2.8, 5.3, 17.2) 6.2 × 59
HMC 12,519 (33.8, 4032, 5000) 369.7 × 1

RMLMC 305.3 (7.5, 21.1, 50.7) 305.3 × 1.2
Simp. RMLMC 48.9 (7.5, 18.4, 44) 6.5 × 56

RMHMC 45,760 (877, 1554, 2053) 52.1 × 7.1

Ratio of Largest to Smallest Marginal Standard Deviations
Dataset Pima Australian German Caravan
Ratio 225 6404 303 236

A variety of useful instructive observations can be drawn from the results of these experiment.
Following the original authors, the speed and relative speed of the algorithm are given based on the
minimum ESS out of the 10 trials.

First, consider the performance of HMC and LMC across the 4 datasets. As mentioned earlier,
the number of leapfrog steps L in HMC was tuned so that εL was greater than the largest observed
standard deviation in the dataset, so HMC should in theory provide nearly independent samples,
provided that the dynamics can be simulated accurately. Although slow, HMC does manage to
achieve an ESS that is a significant proportion of the ideal ESS of 5000 in the Pima, German,
and Caravan datasets. However, the authors found that neither HMC nor LMC converged to the
stationary distribution in the Australian dataset.

This can be understood by referring to the table giving the ratios of largest to smallest marginal
standard deviations. Recall that the ratio between the largest and smallest marginal standard
deviations is the minimum number of Leapfrog steps that would be needed to reach an independent
state in a single HMC update. In the Pima, German, and Caravan datasets, this ratio was about 200
to 300, meaning that between 200 to 300 leapfrog steps would be needed to reach an independent
state using a trivial covariance matrix Σ = In. However, the Australian dataset has a ratio of
over 6000 between the length of its largest and smallest constrained directions, so several thousand
leapfrog steps are needed for each HMC update to reach an independent state. The Leapfrog
discretization was not accurate enough to provide high acceptance rates for such large L, and the
updates from the LMC sampler were too small to allow for effective sampling. The logistic regression
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landscape is relatively well-behaved; in more complex landscapes, it might not be possible to use
even 200 to 300 Leapfrog steps.

It is interesting to note that in general, LMC performs significantly worse than all of the other
methods, except in the high-dimensional Caravan dataset, where it outperforms all other methods.
LMC has been found to be an effective method for sampling very high-dimensional generative models
of image patterns. LMC is an attractive choice in such situations because it scales well and it is
quick to implement.

Now, consider the RMHMC methods. RMHMC and RMLMC have similar performance across
the datasets, indicating that after local curvature is taken into account, the extra sampling power
of RMHMC is evenly balanced by the faster speed of RMLMC. Simplified RMLMC outperforms
the full RMHMC implementations across all datasets, providing evidence that simply taking into
account local curvature information with no change in the HMC dynamics can be an effective way
to implement and RMHMC approximation.

For the smaller datasets, the full RMHMC methods outperformed standard HMC methods, but
the reverse was true for the Caravan dataset. Calculating the derivative of the Fisher Information
in full RMHMC requires evaluating N2 expressions along the diagonal in 9.49, which explains the
poor scaling. In special cases, such as sampling from Gaussian processes, the Fisher Information
can have a sparse structure, but it general it is unavailable or very expensive to compute, and full
RMHMC is not a practical solution to sampling in complex high-dimensional landscapes.

9.6.3 The Alternating Backward Propagation (ABP) Algorithm
The ABP algorithm [90] is an extension of the well-known factor analysis model that can be used
to generate realistic images from a simple low-dimensional latent distribution. The ABP algorithm,
as the name suggests, has two phases. In the first phase, the latent factors of the set of training
images are inferred using Langevin dynamics. In the second phase, the weights which transform
the latent factors into images are updated based on the new latent factors. Since the latent factors
are inferred during the training process, the ABP algorithm performs unsupervised learning. The
ABP algorithm is closely related to the EM algorithm: the first phase corresponds to the E step of
the EM algorithm, where expected values are evaluated based on the current parameters, and the
second phase corresponds to the M step, where the parameters are adjusted to explain the expected
factors.

Let Y be a D dimensional data vector (an image, for example) and let Z ∼ N(0, Id) be the
distribution of the latent factors. In the ABP algorithm, Y ∼ N(f(Z;W ), σ2ID) for a ConvNet
function f(∗;W ) with weights W . The weights W define the transformation from the latent space
of Z to the image space of Y , and must be learned. In the traditional factor analysis model,
f(Z;W ) = WZ + ε, but using a ConvNet function allows for non-linearities in f through the
inclusion of an activation function between layers. The ABP algorithm can be thought of as a
recursive factor analysis model with the relation

Zl−1 = fl(WlZl + bl) (9.51)

where fl is a non-linear activation (usually ReLu), (Wl, bl) are the weights and bias from layer
l of W = {Wl, bl : l = 1, . . . , L}, ZL = Z, and Z0 = f(Z;W ). The layer of factors Zl−1 is a
linear combination of the columns of Wl with coefficients Zl, plus a shift and activation. If the
ReLu activation is used, then f(Z;W ) is a piecewise linear function, where the boundaries between
linear regions correspond to activation boundaries of fl. This non-linear structure is essential for
generating realistic images.

Since Z and Y |Z are both multivariate normal, their joint energy function has the form

U(Y,Z;W ) =
1

2σ2
||Y − f(Z;W )||2 +

1

2
||Z||2

which is simply the sum of the Gaussian energy functions of Z and Y |Z. The energy function of
the conditional variable Z|Y is UZ|Y=y;W (z) = U(z, y;W ) , since the posterior distribution Z|Y is

227



proportional to the joint distribution of Y and Z. As in the EM algorithm, given a set of complete
observations {Yi, Zi}i=1,...,N , it is straightforward to estimate the weights W through maximum
likelihood by minimizing the complete data negative log likelihood

L(W, {Zi}) = −
N∑
i=1

log p(Yi, Zi;W ) =
N∑
i=1

U(Yi, Zi)

by gradient descent. However, as in the EM algorithm, learning is unsupervised and the latent
factors Z are unknown, so W must be learned by maximizing the observed data loglikelihood,
which corresponds to minimizing function

L(W ) = −
N∑
i=1

log p(Yi;W ) = −
N∑
i=1

log

∫
p(Yi, Zi;W )dZi

which integrates the latent factors out of the joint distribution. This loss cannot be computed
directly, but the gradient of the loglikelihood can be rewritten as

∂

∂W
log p(Y ;W ) =

1

p(Y ;W )

∂

∂W
p(Y ;W )

=
1

p(Y ;W )

∂

∂W

∫
p(Y, Z;W )dZ

=

∫ (
1

p(Y ;W )

∂

∂W
p(Y ;W )

)
p(Z|Y ;W )dZ

=

∫ (
∂

∂W
log p(Y ;W )

)
p(Z|Y ;W )dZ

= −EZ|Y ;W

[
∂

∂W
U(Y, Z;W )

]
which shows that the gradient of the loss can be estimated by drawing MCMC samples of Z|Y , the
latent factors conditioned on the observed data using the current weight W . LMC with a proposal
covariance Σ = Id is used to sample from Z|Y ;W , and the Langevin update equation is

Zt+1 = Zt +
ε2

2

(
1

σ2
(Y − f(Zt;W ))

∂

∂Z
f(Zt;W )− Zt

)
+ εUt

for Ut ∼ N(0, Id) and step size ε, for t = 1, . . . , T iterations. One Zi is inferred for each observed
image Yi, and sampling is started from the Zi of the previous inference phase at the beginning of the
each inference phase. Once the Zi have been sampled from Z|Y ;W , the weights W can be updated

∂

∂W
L(W ) ≈

N∑
i=1

∂

∂W
U(Yi, Zi;W ) =

N∑
i=1

1

σ2
(Yi − f(Zi;W ))

∂

∂W
f(Zi;W )

in the second phase of the algorithm. The inference phase uses a back-propagation gradient
∂
∂Z f(Z;W ), while the learning phase uses a back-propagation gradient ∂

∂W f(Z;W ). The calcu-
lations required to calculate ∂

∂Z f(Z;W ) are also needed as part of the calculations required to
obtain ∂

∂W f(Z;W ), so both phases can be implemented in a similar way.
In practice, the Metropolis-Hastings step of the Langevin update can be ignored as long as ε is

set low enough so that high acceptance rates are possible. A step size ε between 0.1 and 0.3 has
been shown to work well in practice. Usually the number of updates T is set between 10 and 30. It
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could be the case that more iterations are needed to reach a truly independent sample, especially
if the ratio between the largest and smallest standard deviations of Z|Y ;W is large, as discussed
previously. However, since a warm start is used, it is reasonable to believe that inferred Zi should
approximately follow Z|Y ;W if the previously inferred Zi approximately follow Z|Y ;W ′ for a set of
weights W ′ which are quite similar to the current weights W . Moreover, since the energy landscape
itself is altered each time W is altered, there is also less reason to worry about becoming trapped in
local modes during sampling, since the ABP algorithm is constantly adjusting the location of the
modes during training.

Three different experiments are presented showing the capabilities of the ABP algorithm. See
the original paper for details about tuning the models.

Experiment 1: Generating Texture Patterns. Let the input Z be a
√
d×
√
d dimensional images

with each pixel following a standard normal distribution. The weights at each layer are given by
convolutional filters with an upsampling factor of 2 at each layer. Once the filters are learned, it
is straightforward to expand the network and generate larger texture patterns simply by increasing
the size of Z and running the filter convolutions over the larger input. In the example below, Z was
a 7× 7 image recreating a 224× 224 image during training, while during test Z was expanded to a
14× 14 image generating a 448× 448 image using exactly the same weights.

Figure 9.3: Experiment 1. Original images sized 224×224 next to synthesized images sized 448×448.

Experiment 2: Generating Object Patterns. Generating object patterns is similar to generating
texture patterns, except that the latent factor layer must be fully connected, and the input Z is
thought of as a d-dimensional vector. The figures below show two different object patterns gen-
erated by the ABP algorithm: lion/tiger faces, and human faces. Interpolating between points in
the latent space of the learned network gives non-linear interpolations in the image space which
preserve structure far more than simple linear interpolation in the image space.

Experiment 3: Learning from Incomplete Data. In some situations, training images might be
missing pixels due to corruption or occlusion. The ABP algorithm can learn a generator model
for the complete image given a training set where certain pixels are labelled as missing. The only
adjustment that needs to be made is to calculate the differences ||Yi − f(Zi;W )||2 by summing
over the observed pixels of Yi, and ignoring the unobserved pixels. The learned model can then
accomplish three tasks: (1) Recover the missing pixels from the training images; (2) Recover the
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Figure 9.4: Experiment 2. Left: A 9 × 9 discretization of the 2-dimensional latent space of a
generative model for lion/tiger faces. The latent space has identifiable regions separating lions and
tigers, and the interpolations between these regions smoothly transform a lion face to a tiger face.
Right: Synthesized human faces from a generative model with 100 latent factors. The left images
show 81 faces sampled from the learned model, and the right images show linear interpolations in
the latent space between the faces on the four corners of the image.

missing pixels from the testing images; (3) Synthesize new images from the model.

Figure 9.5: Experiment 3. Top: Original images. Middle: occluded training images. Bottom:
Reconstructed training images.
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Chapter 10

Stochastic Gradient for Learning

10.1 The Robbins-Monro Algorithm

The motivation for the Robbins-Monro algorithm comes from learning problems.

