Monte Carlo: a tutorial

Art B. Owen

Stanford University

MCQMC 2012, Sydney Australia

About these slides

These are the slides that I presented at a tutorial on Monte Carlo for MCQMC 2012 in Sydney Australia. I have made two changes.

Since that time, I have learned from Makoto Matsumoto, how to get multiple streams from the Mersenne Twister. He recommends a cryptographically secure RNG such as AES (advanced encryption standard) be used to generate seeds. I have updated the relevant slide to reflect what I learned at MCQMC 2012.

I have also updated the description of Pierre del Moral's tutorial to reflect his coverage of particle filters and related methods.

90 minutes of MC

The goal is to:

- 1) describe the basic idea of MC.
- 2) discuss where the randomness comes from.
- 3) show how to sample the desired random objects.
- 4) show how to sample more efficiently.

What is next:

- Item 3 motivates Markov chain Monte Carlo and particle methods see Pierre del Moral's particle methods tutorial
- Item 4 motivates quasi-Monte Carlo see Josef Dick's QMC tutorial

Some notation

X	random variable in ${\mathbb R}$
X	random variable in \mathbb{R}^d
x , $oldsymbol{x}$	observed values of X and $oldsymbol{X}$
$\Pr(X = x)$	probability that random variable X takes value x
$X \sim F \text{ or } p$	X has distribution F or p
$oldsymbol{X}_i \stackrel{\mathrm{iid}}{\sim} F$	$oldsymbol{X}_i$ independent and identically distributed as F
$\mathbb{E}(f(X))$	Expectation, e.g., $\int f(x)p(x) \mathrm{d}x$.
$\mathbf{U}(S)$	Uniform distribution on set ${\cal S}$

there will be more notation

The MC idea(s)

Two versions:

Informal MC

Simulate some random process and watch what happens.

Formal MC

Express an unknown quantity μ as the solution

$$\mu = \mathbb{E}(f(\boldsymbol{X})), \quad \boldsymbol{X} \sim p$$
$$= \int f(\boldsymbol{x}) p(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$$

Then sample $oldsymbol{X}_1,\ldots,oldsymbol{X}_n\stackrel{\mathrm{iid}}{\sim}p$ and take

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} f(\boldsymbol{X}_i).$$

Nagel-Schreckenberg traffic

- N vehicles in a circular track
- M possible positions $\{0, 1, \dots, M-1\} \mod M$
- speed limit is v_{\max} , e.g., 5

The algorithm

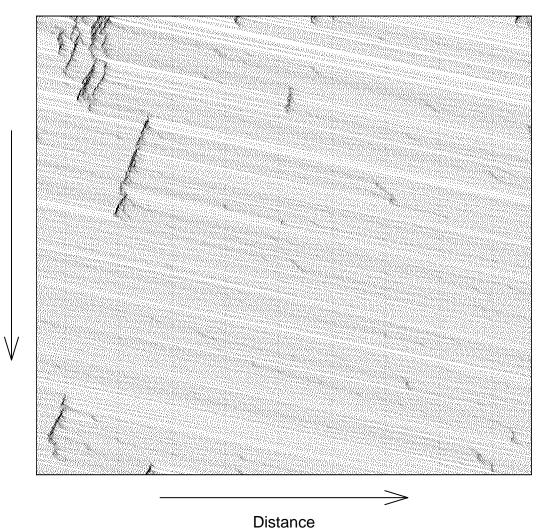
For a car at $x \in \{0, 1, \dots, M-1\}$ with velocity v and d spaces behind the car in front:

$$\begin{aligned} v &\leftarrow \min(v+1, v_{\max}) \\ v &\leftarrow \min(v, d-1) \\ v &\leftarrow \max(0, v-1) \quad \text{with probability } p \\ x &\leftarrow x + v \mod M \end{aligned}$$

Time

Traffic results

Nagel–Schreckenberg traffic



- Dots = cars, start at top row
- Traffic jams 'emerge'
- and move backwards
- then disappear
- gaps move at the speed limit
- total flow not monotone in # cars
- one can elaborate the model
- (replace circular track by city map)

Average distance

For rectangle $R = [0, a] \times [0, b]$, let $\boldsymbol{X}, \boldsymbol{Z} \stackrel{\mathrm{iid}}{\sim} \mathbf{U}(R)$. We want:

$$\mu(a,b) = \mathbb{E}(\|\boldsymbol{X} - \boldsymbol{Z}\|)$$

= $\int_0^a \int_0^b \int_0^a \int_0^b \sqrt{(x_1 - z_1)^2 + (x_2 - z_2)^2} \, \mathrm{d}x_1 \, \mathrm{d}x_2 \, \mathrm{d}z_1 \, \mathrm{d}z_2$

Quick and easy by Monte Carlo.