Example 10.1. Suppose we have a learning problem where we are given a large number of training
examples xi, i = 1, N and an objective function

L(w) =
1

n

N∑
i=1

l(xi,w)

obtained as the average of a function l(·,w) over the training examples. The function l(xi,w) is
assumed differentiable in w for all i.

One could minimize this objective function by gradient descent, however each gradient compu-
tation ∇L(w) is the average of the gradients at the observations ∇l(xi,w), which can be compu-
tationally expensive when the number of training examples is large. The per-observation gradients
∇wl(xi,w) can be considered noisy versions of the true gradient ∇L(w) with E[∇wl(x,w)] =
∇L(w). Denoting F (w) = ∇L(w), the minimization problem can be reduced to finding a root of
F (w) when we are given noisy measurements G(w) = ∇wl(xi,w) of F (w) with E[G(w)] = F (w).

The Robbins-Monro Algorithm [168] is a generic method for finding a root of a function F (w) :
Rd → Rd where the function cannot be measured exactly, but noisy observations G(w) can be
obtained that have as expected value the function F (w). We assume that F (w) = 0 has a unique
root at w = θ ∈ Rd and the noisy observations are in the form of a random variable G(w) with
E[G(w)] = F (w).

The Robbins-Monro algorithm finds a sequence of approximations:

wn+1 = wn − γnG(wn) (10.1)

where γ1, γ2, ... is a sequence of positive learning rates (step sizes).
The convergence analysis of the algorithm is limited to the 1-dimensional case d = 1.

Theorem 10.1 (Robbins-Monro). The sequence wn converges in L2 (hence in probability) to θ if
the following conditions are met:

1. G(w) is uniformly bounded in the sense that there exists C <∞ such that P (|G(w)| ≤ C) = 1.

2. F (w) is non-decreasing. differentiable and F ′(θ) > 0.

3. The sequence γn satisfies
∞∑
n=0

γn =∞ and
∞∑
γ=0

γ2
n <∞.
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Multi-dimensional versions are limited by many restrictive assumptions. A recent explicit version
version is [144] considers the case when the noisy observations G(wn) are gradients of convex
differentiable functions fn : Rd → R, thus G(wn) = ∇fn(wn).

Theorem 10.2 (Moulines, 2011). Assume the following conditions are met

H1) There exists a differentiable function f : Rd → R such that

E[∇fn(w)] = ∇f(w), ∀n ≥ 1 with probability 1

H2) For all n ≥ 1 fn is almost surely convex, differentiable and

∀w1,w2 ∈ Rd, E(‖∇fn(w1)−∇fn(w2)‖2) ≤ L2‖w1 −w2‖2 with probability 1

H3) The function f is strongly convex with respect to the norm ‖ · ‖ with some constant µ > 0:

∀w1,w2 ∈ Rd, f(w1) ≥ f(w2) + (w1 −w2)∇f(w2) +
µ

2
‖w1 −w2‖2

H4) There exists σ > 0 such that ∀n ≥ 1, E(‖∇fn(θ)‖2) ≤ σ.

Let δ0 = ‖w0 − θ‖2, ϕβ(t) = tβ−1
β and γn = Cn−α for some α ∈ [0, 1]. Then the sequence from eq.

(10.1) satisfies

E‖wn − θ‖2 ≤ 2 exp

[
4L2C2ϕ1−2α(n)− µC

2
n1−α

](
δ0 +

σ2

L2

)
+

4Cσ2

µnα

when α < 1. If α = 1 then:

E‖wn − θ‖2 ≤
exp(2L2C2)

nµC

(
δ0 +

σ2

L2

)
+ 2

C2σ2

nµC/2
ϕµC/2−1(n).

For the learning example 10.1 the Robbins-Monro algorithm is called stochastic gradient descent
and has different versions:

1. The online version wn+1 = wn − γn∇wl(xi,wn) that uses a single example for each update.

2. The mini-batch version

wn+1 = wn − γn
1

B

∑
i∈Bn

∇wl(xi,wn)

that uses a set of examples (mini-batch) Bn of size |Bn| = B for each update.

Convergence time is proportional to the condition number κ = λmax/λmin of the Hessian matrix
Hij = ∂2L(w)

∂wi∂wj
at the minimum [113].

The full gradient iteration (with batch size equal to n) has linear convergence in the sense that
L(wk) − L(θ) = O(ρk) where ρ < 1 depends on the condition number κ (from [149], Theorem
2.1.15). The online version has a sub-linear convergence E[L(wk)]− L(θ) = O(1/k) [171] but each
iteration is n times faster.
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Example 10.2. Another example is for learning Markov Random Field (MRF) models

p(x|w) =
1

Z(w)
exp(− < w, U(x) >)

where w ∈ Rd are the model parameters to be learned, x ∈ Ω ⊂ RM is the space over which the
MRF is defined, U(x) : Ω→ Rd are sufficient statistics and Z(w) is the partition function

Z(w) =

∫
Ω

exp(− < w, U(x) >)dx

It is well known that the log likelihood function L(x;w) = ln p(x|w) is concave in w, so the
maximum likelihood solution over a set of instances xi, i = 1, n satisfies:

∂

∂w

N∑
i=1

L(xi;w) = 0

which gives

Ew(U)− U = 0, with U =
1

N

N∑
i=1

U(xi)

where Ew(U) is the expectation taken with respect to p(x|w). In this case the expectation Ew(U)
cannot be computed exactly but noisy approximations can be obtained by Monte Carlo simulations.

The Robbins-Monro algorithm in this case first obtains a number kn of Monte Carlo samples
Ω 3 xnj ∼ p(x|wn), j = 1, kn from the current model, and updates the parameters as follows:

wn+1 = wn +
γn
kn

kn∑
j=1

[U(xnj ,wn)− U ]

10.2 Parameter estimation methods for Gibbs/MRF models

Let IΛ be an image defined on a lattice Λ, and I∂Λ its boundary conditions. ∂Λ is the neighborhood
of Λ. Let h(IΛ|I∂Λ) be the feature statistics of IΛ under boundary conditions I∂Λ. For example, h()
are histograms of filtered images [219]. Without loss of generality, a Gibbs model is of the following
form (see [222]),

p(IΛ|I∂Λ;β) =
1

Z(I∂Λ,β)
exp{− < β,h(IΛ|I∂Λ) >}. (10.2)

In equation (10.2), β is a vector valued parameter corresponding to the Julesz ensemble on
infinite images [208], and it is invariant to the sizes and shapes of Λ. So β can be estimated on an
arbitrary Λ.

10.2.1 Learning in Gibbsian fields – a common framework

In learning Gibbs models, we are given an observed image Iobs
Λ , where Λ may have many disconnected

components to account for multiple observations. Equally we may break Λ into smaller patches
Iobs

Λi
, i = 1, 2, ...,M on lattices Λi of arbitrary shapes and sizes. These patches may overlap with

each other. Then β is learned by maximizing a log-likelihood,

β∗ = arg max
β
G(β), with G(β) =

M∑
i=1

log p(Iobs
Λi |I

obs
∂Λi

;β). (10.3)
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a b c d
Figure 10.1: Various choices of Λi, i = 1, 2, ...,M . The bright pixels are in foreground Λi which
are surrounded by dark background pixels in ∂Λi. a). likelihood, b). patch likelihood (or satellite)
likelihood, c). pseudo likelihood, d). partial likelihood.

We show that existing Gibbs learning algorithms are unified as ML-estimators and they differ
in the following two choices.
Choice I: The number, sizes, and shapes of the foreground patches Λi, i = 1, ...,M .

Figure 10.1 displays four typical choices for Λi. The bright pixels are in the foreground Λi, i =
1, 2, ...,M , which are surrounded by dark pixels in the background ∂Λi, i = 1, 2, ...,M . In the
first three cases, Λi are square patches with m ×m pixels. In one extreme, Figure 10.1.a chooses
one largest patch denoted by Λ1, i.e. M = 1 and m = N − 2w with w being the width of the
boundary. G(β) is called the log-likelihood, and it is adopted by the stochastic gradient [213, 222]
and MCMCMLE [53, 80, 81] methods. In the other extreme, Figure 10.1.c chooses the minimum
patch sizem = 1 and G(β) is called the log-pseudo-likelihood, used in the maximum pseudo-likelihood
estimation (MPLE) [15]. Figure 10.1.b is an example between the two extremes and G(β) is called
the log-patch-likelihood. In the fourth case, Figure 10.1.d chooses only one (M = 1) irregular-shaped
patch, denoted by Λ1, where Λ1 is a set of randomly selected pixels with the rest pixels being the
background ∂Λ1, and G(β) is called the log-partial-likelihood. In Figures 10.1.b and c, a foreground
pixel may serve as background in different patches. It is straightforward to prove that maximizing
G(β) leads to a consistent estimator for all four choices [83].

The flexibility of likelihood function distinguishes Gibbs learning from the problem of estimating
partition functions [97, 163, 164]. The latter computes the “pressure” on a large lattice in order to
overcome boundary effects.
Choice II: The reference models used for estimating the partition functions.

For a chosen foreground and log-likelihood function, the second step is to approximate the
partition functions Z(Iobs

∂Λi
,β) for each Λi, i = 1, ...,M by Monte Carlo integration using a reference

model at βo.

Z(Iobs
∂Λi

,β) =

∫
exp{− < β,h(IΛi

|Iobs
∂Λi

) >}dIΛi
,

= Z(I∂Λi ,βo)

∫
exp{− < β − βo,h(IΛi |Iobs

∂Λi
) >}dp(I|Iobs

∂Λi
;βo)

≈
Z(Iobs

∂Λi
,βo)

L

L∑
j=1

exp{− < β − βo,h(Isyn
ij |I

obs
∂Λi

) >}. (10.4)

Isyn
ij , j = 1, 2, ..., L are typical samples from the reference model p(IΛi |Iobs

∂Λi
;βo) for each patch

i = 1, 2, ...,M .

Since
Z(Iobs

∂Λi
,βo)

L , i = 1, 2, ...M are independent of β, we can maximize the estimated log-
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likelihood G(β) by gradient descent. This leads to

dβ

dt
=

M∑
i=1

{
L∑
j=1

ωijh(Isyn
ij |I

obs
∂Λi

)− h(Iobs
Λi |I

obs
∂Λi

)}. (10.5)

ωij is the weight for sample Isyn
ij ,

ωij =
exp{− < β − βo,h(Isyn

ij |Iobs
∂Λi

) >}∑L
j′=1 exp{− < β − βo,h(Isyn

ij′ |Iobs
∂Λi

) >}
.

The selection of the reference models p(IΛi |Iobs
∂Λi

;βo) depends on the sizes of the patches Λi, i =

1, ...,M . In general importance sampling is only valid when the two distributions p(IΛi |Iobs
∂Λi

;βo) and
p(IΛi |Iobs

∂Λi
;β) heavily overlap. In one extreme case m = 1, the MPLE method [15] selects βo = 0

and p(IΛi |Iobs
∂Λi

;βo) a uniform distribution. In this case Z(Iobs
∂Λi

,β) can be computed exactly. In the
other extreme case for a large foreground m = N−2w, the stochastic gradient and the MCMCMLE
methods have to choose βo = β in order to obtain sensible approximations. Thus, both methods
must sample p(I;β) iteratively starting from β0 = 0. This is the algorithm adopted in learning the
FRAME models [222].

To summarize, Figure 10.2 illustrates two factors that determine the accuracy and speed of
learning β. These curves are verified through experiments in section 10.2.3 (see Figure 10.7). The
horizontal axis is the size of an individual foreground lattice |Λi|.

Figure 10.2: Estimation variances for various selections of patch sizes m×m and reference models
βo. The dashed curve shows the inverse Fisher’s information which decreases as m ×m increases.
The solid curves show the variances in the importance sampling for a sequence of models approaching
β.

1. The variances of MLE or inverse Fisher information. Let β̂(Iobs) be the estimator maximizing
G(β) and let β∗ be the optimal solution. The dashed curve in Figure 10.2 illustrates the variance,

Ef [(β̂(Iobs)− β∗)2],

where f(I) is a underlying distribution representing the Julesz ensemble. For choices shown in Fig-
ure 10.1, if we fix the total number of foreground pixels

∑M
i=1 |Λi|, then the variance (or estimation

error) decreases as the patch size (diameter of the hole) increases.
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2. The variance of estimating Z by Monte Carlo integration Ep[(Ẑ−Z)2]. For a given reference
model βo = βi, i = 1, 2, ..., k (see solid curves in Figure 10.2), this estimation error increases with
the lattice sizes. Therefore, for very large patches, such as m = 200, we must construct a sequence
of reference models to approach β, β0 = 0→ β1 → β2 → ...,→ βk → β. This is the major reason
for why the stochastic gradient algorithm was so slow in FRAME [222]!

10.2.2 Three new algorithms
The analysis in previous section leads to three new algorithms by selecting likelihoods that trade-
off between the two factors, and the third algorithm improve accuracy by pre-computed reference
models.
Algorithm I: Maximizing partial likelihood.

We choose a lattice shown in Figure 10.1.d by choosing at random a certain percentage (say
30%) of pixels as foreground Λ1 and the rest are treated as background Λ/Λ1. We define a log-
partial-likelihood

G1(β) = log p(Iobs
Λ1
|Iobs

Λ/Λ1
;β).

Maximizing G1(β) by gradient descent, we update β iteratively.

dβ

dt
= Ep(IΛ1

|Iobs
Λ/Λ1

;β)[h(IΛ1 |Iobs
Λ/Λ1

)]− h(Iobs
Λ1
|Iobs

Λ/Λ1
). (10.6)

This algorithm follows the same procedure as the original method in FRAME [222]. It trades
off between accuracy and speed in a better way than the original algorithm in FRAME [222]. The
log-partial-likelihood has lower Fisher information than the log-likelihood, however our experiments
demonstrate that it is about 25 times faster than the original minimax learning method without
losing much accuracy. We observed that the reason for this speedup is that the original sampling
method [222] spends a major portion of its time synthesizing Isyn

Λ1
under “non-typical” boundary con-

ditions starting with white noise images. In contrast, the new algorithm works on typical boundary
condition Iobs

Λ/Λ1
where the probability mass of the Gibbs model p(I;β) is focused on. The speed

appears to be decided by the diameter of the foreground lattice measured by the maximum circle
that can fit in the foreground lattice.
Algorithm II: Maximizing patch likelihood.

Algorithm II chooses a set of M overlapping patches from Iobs
Λ and “dig” a hole Λi on each patch

as Figure 10.1.b shows. Thus we define a patch log-likelihood

G2(β) =
M∑
i=1

log p(Iobs
Λi |I

obs
∂Λi

;β).

Maximizing G2(β) by gradient descent, we update β iteratively as Algorithm I does.

dβ

dt
=

M∑
i=1

h(Isyn
Λi
|Iobs

Λ/Λi
)−

M∑
i=1

h(Iobs
Λi |I

obs
Λ/Λi

). (10.7)

In comparison with algorithm I, the diameters of the lattices are evenly controlled. Algorithm I has
similar performance as algorithm I.
Algorithm III: Maximizing satellite likelihood

Both algorithms I and II still need to synthesize images on-line, which is a computationally
intensive task. Now we propose an third algorithm which may approximately compute β in the
speed of a few seconds without synthesizing images on-line.

We select a set of reference models in the exponential family Ω to which the Gibbs model p(I;β)
belongs,

R = {p(I;βj) : βj ∈ Ω, j = 1, 2, ..., s.}
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We sample (or synthesize) one large typical image Isyn
j ∼ p(I;βj) for each reference model off-

line. These reference models estimate β in Ω from different “viewing angles”. By analogy to the
global positioning system, we call the reference models the “satellites”.

The log-satellite-likelihood is defined as

G3(β) = G(1)
3 (β;β1) + G(2)

3 (β;β2) + · · ·+ G(s)
3 (β;βs), (10.8)

where each satellite contributes one log-likelihood approximation,

G(j)
3 (β;βj) =

M∑
i=1

log
1

Ẑ
(j)
i

exp{− < β,h(Iobs
Λi |I

obs
∂Λi

) >}. (10.9)

Following the importance sampling method in equation (10.4), we estimate Z(Iobs
∂Λi

,β) by Monte
Carlo integration.

Ẑ
(j)
i =

Z(Iobs
∂Λi

,βj)

L

L∑
`=1

exp{− < β − βj ,h(Isyn
ij` |I

obs
∂Λi

) >}. (10.10)

Notice that for every hole Λi and for every reference model p(I;βj), we have a set of L synthesized
patches Isyn

ij` to fill the hole:
Hsyn
ij = {Isyn

ij` ; ` = 1, 2, ..., L, ∀i, j}.

There are two ways for generating Hsyn
ij .

1. Sampling Isyn
ij` ∼ p(IΛi |Iobs

∂Λi
;βj) – using the conditional distribution. This is expensive and

has to be computed on-line.
2. Sampling Isyn

ij` ∼ p(IΛi ;βj) – using the marginal distribution. In practice, this is just to fill
the holes with randomly selected patches from the synthesized image Isyn

j computed off-line.
In our experiments, we tried both cases and we found that differences are very little for middle sizes
m×m lattices, say 4 ≤ m ≤ 13.

Maximizing G3(β) by gradient ascent, we have,

dβ

dt
=

s∑
j=1

{
M∑
i=1

[
L∑
`=1

ωijh(Isyn
ij` |I

obs
∂Λi

) − h(Iobs
Λi |I

obs
∂Λi

)] } (10.11)

ωij is the weight for sample Isyn
ij` ,

ωij` =
exp{− < β − βj ,h(Isyn

ij` |I
obs
∂Λi

) >}∑L
`′=1 exp{− < β − βj ,h(Isyn

ij`′ |Iobs
∂Λi

) >}

Equation (10.11) converges in the speed of seconds for an average texture model.
However, we should be aware of the risk that the log-satellite-likelihood G3(β) may not be upper

bounded. It is almost surely not upper bounded for the MCMCMLE method. This case occurs
when h(Iobs

Λi
|Iobs
∂Λi

) cannot be described by a linear combination of the statistics of the sampled
patches

∑L
`=1 ωijh(Isyn

ij` |I
obs
∂Λi

). When this occurs, β does not converge. We handle this problem
by including the observed patch Iobs

Λi
in Hsyn

ij , therefore the satellite likelihood is always upper
bounded. Intuitively, let Isyn

ij1 = Iobs
Λi

, β is learned so that the conditional probabilities ωij1 → 1 and
ωij` → 0, ∀` 6= 1. Since ` is often very large, say ` = 20, adding one extra sample will not screw
the sample set.
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a b c
Figure 10.3: The shadow areas around β∗illustrates the variance of the estimated β or efficiency of
the log-likelihood functions. a). Stochastic gradient, and algorithm I and II generate a sequence of
satellites on-line to approach β closely, m can be small or large. b). The maximum satellite likeli-
hood estimator uses a general set of satellites computed off-line, and can be updated incrementally.
This can be used for small size m. c). MPLE uses a single satellite: βo = 0.

To summarize, we compare existing algorithms and the newly proposed algorithms from the
perspective of estimating β∗ in Ω, and divide them into three groups. Figure 10.3 illustrates the
comparison where the ellipse stands for the space Ω and each Gibbs model is represented by a single
point.

Group 1: As Figure 10.3.a illustrates, the maximum likelihood estimators (including stochastic
gradient and MCMCMLE) and the maximum partial/patch likelihood estimators generate and
sample a sequence of “satellites” β0,β1, ...,βk on-line. These satellites get closer and closer to β∗
(supposed truth). The shadow area around β∗ represents the uncertainty in computing β, whose
size can be measured by the Fisher information.

Group 2: As Figure 10.3.c shows, the maximum pseudo likelihood estimator uses a uniform
model βo = 0 as a “satellite” to estimate any model, and thus has large variance.

Group 3: The maximum satellite likelihood estimators in Figure 10.3.b use a general set of
satellites which are pre-computed and sampled off-line. To save time, one may select a small subset
of satellites for computing a given model. One can choose satellites based on the differences h(Isyn

j )

and h(Iobs). The smaller the differences are, the closer the satellite is to the estimated model, and
thus better approximation. Another criterion is that these satellite should be distributed evenly
around β∗ to obtain good estimation.

10.2.3 Experiments

In this section, we evaluate the performance of various algorithms in the context of learning Gibbs
models for textures. We use 12 filters including an intensity filter, two gradient filters, three Lapla-
cian of Gaussian filters and six Gabor filters at a fixed scale and different orientations. Thus h(I)
includes 12 histograms of filter responses and each histogram has 12 bins. So β has 12 × 11 free
parameters.

We choose 15 natural texture images. For each texture, we use the stochastic gradient algorithm
[222] to learn β which is treated as ground truth β∗ for comparison. In this way, we also obtained
15 satellites with 15 synthesized images Isyn

j computed off-line.
Experiment I: Comparison of five algorithms.

In the first experiment, we compare the performance of five algorithms in texture synthesis.
Figure 10.4 demonstrate 3 texture patterns of 128×128 pixels. For each row, the first column is the
synthesized image (ground truth) using a stochastic gradient method used in the FRAME model
[222], the other four images are respectively synthesized images using maximum pseudo-likelihood,
maximum satellite likelihood, maximum patch likelihood and maximum partial likelihood. For the
last three algorithms we fixed the total number of foreground pixels to 5, 000. The patch size is
fixed to 5× 5 pixels for patch likelihoods and satellite likelihoods. We select 5 satellites out of the
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rest 14 pre-computed models for each texture.

FRAME Pseudo Satellite Patch Partial

a

b

c
Figure 10.4: Synthesized texture images using β learned from various algorithms. For each column
from left to right. 1: Stochastic gradient algorithm as the ground truth, 2: pseudo-likelihood, 3:
satellite likelihood, 4: patch likelihood, 5: partial likelihood.

Since for different textures the model p(I;β) may be more sensitive to some elements of β
(such as tail bins) than to the rest parameters, and the β vectors are highly correlated between
its components, it is not very meaningful to compare the accuracy of the learned β using an error
measure |β−β∗|. Instead we sample each learned model Isyn ∼ p(I;β) and compare the histogram
errors of the synthesized image against the observed, i.e. |h(Isyn)− h(Iobs)|, summed over 12 pairs
of histograms each being normalized to 1. The table below shows the errors for each algorithms for
the synthesized images in Figure 10.4. The numbers are subject to some computational fluctuations
including the sampling process.

Fig.4. FRAME Pseudo Satellite Patch Partial
Fig.4.a (0.449) (2.078) (1.704) (1.219) (1.559)
Fig.4.b (0.639) (2.555) (1.075) (1.470) (1.790)
Fig.4.c (0.225) (0.283) (0.325) (0.291) (0.378)

The experimental results show that the four algorithms work reasonably well. In comparison the
satellite method is often close to the patch and partial likelihood methods. Though it sometimes may
yield slightly better results than other methods depending on the similarity between the reference
models and the model to be learned. The pseudo-likelihood method can also capture some large
image features. In particular, it works well for textures of stochastic nature. For example, on the
texture in Figure 10.4.c.