Also available analytically Ghosh (1951).

 $\mu(1,3/5)=0.4239$ from closed form $\hat{\mu}(1,3/5)=0.4227$ from n=10,000 MC samples

Relative error 0.0027

MC vs closed form

Exact solution generalizes to new a and b.

MC solution generalizes to more complicated regions or distances.

The closed form is brittle.

Properties of MC

- 1) MC works under minimal assumptions the desired mean must exist, then (law of large numbers) $\Pr(\lim_{n\to\infty} \hat{\mu}_n = \mu) = 1$
- 2) MC does not deliver extreme accuracy RMSE $\equiv \sqrt{\mathbb{E}((\hat{\mu} - \mu)^2)} = \sigma/\sqrt{n}$ to cut RMSE by 10, we must raise *n* by 100 a less serious flaw, when the problem is only posed to low accuracy
- 3) MC is very competitive in high dimensional or non-smooth problems (see next slide)
- 4) MC has extremely good error estimation (see slide after that)

MC vs. classic quadrature

For f on [0, 1] with $\geq r$ continuous derivatives, quadrature gets $\int_0^1 f(x) \, dx$ with error $O(n^{-r})$ e.g., r = 4 for Simpson's rule.

Iterated integrals

$$\int_{[0,1]^d} f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \int_0^1 \cdots \int_0^1 f(\boldsymbol{x}) \, \mathrm{d}x_1 \cdots \, \mathrm{d}x_d$$

Use Fubini's rule in d dimensions:

 $N=n^d$ points in a grid. Error is ${\cal O}(n^{-r})={\cal O}(N^{-r/d})$

Monte Carlo

$$\label{eq:RMSE} \begin{split} \mathsf{RMSE} &= \sigma N^{-1/2} \text{ for any dimension } d \\ \text{Best possible rate is } O(N^{-1/2-r/d}) \text{ Bakhvalov (1962)} \end{split}$$

MC is competitive for large d, low smoothness

Error estimation

 $\mu = \mathbb{E}(f(\boldsymbol{X})) \quad \text{and} \quad \sigma^2 = \operatorname{Var}(f(\boldsymbol{X})) \quad \boldsymbol{X} \sim p$

Central limit theorem: $\hat{\mu} \stackrel{\cdot}{\sim} \mathcal{N}(\mu, \sigma^2/n)$

$$\lim_{n \to \infty} \Pr\left(\frac{\hat{\mu} - \mu}{\sigma/\sqrt{n}} \leqslant z\right) = \int_{-\infty}^{z} \frac{e^{-t^{2}/2}}{\sqrt{2\pi}} dt$$

99% confidence interval

 $\Pr\left(\hat{\mu} - \frac{2.58\hat{\sigma}}{\sqrt{n}} \le \mu \le \hat{\mu} + \frac{2.58\hat{\sigma}}{\sqrt{n}}\right) = 0.99 + O(n^{-1}) \quad \text{Hall (1986) Ann. Stat.}$

Estimates $\hat{\mu}$ and $\hat{\sigma}$ from $f(\mathbf{X}_i)$ Estimation error at $O(n^{-1})$ is better than for $\hat{\mu}$ itself!

Randomness

- We need a source of randomness
- Physics offers several
- But true random numbers are not reproducible (or compressable (Kolmogorov))
- Some physical RNGs fail tests of randomness (Marsaglia)

Pseudo-randomness

- Most MC uses pseudo-random numbers
- I.e., deterministic computer programs that simulate randomness, reproducibly.
- There are many high quality and well tested RNGs. I like
 - 1) the Mersenne Twister of Matsumoto, Nishimura (1998),
 - 2) and MRG32k3a of L'Ecuyer (1999),

and there are other high quality RNGs.

Today's MC would be impossible without the efforts of people who work on the algebra of finite fields.

Basic (pseudo) RNGs

First: make sure your software is using a good and thoroughly tested RNG.

Typical usage

 $x \leftarrow \texttt{rand}()$ // $x \texttt{ is now a simulated } \mathbf{U}(0,1)$

rand:

```
state \leftarrow update(state)
return f(state)
```

Period

The state space is finite \Rightarrow the RNG eventually repeats: $x_{i+M} = x_i$ for period M. Use no more than \sqrt{M} draws in one simulation. (L'Ecuyer)

Seed

Setting a seed (e.g. setseed(s)) lets you control the initial state of the RNG. Getting the seed (e.g. $s \leftarrow getseed()$) lets you save state for later.

Streams

Sophisticated use of RNGs requires multiple independent streams

$$X_i^{(s)} \stackrel{\text{iid}}{\sim} \mathbf{U}(0,1), \quad i = 1, \dots, N_s, \quad s = 1, \dots, S$$

Coupling

Use stream 1 for coffee shop customer arrival:

- random wait . . . 148.7 seconds for next customer group
- it has 3 customers
- first one orders double decaf soy latte with bacon bits
- and so on until $10 \ \mathrm{pm}$

Use stream 2 for service times. Now compare two store configs on given customer stream.