In terms of computational complexity, the satellite algorithm is the fastest, and it computes β
in the order of 10 seconds in a HP-workstation. The second fastest is the pseudo-likelihood. It
takes a few minutes. However, the pseudo likelihood method consumes a large memory, as it needs
to remember all the k histograms for the g grey levels in N × N pixels. The space complexity is
O(N2×g×k×B) with B the number of bins. It often needs more than one Gigabyte of memory. The
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partial likelihood and patch likelihood are very similar to the stochastic gradient algorithm [222].
Since the initial boundary condition is typical, these two estimators take only in general 1/10th of
the number of sweeps to convergence. In addition, only a portion of pixels need to be synthesized,
which can save computation further. The computation time is only about 1/20th of the stochastic
gradient algorithm.
Experiment II: Analysis of the maximum satellite likelihood estimator.

In the second experiment, we study how the performance of the satellite algorithm is influenced
by 1). The boundary condition, and 2). The size of patch m×m.

Observed Satellite Satellite FRAME

a b c d
Figure 10.5: Performance evaluation of the satellite algorithm. (a) Observed texture image. (b)
Synthesized image using β learned without boundary conditions. (c) Synthesized image using β
learned with boundary conditions. (d) Synthesized image using β learned by stochastic gradient.

I). Influence of boundary conditions.
Figure 10.5.a displays a texture image as Iobs. We run three algorithms for comparison. Fig-

ure 10.5.d is a result from the FRAME (stochastic gradient method). Figure 10.5.b and c are results
using the satellite algorithms. The difference is that Figure 10.5.c uses observed boundary condition
for each patch and does on-line sampling, while Figure 10.5.b ignores the boundary condition. For
all the following results of satellite likelihood method (algorithm III), Hsyn

ij are generated from the
marginal probabilities without on-line sampling.

II). Influences of the hole size m×m.
We fix the total number of foreground pixels

∑
i |Λi| and study the performance of satellite

algorithm with difference hole sizes m. Figures 10.6.a-c show three synthesized images using β
learned by satellite algorithm with different hole sizes m = 2, 6, 9 respectively. It is clear from
Figures 10.6.a-c that the hole size with 6× 6 pixels gives better result.

a b c
Figure 10.6: Synthesized images using β learned by the satellite method with different hole sizes.
(a) m = 2. (b) m = 6. (c) m = 9.

To explain why the hole size of m = 6 gives better satellite approximation, we compute the two
key factors that determine performance. Figure 10.7.a shows the numeric results in correspondence
to the theoretical analysis displayed in Figure 10.2.

When the hole size is small, the partition function can be estimated accurately as shown by the
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a b
Figure 10.7: The x-axes are the hole size m2. a). Dotted curve is Ef [(β̂ − β∗)2] plotted against
the hole size m2. The solid, dash-dotted, and dashed curves are Ep[(Ẑ − Z)2] for three different
reference models. b). Average synthesis error per filter with respect to the hole size m2.

small Ep[(Ẑ − Z)2] in solid, dash-dotted, and dashed curves in Figure 10.7. However, the variance
Ef [(β̂ − β∗)2] is large for small holes, which is shown by the dotted curve in figure 10.7.a. The
optimal choice of the hole size is thus approximately the intersection of the two curves. Since the
reference models that we used are close to the dash-dotted line shown in figure 10.7.a, we predict
optimal hole size is between 5 × 5 and 6 × 6. Figure 10.7.b shows the average error between the
statistics of synthesized image Isyn ∼ p(I;β) and the observed statistics err = 1

12 |h(Iobs)−h(Isyn)|,
where β is learned using the satellite method for m = 1, 2, ..., 9. Here the hole size of 6 × 6 pixels
gives better result.

Figure 10.8: A common framework for learning Gibbs models. The horizontal axis is the size of
foreground patches which is proportional to Fisher’s information. The vertical axis is the accuracy
in estimating logZ. The brightness of the ellipses implies the learning speed, and darker is slower.
This figure is intended only for a qualitative comparison.
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Chapter 11

Mapping the Energy Landscape

In many statistical learning problems, the energy functions to be optimized are highly non-convex.
A large body of research has been devoted to either approximating the target function by convex
optimization, such as replacing L0 norm by L1 norm in regression, or designing algorithms to find
a good local optimum, such as EM algorithm for clustering. Much less work has been done in
analyzing the properties of such non-convex energy landscapes.

In this chapter, inspired by the success of visualizing the landscapes of Ising and Spin-glass
models by [12] and [217], we compute Energy Landscape Maps (ELMs) in the high-dimensional
model spaces (i.e. the hypothesis spaces in the machine learning literature) for some classic statistical
learning problems — clustering and bi-clustering.

The ELM is a tree structure, as Figure 11.1 illustrates, in which each leaf node represents a local
minimum and each non-leaf node represents the barrier between adjacent energy basins. The ELM
characterizes the energy landscape with the following information.

• The number of local minima and their energy levels;

• The energy barriers between adjacent local minima and their energy levels; and

• The probability mass and volume of each local minimum (See Figure 11.3).

Such information is useful in the following tasks.

1. Analyzing the intrinsic difficulty (or complexity) of the optimization problems, for either
inference or learning tasks. For example, in bi-clustering, we divide the problem into the easy,
hard, and impossible regimes under different conditions.

Figure 11.1: An energy function and the corresponding Energy Landscape Map (ELM). The y-axis
of the ELM is the energy level, each leaf node is a local minimum and the leaf nodes are connected
at the ridges of their energy basins.
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(a) (b)

Figure 11.2: (a) Energy Landscape for a 4-component 1-d GMM with all parameters fixed except
two means. Level sets are highlighted in red. The local minima are shown in yellow dots and the
first 200 MCMC samples are shown in black dots. (b) The resulting ELM and the correspondence
between the leaves and the local minima from the energy landscape.

2. Analyzing the effects of various conditions on the ELM complexity, for example, the separa-
bility in clustering, the number of training examples, the level of supervision (i.e. how many
percent the examples are labeled), and the strength of regularization (i.e. prior model).

3. Analyzing the behavior of various algorithms by showing their frequencies of visiting the
various minima. For example, in the muilti-Gaussian clustering problem, we find that when
the Gaussian components are highly separable, K-means clustering works better than the EM
algorithm [51], and the opposite is true when the components are less separable. In contrast to
the frequent visits of local minimum by K-means and EM, the Swendsen-Wang cut method [9]
converges to the global minimum in all separability conditions.

4. Analyzing protein folding, where the energy landscape has a funnel-like appearance [154] with
phase transitions. Before arriving at the bottom of the funnel, it is easy for the folding to move
between different attraction basins, however the bottom could have a number of local optima
of which only one is the native state (global optimum) and the others give rise to stable mis-
folded proteins. Large quantities of such mis-folded proteins are related to neurodegenerative
diseases such as Alzheimer’s disease, Parkinson’s, mad cow disease, etc.

We start with a simple illustrative example in Figures 11.2 and 11.3. Suppose the underlying
probability distribution is a 4-component Gaussian mixture model (GMM) in 1D space, and the
components are well separated. The model space is 11-dimensional with parameters {(µi, σi, αi) :
i = 1, 2, 3, 4} denoting the means, variance and weights for each components. We sampled 70 data
points from the GMM and construct the ELM in the model space. We bound the model space to a
finite range defined by the samples.

As we can only visualize 2D maps, we set all parameters to equal the truth value except keeping
µ1 and µ2 as the unknowns. Figure 11.2(a) shows the energy map on a range of 0 ≤ µ1, µ2 ≤ 5. The
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(a) probability mass (b) volume

Figure 11.3: The probability mass and volume of the energy basins for the 2-d landscape shown in
Figure 11.2.

asymmetry in the landscape is caused by the fact that the true model has different weights between
the first and second component. Some shallow local minima, like E, F, G,H, are little “dents” caused
by the finite data samples.

Figure 11.2 (a) shows that all the local minima are identified. Additionally, it shows the first
200 MCMC samples that were accepted by the algorithm that we will discuss late. The samples are
clustered around the local minima, and cover all energy basins. They are not present in the high
energy areas away from the local minima, as would be desired. Figure 11.2 (b) shows the resulting
ELM and the correspondence between the leaves and the local minima in the energy landscape.
Furthermore, Figures 11.3 (a) and (b) show the probability mass and the volume of these energy
basins.

In the literature, [12] presents the first work for visualizing multidimensional energy landscapes
for the spin-glass model. Since then statisticians have developed a series of MCMC methods for
improving the efficiency of the sampling algorithms traversing the state spaces. Most notably, [118]
generalizes the Wang-Landau algorithm [201] for random walks in the state space. [217] uses the
generalized Wang-Landau algorithm to plot the disconnectivity graph for Ising model with hundreds
of local minima and proposes an effective way for estimating the energy barriers. Furthermore, [218]
construct the energy landscape for Bayesian inference of DNA sequence segmentation by clustering
Monte Carlo samples.

In contrast to the above work that compute the landscapes in “state” spaces for inference prob-
lems, our work is focused on the landscapes in “model” spaces (the sets of all models; also called
hypothesis spaces in the machine learning community) for statistical learning and model estimation
problems. There are some new issues in plotting the model space landscapes. i) Many of the basins
have a flat bottom, for example, basin A in Figure 11.2.(a). This may result in a large number of
false local minima. ii) There may be constraints between parameters, for example, the weights have
to sum up to one —

∑
i αi = 1. Thus we may need to run our algorithm on a manifold.
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D2

Figure 11.4: The model space Ω is partitioned into energy basins Di (along the x-axis), and the
energy R (the y-axis) is partitioned into uniform intervals [uj+1, uj).

11.1 ELM construction

In this section, we introduce the basic ideas for constructing the ELM and estimating its properties
- mass, volume and complexity.

11.1.1 Space partition
Let Ω be the model space over which a probability distribution π(x) and energy E(x) are defined.
In this paper, we assume Ω is bounded using properties of the samples. Ω is partitioned into K
disjoint subspaces which represent the energy basins

Ω = ∪Ki=1Di, ∩Ki=1Di = ∅ ∀i 6= j. (11.1)

That is, any point x ∈ Di will converge to the same minimum through gradient descent.
As Figure 11.4 shows, the energy is also partitioned into intervals [uj+1, uj), j = 1, 2, ..., L. Thus

we obtain a set of bins as the quantized atomic elements in the product space Ω× R,

Bij = {x : x ∈ Di, E(x) ∈ [uj+1, uj)}. (11.2)

The number of basins K and the number of intervals L are unknown and have to be estimated
during the computing process in an adaptive and iterative manner.

11.1.2 Generalized Wang-Landau algorithm
The objective of the generalized Wang-Landau (GWL) algorithm is to simulate a Markov chain that
visits all the bins {Bij , ∀i, j} with equal probability, and thus effectively reveal the structure of the
landscape.

Let φ : Ω → {1, . . . ,K} × {1, ..., L} be the mapping between the model space and bin indices:
φ(x) = (i, j) if x ∈ Bij . Given any x, by gradient descent or its variants, we can find and record
the basin Di that it belongs to, compute its energy level E(x), and thus find the index φ(x).

We define β(i, j) to be the probability mass of a bin

β(i, j) =

∫
Bi,j

π(x) dx. (11.3)
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Figure 11.5: First two steps of projected gradient descent. The algorithm is initialized with MCMC
sample xt. v is the gradient of E(x) at the point xt. Armijo line search is used to determine the
step size α along the vector v. x′t is the projection T (xt + αv) onto the subspace Γ. Then x′′t is the
projection T (xt + α′v′), and so on.