Processes

Simulate S physical systems for N time steps

Use one stream per system

Later add systems (larger S) or do longer simulations (larger N) compatibly MCGMC 2012, Sydney Australia

Parallelism

May want one stream per processor.

Challenging to seed them all.

Still an area of active research.

Hellekalek (1998) warns "Don't trust parallel Monte Carlo!"

I like RngStreams of L'Ecuyer, Simard, Chen & Kelton (2002)

lots of long random streams, tested

Also, the Mersenne Twister can be seeded

with output of a cryptographically secure RNG to make streams Matsumoto

Making random things

- 1) Random variables: $X \in \mathbb{R}$ but not $\mathbf{U}(0,1)$ (e.g. $\mathcal{N}(0,1)$)
- 2) Random vectors: $oldsymbol{X} \in \mathbb{R}^d$
- 3) Random objects: graphs, permutations, projection matrices
- 4) Random processes: Brownian motion, Poisson, Cox, Chinese restaurant

Non-uniform random numbers

See Devroye (1986)

If the distribution has a name (normal, Poisson, Gamma, χ^2 , beta, etc.)

it is probably already in Matlab or R or python or · · ·

Vectors and processes are another story

Inversion of the CDF

 $F(x) = \Pr(X \leqslant x) \text{ invertible } \Rightarrow X \equiv F^{-1}(\mathbf{U}(0,1)) \sim F$

$$Pr(X \leq x) = Pr(F^{-1}(U) \leq x)$$
$$= Pr(F(F^{-1}(U)) \leq F(x))$$
$$= Pr(U \leq F(x))$$
$$= F(x)$$

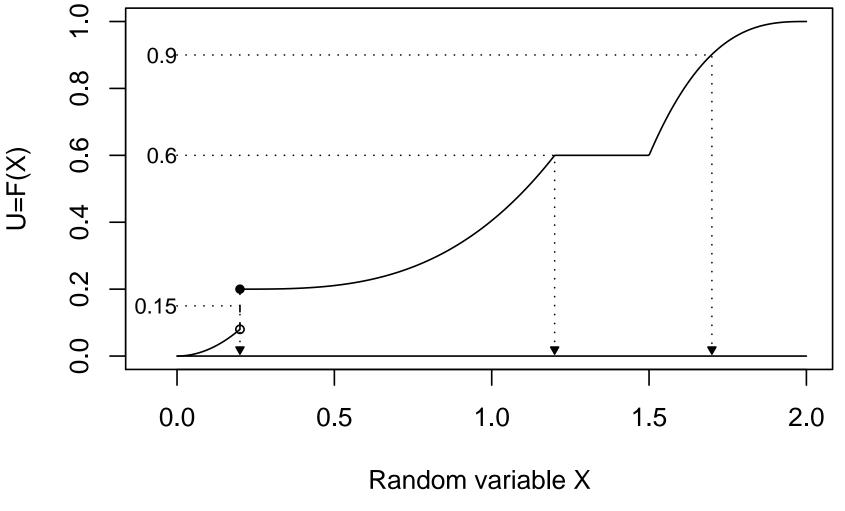
More generally

 $F^{-1}(u)$ may not exist or may not be unique.

We solve both problems with:

$$F^{-1}(u) = \inf\{x \mid F(x) \ge u\}, \quad 0 < u < 1$$
$$X = F^{-1}(\mathbf{U}(0,1)) \sim F, \quad \forall F$$

Inversion ctd Inverting the CDF



 $F^{-1}(u) = \inf\{x \mid F(x) \ge u\}$

MCQMC 2012, Sydney Australia

Many to one transformations

Box, Muller (1958)

$$Z = \sqrt{-2\log(U_1)}\cos(2\pi U_2) \sim \mathcal{N}(0,1)$$

Beta via ranks

Sort $U_1, \ldots, U_n \stackrel{\text{id}}{\sim} \mathbf{U}(0, 1)$ getting $U_{(1)} \leq U_{(2)} \leq \cdots \leq U_{(n)}$. Then

$$X = U_{(r)} \sim \text{Beta}(r, n - r + 1)$$
$$f(x) \propto x^{r-1}(1 - x)^{n-r+1} \quad 0 < x < 1$$

In reverse

Sample $10^{\rm th}$ smallest of 10^{100} random variables via

$$F^{-1}(X), \quad X \sim \text{Beta}(10, 10^{100} - 9)$$

Devroye (1986) has a cornucopia of transformations.

Acceptance-rejection sampling

We want $X\sim f$ we can get $X\sim g$ where $f(x)\leqslant cg(x),$ known $c<\infty.$

Algorithm

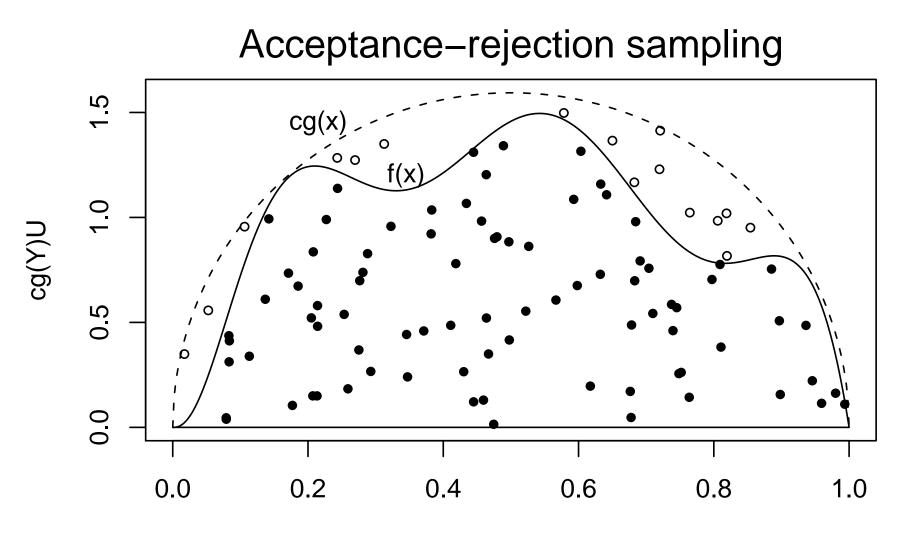
Sample candidate $Y \sim g$ Accept Y = y with probability $A(y) = f(y)/(cg(y)) \leqslant 1$ If accepted deliver X = Y. Else try again.

Outcome

Result has density $\propto g(x)A(x) = g(x)\frac{f(x)}{cg(x)} \propto f(x)$.

Nice proof in Knuth (1998)

Algorithm from von Neumann (1951)



Candidates Y, including accepted values X

The cost is proportional to c = 1/acceptance probability.

21

MCQMC 2012, Sydney Australia

Geometry of acceptance-rejection

Define the region under Mh:

$$\mathcal{S}_M(h) = \{(x, z) \mid 0 \leqslant z \leqslant Mh(x), \ x \in \mathbb{R}\} \subset \mathbb{R}^2,$$

for $0 < M < \infty$ and a probability density function h

If $(X,Z) \sim \mathbf{U}(\mathcal{S}_M)$ then $X \sim h$

Conversely if $X \sim h$ and Z given X = x is $\mathbf{U}(0, Mh(x))$ then $(X, Z) \sim \mathbf{U}(\mathcal{S}_M)$.

We sample uniformly under the envelope cg(x). Accepted points are uniform under f(x).

Mixtures

Suppose that

$$f(x) = \sum_{j=1}^{J} \alpha_j f_j(x)$$

for $\alpha_j \ge 0$ and $\sum_{j=1}^J \alpha_j = 1$

If we can sample f_j then we can sample f:

1) Take random J with $Pr(J = j) = \alpha_j$.

2) Deliver $X \sim f_J$.

machine-generated algorithms based on mixtures

- 1) Rectangle-tail-wedge Marsaglia, MacLaren, Bray (1964)
- 2) Ziggurat Marsaglia, Tsang (2000)
- 3) Adaptive rejection samp. Gilks, Wild (1992), Hörmann, Leydold, Derflinger (2004)

Random vectors

Random vectors can be very hard to generate.

This fact has motivated both Sequential Monte Carlo (SMC)

and Markov chain Monte Carlo (MCMC).

Sequential generation

Let $X = (X_1, \ldots, X_d) \sim F$ we could sample X_j given X_1, \ldots, X_{j-1} for $j = 1, \ldots, d$

Difficulties

- 1) Inversion (sequentially) . . . easier said than done. It requires lots of $F^{-1}(\cdot)$'s
- 2) Acceptance-rejection: c may grow exponentially with d
- 3) Transformations: we might not know any
- 4) Mixtures: geometry gets computationally problematic