Then, we can define a new probability distribution which has equal probability among all the bins,

π′(x) =
1

Z
π(x)/β(φ(x)), (11.4)

with Z being a scaling constant.
To sample from π′(x), one can estimate β(i, j) by a variable γij . We define the probability

function πγ : Ω→ R to be

πγ(x) ∝ π(x)

γφ(x)
=
∑
i,j

π(x)

γij
1(x ∈ Bij) st.

∫
Ω
πγ(x)dx = 1.

We start with an initial γ0, and update γt = {γtij , ∀i, j} iteratively using stochastic approximation
[119]. Suppose xt is the MCMC state at time t, then γt is updated in an exponential rate,

log γt+1
ij = log γtij + ηt1(xt ∈ Bij), ∀i, j. (11.5)

ηt is the step size at time t. The step size is decreased over time and the decreasing schedule is
either pre-determined as in [119] or determined adaptively as in [216].

Each iteration with given γt uses a Metropolis step. Let Q(x, y) be the proposal probability for
moving from x to y, then the acceptance probability is

α(x, y) = min
(

1,
Q(y,x)πγ(y)
Q(x,y)πγ(x)

)
(11.6)

= min

(
1, Q(y,x)

Q(x,y)
π(y)
π(x)

γt
φ(x)

γt
φ(y)

)
.

Intuitively, if γtφ(x) < γtφ(y), then the probability of visiting y is reduced. For the purpose of
exploring the energy landscape, the GWL algorithm improves upon conventional methods, such as
the simulated annealing [82] and tempering [134] process. The latter sample from π(x)

1
T and do

not visit the bins with equal probability even at high temperature.
In performing gradient descent, we employ Armijo line search to determine the step size; if the

model space Ω is a manifold in Rn, we perform projected gradient descent, as shown in Figure 11.5.
To avoid erroneously identifying multiple local minima within the same basin (especially when there
is large flat regions), we merge local minima identified by gradient descent based on the following
criteria: (1) the distance between two local minima is smaller than a constant ε; or (2) there is no
barrier along the straight line between two local minima.

Figure 11.6 (a) illustrates a sequence of Markov chain states xt, ..., xt+9 over two energy basins.
The dotted curves are the level sets of the energy function.
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Xt
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Xt+8
Xt+9

B1
B2

Barrier(B1,B2)

Figure 11.6: Sequential MCMC samples xt, xt+1, . . . , xt+9. For each sample, we perform gradient
descent to determine which energy basin the sample belongs to. If two sequential samples fall into
different basins (xt+3 and xt+4 in this example), we estimate or update the upper-bound of the
energy barrier between their respective basins (B1 and B2 in this example).

a0

b0

a1
b1

a2

b2

a3

b3D
K

D
L

Figure 11.7: The ridge descent algorithm is used for estimating the energy barrier between basins
Dk and Dl initialized at consecutive MCMC samples a0 = xt, b0 = xt+1 where a0 ∈ Dk and b0 ∈ Dl.

11.1.3 Constructing the ELM

Suppose we have collected a chain of samples x1, . . . , xN from the GWL algorithm. The ELM
construction consists of the following two processes.

1, Finding the energy barriers between adjacent basins. We collect all consecutive MCMC states
that move across two basins Dk and Dl,

Xkl = {(xt, xt+1) : xt ∈ Dk, xt+1 ∈ Dl} (11.7)

we choose (a0, b0) ∈ Xkl with the lowest energy

(a0, b0) = argmin(a,b)∈Ωkl
[min(E(a), E(b))] .

Next we iterate the following step as Figure 11.7 illustrates

ai = argmina {E(a) : a ∈ Neighborhood(bi−1) ∩Dk}
bi = argminb {E(b) : b ∈ Neighborhood(ai) ∩Dl}
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until bi−1 = bi. The neighborhood is defined by an adaptive radius. Then bi is the energy barrier
and E(bi) is the energy level of the barrier. A discrete version of this ridge descent method was
used in [217].

2, Constructing the tree structure. The tree structure of the ELM is constructed from the set of
energy basins and the energy barriers between them via an iterative algorithm modified from the
hierarchical agglomerative clustering algorithm. Initially, the energy basins are represented by leaf
nodes that are not connected, whose y-coordinates are determined by the local minima of the basins.
In each iteration, the two nodes representing the energy basins D1, D2 with the lowest barrier are
connected by a new parent node, whose y-coordinates is the energy level of the barrier; D1 and D2
are then regarded as merged, and the energy barrier between the merged basin and any other basin
Di is simply the lower one of the energy barriers between D1/D2 and Di. When all the energy
basins are merged, we obtain the complete tree structure. For clarity, we can remove from the tree
basins of depth less than a constant ε.

11.1.4 Estimating the mass and volume of nodes in the ELM
In the ELM, we can estimate the probability mass and the volume of each energy basin. When the
algorithm converges, the normalized value of γij approaches the probability mass of bin Bij :

P̂ (Bij) =
γij∑
kl γkl

→ β(i, j), almost surely.

Therefore the probability mass of a basin Di can be estimated by

P̂ (Di) =
∑
j

P̂ (Bij) =

∑
j γij∑
kl γkl

(11.8)

Suppose the energy E(x) is partitioned into sufficiently small intervals of size du. Based on the
probability mass, we can then estimate the size1 of the bins and basins in the model space Ω. A
bin Bij with energy interval [uj , uj + du) can be seen as having energy uj and probability density
αe−uj (α is a normalization factor). The size of bin Bij can be estimated by

Â(Bij) =
P̂ (Bij)

αe−uj
=

γij
αe−uj

∑
kl γkl

The size of basin Di can be estimated by

Â(Di) =
∑
j

Â(Bij) =
1∑
kl γkl

∑
j

γij
αe−uj

(11.9)

Further, we can estimate the volume of a basin in the energy landscape which is defined as the
amount of space contained in a basin in the space of Ω× R.

V̂ (Di) =
∑
j

∑
k:uk≤uj

Â(Bik)× du =
du∑
lm γlm

∑
j

∑
k:uk≤uj

γik
αe−uk

(11.10)

where the range of j depends on the definition of the basin. In a restricted definition, the basin
only includes the volume under the closest barrier, as Figure 11.8 illustrates. The volume above the
basins 1 and 2 is shared by the two basins, and is between the two energy barriers C and D. Thus
we define the volume for a non-leaf node in the ELM to be the sum of its childen plus the volume
between the barriers. For example, node C has volume V (A) + V (B) + V (AB).

1Note that the size of a bin/basin in the model space is called its volume by [218], but here we will use the term
“volume” to denote the capacity of a basin in the energy landscape.
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Figure 11.8: The volume of basins. Assuming that du is sufficiently small, the volume of an energy
basin can be approximated by the summation of the estimated volume at each energy interval.

Figure 11.9: Characterizing the difficulty of learning in the ELM. For two learning tasks with ELM
I and ELM II, the colored bar show the frequency that a learning algorithm converges to the basins,
from which two Error-recall curves are plotted. The difficulty of learning task, with respect to this
algorithm, can be measured by the area under the curve within an acceptable maximum error.

If our goal is to develop a scale-space representation of the ELM by repeatedly smoothing the
landscape, then basins A and B will be merges into one basin at certain scale, and volume above
the two basins will be also added to this new merged basin.

Note that the partition of the space into bins, rather than basins, facilitates the computation of
energy barriers, the mass and volume of the basins.

11.1.5 Characterizing the difficulty (or complexity) of learning tasks

It is often desirable to measure the difficulty of the learning task by a single number. For example,
we compare two ELMs in Figure 11.9. Learning in the landscape of ELM I looks easier than that
of ELM II. However, the difficulty also depends on the learning algorithms. Thus we can run the
learning algorithm many times and record the frequency that it converges to each basin or minimum.
The frequency is shown by the lengths of the colored bars under the leaf nodes.

Suppose that Θ∗ is the true model to be learned. In Figure 11.9, Θ∗ corresponds to nodes X
in ELM I and node A in ELM II. In general, Θ∗ may not be the global minimum or not even a
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Figure 11.10: Two ELMs generated from two MCMC chains C1 and C2 initialized at different
starting points after convergence in 24, 000 iterations.

minimum. We then measure the distance (or error) between Θ∗ and any other local minima. As
the error increases, we accumulate the frequency to plot a curve. We call it the Error-Recall curve
(ERC), as the horizontal axis is the error and the vertical axis is the frequency of recall the solutions.
This is like the ROC (receptor-operator characteristics) curves in Bayesian decision theory, pattern
recognition and machine learning. By sliding the threshold εmax which is maximum error tolerable,
the curve characterizes the difficulty of the ELM with respect to the algorithm.

A single numeric number that characterizes the difficulty can be the area under the curve (AUC)
for a given εmax. this is illustarted by the shadowed area in 11.9.(c) for ELM II. When AUC is close
to 1, the task is easy, and when AUC is close to 0, learning is impossible.

In a learning problem, we can set different conditions which correspond to a range of ELMs. The
difficulty measures of these ELMs can be visualized in the space of the parameters as a difficulty
map. We will show such maps in experiment III.

11.1.6 MCMC moves in the model space

To design the Markov chain moves in the model space R, we use two types of proposals in the
metropolis-Hastings design in equation (11.6).

1, A random proposal probability Q(x, y) in the neighborhood of the current model x.
2, Data augmentation. A significant portion of non-convex optimization problems involve latent

variables. For example, in the clustering problem, the class label of each data point is latent. For
such problems, we use data augmentation [181] to improve the efficiency of sampling. In order to
propose a new model y = xt+1, we first sample the values of the latent variables Zt based on p(Zt|xt)
and then sample the new model xt+1 based on p(xt+1|Zt). The proposal y = xt+1 is then either
accepted or rejected based on the same acceptance probability in Equation 11.6.

Note that, however, our goal in ELM construction is to traverse the model space instead of
sampling from the probability distribution. When enough samples are collected and therefore the
weights γij become large, the reweighted probability distribution would be significantly different
from the original distribution π(x) and the rejection rate of the models proposed via data augmen-
tation would become high. Therefore, we use the proposal probability based on data augmentation
more often at the beginning and increasingly rely on random proposal when the weights become
large.
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(a) (b)

Figure 11.11: Monitoring the convergence of ELMs generated from two MCMC chains C1 and C2

initialized at different starting points. (a) The number of local minima found vs number of iterations
for C1 and C2. (b) the distance between the two ELMs vs. number of iterations.

11.1.7 ELM convergence analysis

The convergence of the GWL algorithm to a stationary distribution is a necessary but not sufficient
condition for the convergence of the ELMs. As shown in Figure 11.10, the constructed ELMs may
have minor variations due to two factors: (i) the left-right ambiguity when we plot the branches
under a barrier; and (ii) the precision of the energy barriers will affect the internal structure of the
tree.

In experiments, firstly we monitor the convergence of the GWL in the model space. We run
multiple MCMC initialized with random starting values. After a burn-in period, we collect samples
and project in a 2-3 dimensional space using Multi-dimensional scaling. We check whether the
chains have converged to a stationary distribution using the multivariate extension of the Gelman
and Rubin criterion [74] [27].

Once the GWL is believed to have converged, we can monitor the convergence of the ELM by
checking the convergence of the following two sets over time t.

1. The set of leaf notes of the tree StL in which each point x is a local minimum with energy
E(x). As t increase, StL grows monotonically until no more local minimum is found, as is
shown in Figure 11.11.(a).