Random vectors

There are good methods for the following important distributions

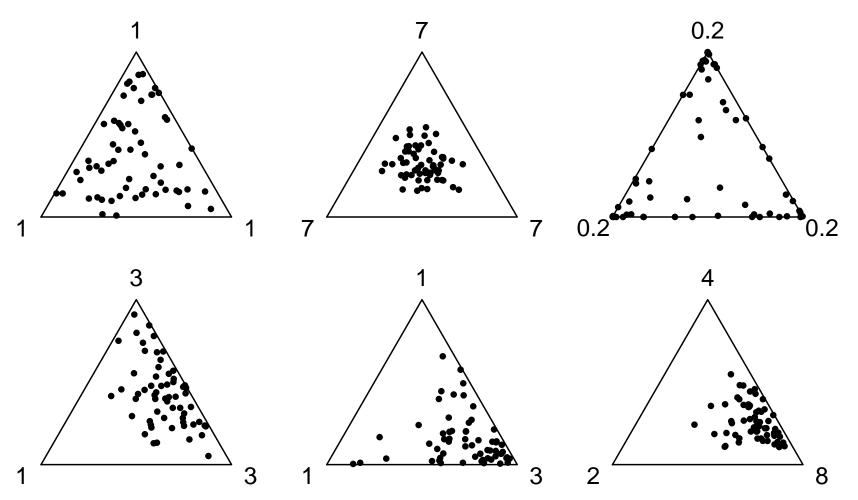
- 1) Multivariate normal $\mathcal{N}(\mu, \Sigma)$
- 2) Multivariate $t: \mathbf{X} = \mu + \mathcal{N}(0, \Sigma) / \sqrt{\chi_{\nu}^2 / \nu}$
- **3)** Multinomial¹
- 4) Dirichlet 2

¹e.g. number of counts in bucket j = 1, ..., J out of n independent trials, each bucket has probability π_j (think of somebody tabulating an imperfect roulette wheel)

 ^{2}X has nonnegative components summing to 1 with density proportional to $\prod_{j=1}^{d} x_{j}^{\alpha_{j}-1}$.

Dirichlet

Some Dirichlet samples



 α_j on the corners, density $\propto \prod_{j=1}^d x_j^{\alpha_j-1}$ MCQMC 2012, Sydney Australia

The multivariate xxx distribution

There is no unique multivariate distribution with given margins.

E.g. Kotz, Balakrishnan & Johnson (2000) list 12 bivariate Gamma distributions. Generalize one property \cdots lose another.

Classic multivariate Poisson

 $Z_j \sim \operatorname{Poi}(\lambda_j)$ independent

$$\begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} Z_1 \\ Z_2 \\ Z_3 \\ Z_4 \\ Z_5 \\ Z_6 \end{pmatrix}$$

X = AZ for binary matrix A and independent Poisson Z.

 X_i are dependent Poisson random variables.

 $A_{ij} = 1$ encodes cause-effect relationships (cause $j \implies$ failure i).

We never get negative dependence for X_i and $X_{i'}$ this way.

Copula-marginal sampling

 $\boldsymbol{X} = (X_1, \dots, X_d)$ with $X_j \sim F_j$, known F_j

Glue them together with the dependence structure of $oldsymbol{Y}\sim G.$

1)
$$Y = (Y_1, ..., Y_d) \sim G$$

2) $U_j = G_j(Y_j)$ G_j is CDF of Y_j
3) $X_j = F_j^{-1}(U_j)$
4) deliver $X = (X_1, ..., X_d)$, so $X_j \sim F_j$

The vector $\boldsymbol{U} = (U_1, \ldots, U_d)$ is a 'copula', i.e., random vector with $U_j \sim \mathbf{U}(0, 1)$

Gaussian copula

Also called NORTA (normal to anything) or the Nataf transformation Nataf (1962)

The Gaussian is convenient.

That doesn't mean it is correct.

The t copula has some advantages too.

(Which doesn't mean it is correct either.)

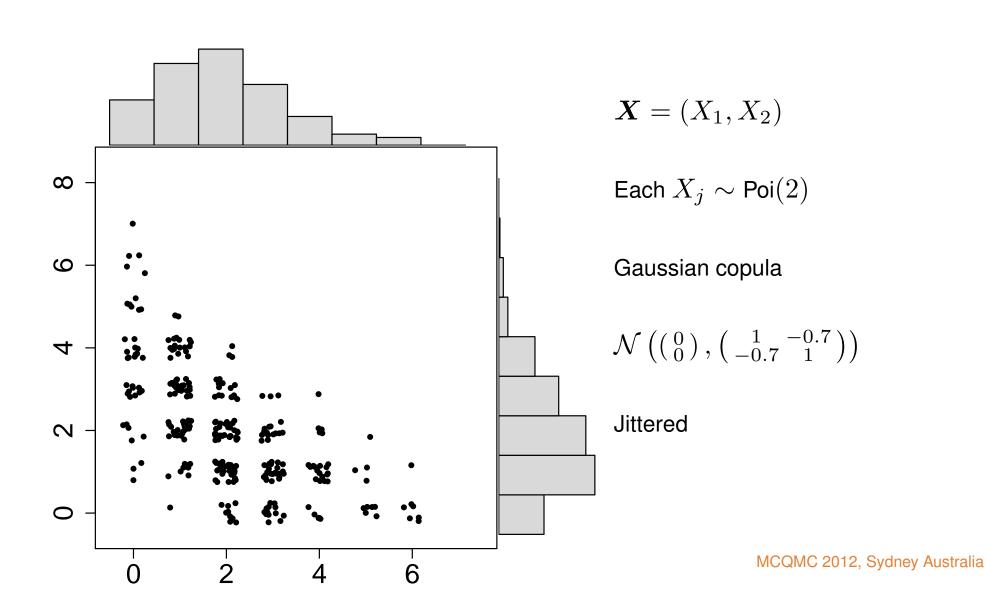
Tail independence

The Gaussian copula is poorly suited for finance and insurance because

$$\lim_{u \to 1^{-}} \Pr(X_j > F_j^{-1}(u) \mid X_k > F_k^{-1}(u)) = 0$$

When X_k gives a big loss, a big loss on X_j is unlikely (under this model) McNeil, Frey, Embrechts (2005)

Poisson with Gaussian copula



Random processes

Like a vector but the index has infinite cardinality

E.g. X(t) is particle's position at time $t \in [0, \infty)$, or, $t \in \{0, 1, 2, \dots\}.$

We only get finitely points $t_1 < t_2 < \cdots < t_M$ on the trajectory

Challenges

- 1) Sampling consistently
- 2) and efficiently
- 3) biases, e.g.

$$\min\{X(t_1), X(t_2), \dots, X(t_M)\} \ge \min_{0 \le t \le 1} X(t)$$

Gaussian processes

For any $t_1, \ldots, t_M \in \mathcal{T} \subseteq \mathbb{R}^d$

$$\begin{pmatrix} X(t_1) \\ X(t_2) \\ \vdots \\ X(t_M) \end{pmatrix} \sim \mathcal{N} \left(\begin{pmatrix} \mu(t_1) \\ \mu(t_2) \\ \vdots \\ \mu(t_M) \end{pmatrix}, \begin{pmatrix} \Sigma(t_1, t_1) & \Sigma(t_1, t_2) & \cdots & \Sigma(t_1, t_M) \\ \Sigma(t_2, t_1) & \Sigma(t_2, t_2) & \cdots & \Sigma(t_2, t_M) \\ \vdots & \vdots & \ddots & \vdots \\ \Sigma(t_M, t_1) & \Sigma(t_M, t_2) & \cdots & \Sigma(t_M, t_M) \end{pmatrix} \right)$$

Comments

- $\Sigma(\cdot, \cdot)$ has to be a positive definite function
- in principle we can choose to sample at any t_{j+1} given $X(t_1),\ldots,X(t_j)$
- in practice, computation favors special $\Sigma(\cdot, \cdot)$
- very special case: Brownian motion on $[0,\infty)$
- Brownian motion drives stochastic differential equations (Kloeden & Platen (1999))

New methods based on multilevel MC Giles et al.

Poisson processes

Random points $t_i \in \mathcal{T} \subseteq \mathbb{R}^d$ representing:

arrival times, flaws in a semiconductor, forest fire locations \cdots

 $N(A)=\operatorname{Number}$ of process points in $A\subset \mathcal{T}$

For disjoint $A_1, \ldots, A_J \subseteq \mathcal{T}$

$$N(A_j) \sim {\sf Poi}\left(\int_{A_j}\lambda(t)\,{\rm d}t
ight)$$
 independently $\lambda(t)\geqslant 0$

MCQMC 2012, Sydney Australia

Some sampling methods

Exponential spacings

For $\mathcal{T}=[0,\infty)$ (e.g., time) and $\lambda(t)=\lambda$ (constant) take

1) $T_0 \equiv 0$ (not part of the process)

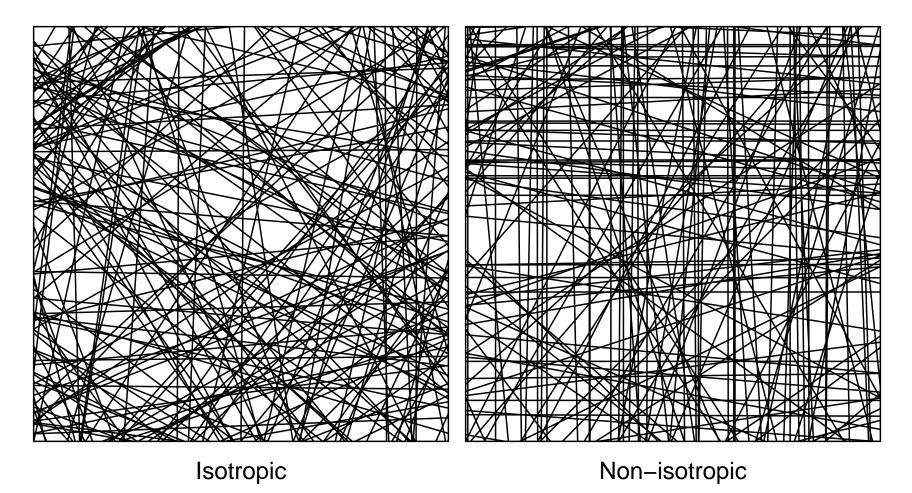
- 2) For $j \ge 1$, $T_j = T_{j-1} + E_j / \lambda$, $E_j \stackrel{\text{iid}}{\sim} \exp(1)$
- **3)** Until either $t_j > T$ or j > N