2. The set of internal nodes of the tree StN in which each point y is an energy barrier at level
E(y). As t increases, we may find lower barrier as the Markov chain crosses different ridge
between the basins. Thus E(y) decreases monotonically until no barrier in StN is updated
during a certain time period.

We further calculate a distance measure between two ELMs constructed by two MCMCs with
different initialization. To do so, we compute a best node matching between the two trees and
then the distance is defined on the differences of the matched leaf nodes and barriers, and penalties
on unmatched nodes. We omit the details of this definition as it is not important for this work.
Figure 11.11.(b) shows the distance decreases as more samples are generated.

11.2 Experiment I: ELMs of Gaussian Mixture Models

In this section, we compute the ELMs for learning Gaussian mixture models for two purpuses: (i)
study the influences of different conditions, such as separability and level of supervision; and ii)
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compare the behaviors and performances of popular algorithms including K-mean clustering, EM
(Expectation-Maximization), two-step EM, and Swendsen-Wang cut. We will use both synthetic
data and real data in the experiments.

11.2.1 Energy and Gradient Computations
A Gaussian mixture model Θ with n components in d dimensions have weights αi, means µi and
covariance matrices Σi for i = 1, . . . , n. Given a set of observed data points {zi, i = 1, ...,m}, we
write the energy function as

E(Θ) = − logP (zi : i = 1 . . .m|Θ)− logP (Θ) (11.11)

= −
m∑
i=1

log f(zi|Θ)− logP (Θ). (11.12)

P (Θ) is the product of a Dirichlet prior and a NIW prior. Its partial derivatives are trivial to
compute. f(zi|Θ) =

∑n
j=1 αjG(zi;µj ,Σj) is the likelihood for data zi, where G(zi;µj ,Σj) =

1√
det(2πΣj)

exp
[
−1

2 (zi − µj)T Σ−1
j (zi − µj)

]
is a Gaussian model. In case a data point is labeled

(i.e., from which component it is sampled is known), the likelihood is simply G(zi;µj ,Σj).
For a sample zi, we have the following partial derivatives of the log likelihood for calculating the

gradient in the energy landscape.
a), Partial derivative with respect to each weight αj :

δ log f(zi)

δαj
=

G(zi;µj ,Σj)∑K
k=1 αkG(zi, µk,Σk)

.

b), Partial derivative with respect to each mean µj :

δ log f(zi)

δµj
=

αjG(zi;µj ,Σj)∑K
k=1 αkG(zi;µk,Σk)

Σ−1
j (µj − zi).

c), Partial derivative with respect to each covariance Σj :

δ log fmm(zi)

δΣj
=

αjG(zi;µj ,Σj)∑K
k=1 αkG(zi;µk,Σk)

1

2

[
δ

δΣj
logαjG(zi;µj ,Σj)

]
=

αjG(zi;µj ,Σj)∑K
k=1 αkG(zi;µk,Σk)

1

2

[
−Σ−Tj + Σ−Tj (zi − µj) (zi − µj)T Σ−Tj

]
During the computation, we need to restrict the Σj matrices so that each inverse Σ−1

j exists in
order to have a defined gradient. Each Σj is semi-positive definite, so each eigenvalue is greater
than or equal to zero. Consequently we only need the minor restriction that for each eigenvalue λi
of Σj , λi > ε for some ε > 0. However, it is possible that after one gradient descent step, the new
GMM parameters will be outside of the valid GMM space, i.e. the new Σt+1

j matrices at step t+ 1

will not be symmetric positive definite. Therefore, we need to project each Σt+1
j into the symmetric

positive definite space with the projection

Psymm(Ppos(Σ
t+1
j )).

The function Psymm(Σ) projects the matrix into the space of symmetric matrices by

Psymm(Σ) =
1

2
(Σ + (Σ)T ).
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(a) unbounded GMM space (b) bounded GMM space

Figure 11.12: We sampled 70 data points from a 1-dimensional 4-component GMM and ran the
MCMC random walk for ELM construction algorithm in the (a) unbounded (b) bounded GMM
space. The plots show the evolution of the location of the centers of the 4 components over time.
The width of the line represents the weight of the corresponding component.

Assuming that Σ is symmetric, the function Ppos(Σ) projects Σ into the space of symmetric matrices
with eigenvalues greater than ε. Because Σ is symmetric, it can be decomposed into Σ = QΛQT

where Λ is the diagonal eigenvalue matrix Λ = diag{λ1, . . . , λn}, and Q is an orthonormal eigen-
vector matrix. Then the function

Ppos(Σ) = Q


max(λ1, ε) 0 . . . 0

0 max(λ2, ε) . . . 0
...

...
. . .

...
0 0 . . . max(λn, ε)

QT

ensures that Ppos(Σ) is symmetric positive definite.

11.2.2 Bounding the GMM space

From the m data points {zi, i = 1, . . . ,m}, we can estimate a boundary of the space of possible
parameter Θ if m is sufficiently large.

Let µo and Σo be the sample mean and sample covariance matrix of all m points. We set a
range for the means µj of the Gaussian components,

||µj − µo||2 < max
i
||zi − µo||2 + εm.

εm is a constant that we will select in experiments. To bound the covariance matrices Σj , let
Σo = QΛQT be the eigenvalue decomposition of Σo with Λ = diag{λ1, · · · , λn}. We denote by
L = max(λ1, . . . , λn) + εm the upper bound of the eigen-values, and bound all the eigenvalues of Σj
by L.

Figure 11.12 (a,b) compare the MCMCs in unbounded and bounded spaces repsectively. We
sampled m = 70 data points from a 1-dimensional, 4-component GMM and ran the MCMC random
walk for ELM construction algorithm. The plots show the evolution of the locations of µ1, ..., µ4
over time. Notice that in Figure 11.12 (a), the MCMC chain can move far from the center and
spends the majority of the time outside of the bounded subspace. In Figure 11.12 (b), by forcing
the chain to stay within the boundary, we are able to explore the relevant subspace more efficiently.
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11.2.3 Experiments on Synthetic Data

We start with synthetic data with n = 3 component GMM on 2 dimensional space, draw m samples
and run our algorithm to plot the ELM under different settings.

Figure 11.13: ELMs form = 100 samples drawn from GMMs with low, medium and high separability
c = 0.5, 1.5, 3.5 respectively. The circle represents the probability mass of the basins.

1) The effects of separability. The separability of the GMM represents the overlap between
components of the model and is defined as c = min

(
||µi−µj ||√
nmax(σ1,σ2)

)
. This is often used in the

literature to measure the difficulty of learning the true GMM model.
Figure 11.13 shows three representative ELMs with the separability c = 0.5, 1.5, 3.5 respectively

for m = 100 data points. This clearly shows that at c = 0.5, the model is hardly identifiable
with many local minima reaching similar energy levels. The energy landscape becomes increasingly
simple as the separability increases. When c = 3.5, the prominent global minimum dominates the
landscape.

2) The effects of partial supervision. We assign ground truth labels to a portion of the
m data points. For zi, its label `i indicates which component it belongs to. We set m = 100,
separability c = 1.0. Figure 11.14 shows the ELMs with 0%, 5%, 10%, 50%, 90% data points labels.
While unsupervised learning (0%) is very challenging, it becomes much simpler when 5% or 10%
data are labeled. When 90% data are labeled, the ELM has only one minimum. Figure 11.15 shows
the number of local minima in the ELM when labeling 1, . . . , 100 samples. This shows a significant
decrease in landscape complexity for the first 10$ labels, and diminishing returns from supervised
input after the initial 10%.

3) Behavior of Learning Algorithms. We compare the behaviors of the following algorithms
under different separability conditions.
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Figure 11.14: ELMs with of synthesized GMMs (separability c = 1.0, nSamples = 100) with
{0%, 5%, 10%, 50%, 90%} labelled data points.

Figure 11.15: Number of local minima versus the percentage of labelled data points for a GMM
with separability c = 1.0.

• Expectation-maximization (EM) is the most popular algorithms for learning GMM in statis-
tics.

• K-means clustering is a popular algorithm in machine learning and pattern recognition.

• Two-step EM is a variant of EM proposed in [46] who have proved a performance guarantee
under certain separability conditions. It starts with an excessive number of components and
then prune them.

• The Swedsen-Wang Cut (SW-cut) algorithm proposed in [9]. This generalizes the SW method
[180] from Ising/Potts models to arbitrary probabilities.

We modified EM, two-step EM and SW-cut in our experiments so that they minimize the energy
function defined in Equation 11.11. K-means does not optimize our energy function, but it is
frequently used as an approximate algorithm for learning GMM and therefore we include it in our
comparison.

For each synthetic dataset in the experiment, we first construct the ELM, and then ran each of
the algorithms for 200 times and record which of the energy basins the algorithm lands to. Hence
we obtain the visiting frequency of the basins by each algorithm, which are shown as bars of varying
length at the leaf nodes in Figures 11.16 and 11.17.

Figure 11.16 shows a comparison between the K-means, EM and two-step EM algorithms for
n = 10 samples drawn from a low (c = 0.5) separability GMM. The results are scattered across
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Figure 11.16: The performance of the k-means, EM and 2-step EM algorithms on the ELMs with
10 samples drawn from a GMM with low separability (c = 0.5)

different local minima regardless of the algorithm. This illustrates the difficulty in learning a model
from a landscape with many local minima separated by large energy barriers.

Figure 11.17 show a comparison of the EM, k-means, and SW-cut algorithms for m = 100
samples drawn from low (c = 0.5) and high (c = 3.5) separability GMMs. The SW-cut algorithm
performs best in each situation, always converging to the global optimal solution. In the low
separability case, the k-means algorithm is quite random, while the EM algorithm almost always
finds the global minimum and thus outperforms k-means. However, in the high separability case,
the k-means algorithm converges to the true model the majority of the time, while the EM almost
always converges to a local minimum with higher energy than the true model. This result confirms a
recent theoretical result showing that the objective function of hard-EM (with k-means as a special
case) contains an inductive bias in favor of high-separability models [172,190]. Specifically, we can
show that the actual energy function of hard-EM is:

E(Θ) = − logP (Θ|Z) + min
q

(KL(q(L)||P (L|Z,Θ)) +Hq(L))

where Θ is the model parameters, Z = z1, . . . , zm is the set of observable data points, L is the set
of latent variables (the data point labels in a GMM), q is an auxiliary distribution of L, and Hq is
the entropy of L measured with q(L). The first term in the above formula is the standard energy
function of clustering with GMM. The second term is called a posterior regularization term [71],
which essentially encourages the distribution P (L|Z,Θ) to have a low entropy. In the case of
GMM, it is easy to see that a low entropy in P (L|Z,Θ) implies high separability between Gaussian
components.

11.2.4 Experiments on Real Data

We ran our algorithm to plot the ELM for the well-known Iris data set from the UCI repository [19].
The Iris data set contains 150 points in 4 dimensions and can be modeled by a 3-components GMM.
The three components each represent a type of iris plant and the true component labels are known.
The points corresponding to the first component are linearly separable from the others, but the
points corresponding to the remaining two components are not linearly separable.
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(a) EM (b) k-means (c) SW-cut

(d) EM (e) k-means (f) SW-cut

Figure 11.17: The performance of the EM, k-means, and SW-cut algorithm on the ELM. (a-c) Low
separability c = 0.5. (d-f) High separability c = 3.5.

Figure 11.18 shows the ELM of the Iris dataset. We visualize the local minima by plotting
the ellipsoids of the covariance matrices centered at the means of each component in 2 of the 4
dimensions.

The 6 lowest energy local minima are shown on the right and the 6 highest energy local minima
are shown on the left. The high energy local minima are less accurate models than the low energy
local minima. The local minima (E) (B) and (D) have the first component split into two and the
remaining two (non-separable) components merged into one. The local minima (A) and (F) have
significant overlap between the 2nd and 3rd components and (C) has the components overlapping
completely. The low-energy local minima (G-L) all have the same 1st components and slightly
different positions of the 2nd and 3rd components.

We ran the algorithm with 0, 5, 10, 50, 90, 100 percent of the points with the ground truth labels
assigned. Figure 11.19 shows the global minimum of the energy landscape for these cases.

11.3 Experiment II: ELM of Bernoulli Templates

The synthetic data and Iris data in experiment I are in low dimensional spaces. In this section,
we experiment with very high dimensional data for a learning task in computer vision and pattern
recognition.

The objective is to learn a number of templates BTk, k = 1, ...,K for object recognition. Fig-
ure 11.20 illustrates 10 templates of animal faces. Each template consists of a number of sketches
or edges in the image lattice, and is denoted by a Boolean vector BTk = (sk1, sk2, . . . , skn) with n
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Figure 11.18: ELM and some of the local minima of the Iris dataset.

being the number of quantized positions and orientations of the lattice which is typically a large
number 100 ∼ 1000. skj = 1 if there is a sketch at location j, and skj = 0 otherwise. Images
are generated from one of the K templates with noise. Suppose zi = (ri1, r12, . . . , rin) is an image
generated from template BTk, then rij = skj with probability p and rij = 1− skj with probability
1− p. Thus we call BTk, k = 1, 2...,K the Bernoulli templates. For simplicity we assume p is fixed
for all the templates and all the locations.

The energy function that we use is the negative log of the posterior, given byE(Θ) = − logP (Θ|zi :
i = 1 . . .m) for m examples {zi}mi=1. The model parameter Θ consists of the Boolean vectors
BTk = (sk1, sk2, . . . , skn) and the mixture weights αk for k = 1, ...,K. By assuming a uniform prior
we have

P (Θ|zi : 1 = 1, ...,m) =
m∏
i=1

K∑
k=1

αkp
∑n
j=1 1(rij=skj)(1− p)

∑n
j=1 1(rij 6=skj),

In the following we present experiments on synthetic and real data.

11.3.1 Experiments on Synthetic Data

[7] proposes a Two-Round EM algorithm for learning Bernoulli templates with a performance bound
that is dependent on the number of components K, the Beronouilli template dimension n, and noise
level p. In this experiment, we examine how the ELM of the model space changes with these factors.
We discretize the model space by allowing the weights to take values αi ∈ {0, 0.1, . . . , 1.0}. In order
to adapt the GWL algorithm to the discrete space, we use coordinate descent in lieu of gradient
descent.

We construct 10 Bernouilli templates which represent animal faces in Figure 11.20. Each animal
face is aligned to a grid of 9 × 9 cells. Each cell may contain up to 3 sketches. Within a cell,
the sketches are quantized to 18 discrete location and orientations. More specifically, each sketch
is a straight line connecting the endpoints or midpoints of the edges of a square cell, and the 18
possible sketches in a cell are shown in Figure 11.21.(a). They can well approximate the detected
edges or Gabor sketches from real images. The Bernouilli template can therefore be represented as
a n = 9× 9× 18 dimensional binary vector. Figure 11.21.(b) shows a noisy dog face generated with
noisy level p = 0.1.

We compute the ELMs of the Bernouilli mixture model for varying numbers of samples m =
100, 300, . . . , 7000 and varying noise level p = 0, 0.05, . . . , 0.5, 0.55. The number of local minima in
each energy landscape is tabulated in Figure 11.22 (b) and drawn as a heat map in Figure 11.22
(a). As expected, the number of local minima increases as the noise level p increases, and decreases
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Figure 11.19: Global minima for learning from the Iris dataset with 0, 5, 10, 50, 90, and 100% of
the data labeled with the ground truth values. Unlabeled points are drawn in grey and labelled
points are colorized in red, green or blue.

as the number of samples decreases. In particular, with no noise, the landscape is convex and with
noise p > 0.45, there are too many local minima and the algorithm does not converge.

We repeat the same experiment using variants of a mouse face. We swap out each component of
the mouse face (the eyes, ears, whiskers, nose, mouth, head top and head sides) with three different
variants. We thereby generate 20 Bernouilli templates in Figure 11.23, which have relatively high
degrees of overlap. We generated the ELMs of various Bernouilli mixture models containing three
of the 20 templates and noise level p = 0. In each Bernouilli mixture model, the three templates
have different degrees of overlap. Hence we plot the number of local minima in the ELMs versus
the degree of overlap as show in Figure 11.24. As expected, the number of local minima increases
with the degree of overlap, and there are too many local minima for the algorithm to converge past
overlap c = 0.5.

11.3.2 Experiments on Real Data
We perform the Bernouilli templates experiment on a set of real images of animal faces. We
binarize the images by extracting the prominent sketches on a 9x9 grid. Eight Gabor filters with
eight different orientations centered in the centers and corners of each cell are applied to the image.
The filters with a strong response above a fixed threshold correspond to edges detected in the
image; these are mapped to the dictionary of 18 elements. Thus each animal face is represented
as a 18 × 9 × 9 dimensional binary vector. The Gabor filter responses on animal face pictures are
shown in Figure 11.25. The binarized animal faces are shown in Figure 11.26.

We chose 3 different animal types – deer, cat and mouse, with an equal number of images
chosen from each category (Figure 11.27). The binarized versions of these images can be modeled
as a mixture of 3 Bernouilli templates - each template corresponding to one animal face type.

The ELM is shown in Figure 11.28 along with the Bernouilli templates corresponding to three
local minima separated by large energy barriers. We make two observations: 1. The templates
corresponding to each animal type are clearly identifiable, and therefore the algorithm has converged
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(a) cat (b) chilchilla (c) dog (d) elephant (e) goat

(f) lion (g) monkey (h) mouse (i) owl (j) rabbit

Figure 11.20: Bernoulli templates for animal faces. These templates have low overlap and are well
separable.

(a) Sketch dictionary (b) Noisy dog

Figure 11.21: (a) Quantized dictionary with 18 sketches for each cell in the image lattice. (b)
Sample from the dog animal face template with noise level p = 0.1

on reasonable local minima. 2. The animal faces have differing orientations across the local minima
(the deer face on in the left-most local minimum is rotated and tilted to the right and the dog face
in the same local minimum is rotated and lilted to the left), which explains the energy barriers
between them.

Figure 11.29 shows a comparison of the SW-cut, k-means, and EM algorithm performance as
a histogram on the ELM of animal face Bernouilli mixture model. The histogram is obtained
by running each algorithm 200 times with a random initialization, then finding the closest local
minimum in the ELM to the output of the algorithm. The counts of the closest local minima are
then displayed as a bar plot next to each local minimum. It can be seen that SW-cut always finds
the global minimum, while k-means performs the worst probably because of the high degree of
overlap between the sketches of the three types of animal faces.

11.4 Experiment III: ELM of bi-clustering

bi-clustering is a learning process (see a survey by [131]) which has been widely used in bioinfor-
matics, e.g., finding genes with similar expression patterns under subsets of conditions ( [34,36,79]).

261



(a) map (b) number of local minima

Figure 11.22: ELM complexity for varying values of p and number of samples m in learning the 10
Bernouilli Templates.

Figure 11.23: Bernoulli templates for mouse faces with high overlap and low separability.

It is also used in data mining, e.g., finding people who enjoy similar movies ( [211]), and in learning
language models by finding co-occurring words and phrases in grammar rules ( [188]).

Figure 11.30.(a) shows a bi-clustering model (with multiplicative coherence) in the form of a
three layer And-Or graph. The underlying pattern S has two conjunction factors a and b. a can
choose from a number of alternative elements A1, A2, O1, O2 at probability p1, ..., p4 respectively.
Similarly, b can choose from elements O1, O2, B1, B2 with probability q1, ..., q4 respectively. It can
be seen that a and b have shared elements O1, O2. For comparison, we note that the clustering
models in experiments I and II can be seen as three-layer Or-And graphs with a mixture (Or-node)
on the top and each component is a conjunction of multiple variables.

From data sampled from this model, one can compute a co-occurrence matrix for the two ele-
ments chosen by a and b, and the theoretical co-occurring frequency is shown in Figure 11.30.(b).
When only a small number of observations are available, this matrix may have significant fluctua-
tions. There may also be unwanted background elements in the matrix. The goal of bi-clustering
is to identify the bi-cluster (one of the two submatrixes in Figure 11.30.(b)) from the noisy matrix.
Note that this is a simple special case of the bi-clustering problem and in general the matrix may
contain many bi-clusters that are not necessarily symmetrical.

We denote the bi-cluster to be identified by Θ = 〈A,B〉 where A is the set of rows and B is the
set of columns of the bi-cluster. Note that the goal of bi-clustering is not to explain all the data but
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Figure 11.24: Number of local minima found for varying degrees of overlap in the Bernoulli tem-
plates. Each marker corresponds to a Bernoulli mixture model that consists of three of the 20
Bernoullie templates.

to identify a subset of the data that exhibit certain properties (e.g., coherence). Therefore, instead
of using likelihood or posterior probability to define the energy function, we use the following energy
function adapted from [188].

E(Θ) =

s log s+
∑

x∈A,y∈B
ax,y log ax,y −

∑
x∈A

rx log rx −
∑
y∈B

cy log cy


− α

2
∑

x∈A,y∈B
ax,y − |A| − |B|

 .

In the above formula, ax,y is the element at row x and column y, rx is the sum of row x, cy is the
sum of column y, and s is the total sum of the bi-cluster. The first term in the energy function
measures the coherence of the bi-cluster, which reaches its minimal value of 0 if the bi-cluster is
perfectly multiplicatively coherent (i.e., the elements are perfectly proportional). The second term
corresponds to the prior, which favors bi-clusters that cover more data; the −|A|−|B| term is added
to exclude rows and columns that are entirely zero from the bi-cluster.

We experimented with synthetic bi-clustering models in which a and b each have 10 alternative
elements. We varied the following factors to generate a set of different models: (i) the levels of
overlaps between a and b: 0, 1, ..., 10; and (ii) random background noises at level p. We generated
1000 data points from each model and constructed the matrix. For each data matrix, we ran our
algorithm to plot the ELMs with different values of α, the strength of the prior.

Figure 11.31 shows some of the ELMs with the overlap being 0%, 20%, 40% respectively, the
prior strength being α = 0.02, 0.06, . . . , 0.24, and the noise level p = 0.00. The local maxima
corresponding to the correct bi-clusters (either the target bi-cluster or its transposition) are marked
with solid red circles; the empty bi-cluster is marked with a gray circle; and the maximal bi-cluster
containing the whole data matrix is marked with a solid green circle.

These ELMs can be divided into three regimes.

• Regime I: the true model is easily learnable; the global maxima correspond to the correct
bi-clusters and there are fewer than 6 local minima.

• Regime II: the prior is too strong, the ELM has a dominating minimum which is the maximal
bi-cluster. Thus the model is biased and cannot recover the underlying bi-cluster.
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Figure 11.25: Animal face images
and corresponding binary sketches
indicates the existence of a Gabor
filter response above a fixed thresh-
old.

Figure 11.26: Deer face sketches bi-
narized from real images.

• Regime III: the prior is too weak, resulting in too many local minima at similar energy levels.
The true model may not be easily learned, although it is possible to obtain approximately
correct solutions.

Thus we transfer the table in Figure 11.31 into a “difficulty map”. Figure 11.32(a) shows the
difficulty map with three regimes with a noise level p = 0.00; Figure 11.32(b) shows the difficulty
map with p = 0.02. Such difficulty maps visualize the effects of various conditions and parameters
and thus can be useful in choosing and configuring the biclustering algorithms.

Figure 11.27: Animal face images of three categories.
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Figure 11.28: ELM of the three animal faces dataset (dog, cat, and deer). We show the Bernouilli
templates corresponding to three local minima with large energy barriers.

(a) SW-cut (b) EM (c) k-means

Figure 11.29: Comparison of SW-cut, k-means, and EM algorithm performance on the ELM of
animal face Bernouilli mixture model.
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Figure 11.30: (a) A bi-clustering model. (b) The co-occurrence matrix with the theoretical frequen-
cies of its elements.

Figure 11.31: Energy Landscape Maps for learning two bi-clusters with 0%, 20%, 40% overlap and
hyperparameter α. Red: correct bi-cluster; Grey: empty bi-cluster; Green: maximal bi-cluster.
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(a) Noise p = 0.00 (b) Noise p = 0.02

Figure 11.32: Difficulty map for bi-clustering (a) without noise (b) with noise. Region I: the true
model is easily learnable. Region II: the true model cannot be learned. Region III: approximations
to the true model may be learned with some difficulty.
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Chapter 12

Curriculum Learning

12.1 Learning Dependency Grammars

A dependency grammar models the syntactic structure of a sentence via a set of dependency relations
between the words of the sentence (Figure 12.1). Dependency grammars have been widely used in
natural language syntactic parsing, especially for languages with free word order [39, 107, 137]. A
dependency grammar contains a special root node and a set of n other nodes that represent the
words of a language. The grammar contains the following parameters: 1. the vector of transition
probabilities from the root node to the word nodes; 2. the transition probability matrix between
the word nodes; and 3. the probabilities of each node continuing or stopping the generation of child
nodes in the left and right directions. Hence the space of dependency grammars with n nodes has
n2 + n+ 2 ∗ 2 ∗ n dimensions. Since each probability vector is constrained to sum up to 1, the valid
dependency grammars form a subspace of dimensionality n2 + 2n− 1. To generate a sentence using
the dependency grammar, one starts with the root node and recursively generates child nodes from
each node; the child node generation process at each node is controlled by the continuing/stopping
probabilities (whether to generate a new child node or not) as well as the transition probabilities
(what child node to generate). The generation process can be represented by a parse tree, such as
the one shown in Figure 12.1. The probability of a parse tree is the product of the probabilities of
all the choices during generation. The probability of a sentence is the sum of the probabilities of all
possible parse trees of the sentence.

There has been increasing interest in learning dependency grammars from data, in either a
supervised way (e.g. [30,39]) or an unsupervised way (e.g., [92,103]).The learning problem is typically
nonconvex, especially in the unsupervised case in which the dependency parse of a training sentence
is latent. Most of the learning algorithms try to identify a local optimum and there is few theoretic
analysis as to the quality of such local optima.

ROOTROOT

VBG JJ NNS VBZ JJ

Learning probabilistic grammars is hard

Figure 12.1: The grammatical structure generated by a dependency grammar.

Most of the existing automatic approaches to learning dependency grammar start with all the
sentences of a training corpus and try to learn the whole grammar. On the other hand, humans
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learn the grammar of their native language in a very different manner: they are exposed to very
simple sentences as infants and then to increasingly more complex sentences as they grow up. Such
a learning strategy has been termed curriculum learning [14]. Earlier research into curriculum
learning of grammars produced both positive [61] and negative results [169]. More recently, [177]
empirically showed that curricula are helpful in unsupervised dependency grammar learning.

To explain the benefits of curricula, [189] suggest that an ideal curriculum gradually emphasizes
data samples that help the learner to successively discover new grammar rules of the target grammar,
which facilitates the learning. Another explanation that is possibly compatible with the previous
one is given by [14], who hypothesize that a good curriculum corresponds to learning starting with
a smoothed objective function and gradually reducing the degree of smoothing over the curriculum
stages, thus guiding the learner to better local minima of the energy function.

12.1.1 Energy Function
The energy function for unsupervised learning of dependency grammars is E(θ) = − logP (θ|D)
where θ is the parameter vector of the grammar and D is the set of training sentences. logP (θ|D)
is the logarithmic posterior probability of the grammar, which is defined as:

logP (θ|D) =
∑
x∈D

logP (x|θ) + logP (θ)

where P (x|θ) is the probability of sentence x as defined in the previous section and P (θ) is the
Dirichlet prior.

12.1.2 Discretization of the hypothesis space
From our experiments, we found that the continuous hypothesis space of dependency grammars
cannot be efficiently traversed by the WL algorithm even when the number of nodes n is small,
because

• The number of local minima in the space is too large (number of local minima still growing
linearly after 100,000 iterations);

• Gradient computation is slow, especially for long sentences, and the gradient is typically
computed over 100 times per iteration;

• The rejection rate is over 90%, so less than 10 percent of proposed MCMC moves are accepted.

To solve or alleviate these problems (especially the first two), we propose to discretize the
parameter space. The discretization reduces the number of local minima and replaces gradient
descent with steepest descent which is much more computationally efficient. The discretized ELM
is an approximation of the original ELM that still conveys useful information about the landscape.

We discretize the parameter space in the following way: let Ωr be the discretized parameter
space with discretization resolution r > 4:

Ωr = {~θ = [θ1, . . . , θn2+n+4n]|θi ∈ {0,
1

r
,
2

r
, . . . ,

r − 1

r
, 1} and

∑
j∈Ik

θj = 1}.

where index set Ik ranges over all the probability vectors in ~θ.
In the discrete space, we perform steepest descent (in lieu of gradient descent) to find the local

minima. Given θt = [θ1, . . . , θn2+n+4n] ∈ Ωr, let θ
(i,j)
t = [θ1, . . . , θi − 1

r , . . . , θj + 1
r , . . . , θn2+n+4n]

for every ordered pair (i, j) that index probabilities in the same probability vector i, j ∈ Ik. One
steepest descent step is given by

θt+1 = argmin(i,j)

(
E
(
θ

(i,j)
t

)
|i, j ∈ Ik for some k

)
.
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The steepest descent algorithm terminates when θt ≤ θt+1 for some t, indicating that θt is a local
minimum in the discrete space.

For the proposal distribution Q(θt, θ
′) in the generalized Wang-Landau algorithm, we use a

uniform distribution over the space of all θ′ generated by selecting two probabilities from the same
probability vector in θt, adding 1

r to the first, and subtract 1
r from the second.

When we attempt to run the naive implementation of the discretized algorithm, two issues
emerge (1) there are multiple discrete local minima found that belong to the same energy basin
in the continuous space (2) the energies of a local minimum in the discrete space may be a poor
approximations to the energy of the corresponding local minimum in the continuous space if the
gradient is steep at the discrete local minimum. Therefore, we employ a hybrid discrete-continuous
approach. We run the main algorithm loop in the discrete space, and after each sample θt is
accepted, we (1) perform steepest descent in the discretized space initialized with θt to find the
discrete local minimum θ∗t ; (2) perform gradient descent in the continuous space initialized with
θ∗t to find the more accurate local minimum θ′t. The use of the discrete space limits the number
of local minima and the number of gradient descent computations and the subsequent use of the
continuous space merges the discrete local minima belonging to the same continuous energy basin.
To improve the energy boundary estimations, we repeat the following two steps until convergence:
run ridge descent on the discrete mesh and refine the discretization by a factor of 2.

12.1.3 Experiments
We constructed several dependency grammars of simple English syntax by simplifying a treebank
grammar learned from the WSJ corpus of the Penn Treebank. Each node in the dependency gram-
mar represents a part-of-speech tag such as Noun, Verb, Adjective and Adverb. The simplification
was done by removing the nodes that appear with least frequency in the WSJ corpus.

We first explored a curriculum based on sample sentence length. We used a 3-node dependency
grammar and discretized the hypothesis space using discretization factor r = 10. Denote this
grammar by θe. Next we sampled m = 200 sentences D = {xj |j = 1, . . . , 200} from θe. We define
Di ⊂ D to be the set of all sentences xj containing i words or less. Let w(xj) be the word count of
the sentence xj , then Di = {xj |w(xj) ≤ i}. The sets Di are nested (Di ⊆ Di+1) and ∪∞i Di = D.
In the curriculum learning process, the i-th stage employs the train set of Di. Figures 12.2 (a-g)
show the Energy Landscape maps of the curriculum stages 1 through 7.

Next, we explored a curriculum based on the number of nodes n in the grammar. We used
a 5-node dependency grammar and its simplifications to n = 4, 3, 2, 1 nodes with discretization
factor r = 10. We sampled m = 200 sentences Di = {xj |j = 1, . . . , 200} from each grammar
θi, i = 1, . . . , 5. Again, the i-th stage of curriculum learning employs the train set of Di. Figures
12.3 (a-d) show the Energy Landscape maps of the curriculum stages 2 through 5. The ELM for
Stage 1 is omitted because it is the same as the ELM in Figure 12.2 (a) due to the convexity of the
landscape.

For both curricula (based on the sentence length and based on the number of nodes in the
grammar), we observe that the ELM becomes more complex in the later stages of the curricula;
the landscapes in the later stages are flatter and have more local minima. In each ELM shown in
the figures, the global minimum is highlighted in red and the closest local minimum to the global
minimum of the previous curriculum stage is highlighted in blue. It is evident that for stages 3-7 of
the curriculum based on sentence lengths ( Figures 12.2 c-g ) and stages 3-5 of the curriculum based
on the number of nodes ( Figures and 12.3 b-d ), the global minimum from curriculum stage i is close
to the global minimum of stage i+ 1. This provides an explanation for the performance benefit of
curriculum learning: early stages (which can be learned more easily) provide a good starting guess
for later stages, which allows later stages to converge to a better local minimum, which also results
in less computation time overall.

Finally, we ran the expectation-maximization learning algorithm on the training data to confirm
the advantage of curriculum learning. The second curriculum (based on the number of nodes) is
used in the experiments. To speed up curriculum learning, we allot 18, 000 seconds total running
time for each run and assign each successive stage twice as much time as the previous stage. The
exponentially increasing time in the curriculum design is chosen because the complexity of the later
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stages requires more time to converge. We ran the learning algorithm for 1, 000 times and found the
energy basins of the ELM that the learned models belong to. Hence we obtained a histogram of the
learned models on the leaf nodes of the ELM as shown in Figure 12.4 (b). For comparison, Figure
12.4 (a) shows the histogram of the models learned without using a curriculum. The utilization of
the curriculum results in more frequent convergence to the global minimum as well as energy basins
near the global minimum.
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(a) sentence length = 1 (b) sentence length ≤ 2

(c) sentence length ≤ 3 (d) sentence length ≤ 4

(e) sentence length ≤ 5 (f) sentence length ≤ 6

(g) sentence length ≤ 7

Figure 12.2: Curriculum based on training sample sentence length.

273



(a) 2 nodes (b) 3 nodes

(c) 4 nodes (d) 5 nodes

Figure 12.3: Curriculum based on number of nodes

(a) no curriculum

(b) exponentially decreasing curriculum

Figure 12.4: Distribution of learned grammars (a) without a learning curriculum (b) with the time-
constrained curriculum. The blue bars histogram the number of learned grammars belonging to
each energy basin, the red arrow indicates the energy basin of the ground truth solution.
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