Finite integrated intensity

If $\int_{\mathcal{T}} \lambda(t) dt < \infty$: 1) $N \sim \operatorname{Poi}\left(\int_{\mathcal{T}} \lambda(t) dt\right)$ 2) $T_1, \dots, T_N \stackrel{\mathrm{iid}}{\sim} f$ where $f(\cdot) \propto \lambda(\cdot)$.

So they look like a random sample no clustering, no avoidance

Poisson lines

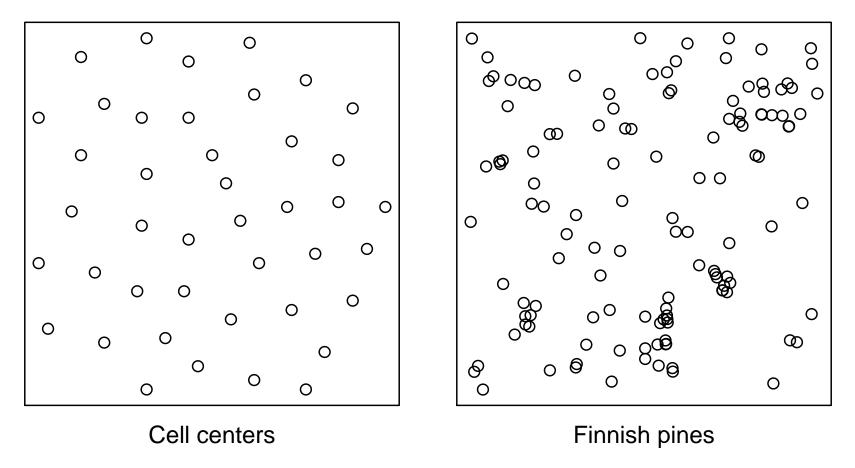


Polar coordinate definitions of the line follow Poisson process

There are Poisson planes too

Non-Poisson points

Two Spatial Point Sets



Centers of insect cells from Crick via Ripley.Locations of pine trees from Penttinen via vanThey avoid each other.Lieshout (2004). They cluster 2012, Sydney Australia

Non-Poisson models

Clumping is easy. E.g. Cox model

1) $\lambda(\cdot) \sim$ Spatial process \equiv random function

2) $\boldsymbol{T}_i \sim \text{Poisson process}(\lambda)$

Avoidance is hard. E.g. hard shell model $m{T}_i \sim \mathbf{U}(\mathcal{T})$ subject to

$$\min_{1 \leqslant i < j \leqslant N(\mathcal{T})} \| \boldsymbol{T}_i - \boldsymbol{T}_j \| \ge \varepsilon$$

Has $O(N^2)$ constraints. May proceed via:

- Dart throwing, or,
- Markov chain Monte Carlo

- Start with unbounded tables and no customers
- For $k \ge 1$, the k^{th} customer
 - starts a new table with prob $\alpha/(\alpha+k-1),$ or else,
 - joins existing table with prob \propto # people there

Notes

CRP used in statistical machine learning

See Jordan (2005)

Counterpart: Indian buffet process

Still no known vegemite stochastic process (VSP)

Variance reductions

Old method is

$$\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n f(\boldsymbol{X}_i), \quad \boldsymbol{X}_i \stackrel{\text{iid}}{\sim} p$$

with $\mathbb{E}(\hat{\mu}_1) = \mu$ and $\operatorname{Var}(\hat{\mu}_1) = \sigma^2/n$

We come up with new method $\hat{\mu}_2$:

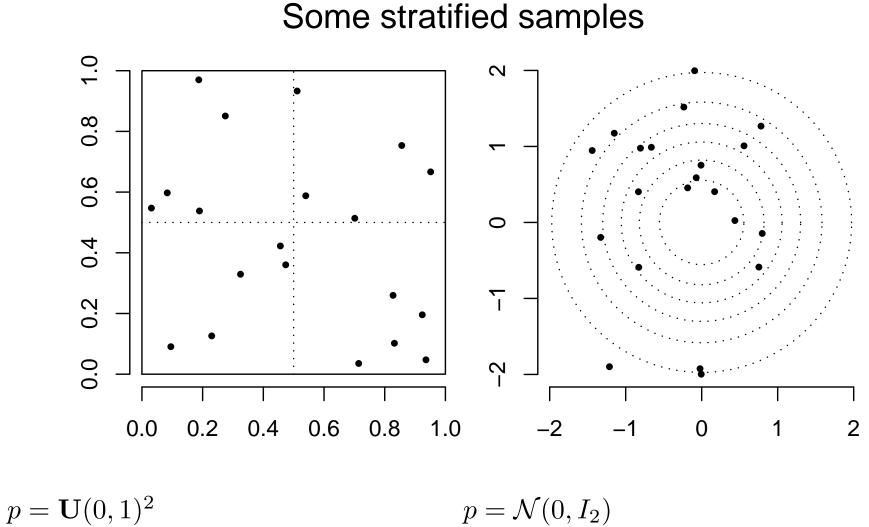
- $\bullet\,$ changing $f(\cdot),$ or
- changing $p(\cdot)$ (or both)
- keeping $\mathbb{E}(\hat{\mu}_2) = \mu$,
- but with $\operatorname{Var}(\hat{\mu}_2) < \operatorname{Var}(\hat{\mu}_1)$

There are lots of tricks.

First, some examples

- Stratification
- Antithetic sampling

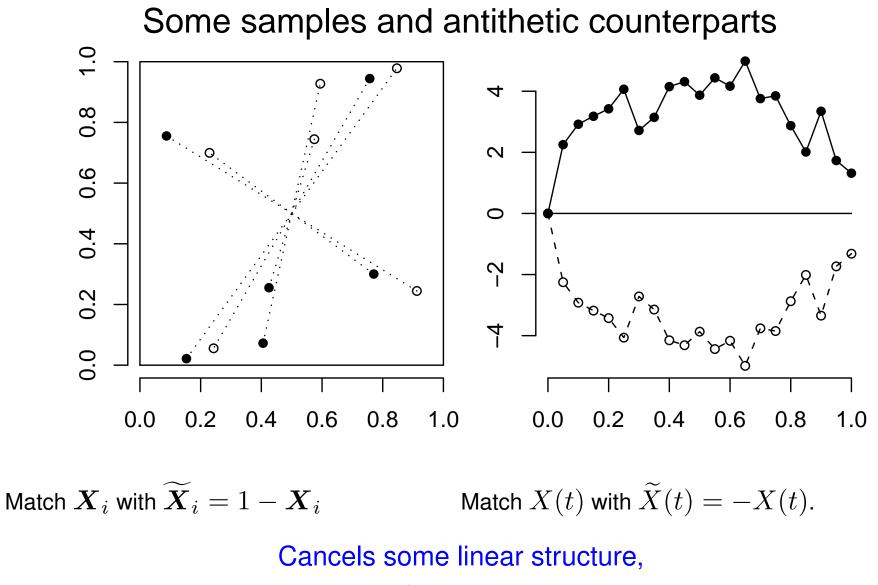
These adjust where we place the input points X_i .



each quadrant has n/4 pts.

each ring has n/7 points.

Better accuracy by balancing



uses n/2 pairs of inputs, we win if ${\rm Corr}(f(X),f(\widetilde{X}))<0$ $\,$ MCQMC 2012, Sydney Australia

Example: expected log return

$$\mu(\lambda) = \mathbb{E}\left(\log\left(\sum_{k=1}^{K} \lambda_k e^{X_k}\right)\right)$$

where

Returns	$\boldsymbol{X} = (X_1, \ldots, X_K)$
Portfolio weights	$\lambda = (\lambda_1, \dots, \lambda_K)$
Margins	$X_k \sim \mathcal{N}(\delta, \sigma^2)$
Copula	$t(0,4,\Sigma)$
Σ_{jk}	$0.3 + 0.7 \times 1_{j=k}$

Antithetic pairs: X_k and $2\delta - X_k$

Example ctd.

Stocks	Period	Correlation	Reduction	Estimate	Uncertainty
20	week	-0.99957	2320.0	0.00130	6.35×10^{-6}
500	week	-0.99951	2030.0	0.00132	$6.49 imes 10^{-6}$
20	year	-0.97813	45.7	0.06752	3.27×10^{-4}
500	year	-0.99512	40.2	0.06850	3.33×10^{-4}

Table 1: The first column has the number K of stocks. The second column indicates whether the return was for a week or a year. The third column is the correlation between log returns and their antithetic counterpart. The fourth column turns this correlation into a variance reduction factor. Then comes the estimate of expected log return and the half width of a 99% confidence interval.

Measuring efficiency

Suppose that we want RMSE $\leqslant \tau^2$ and have two methods:

Method	$\mathbb{E}(\hat{\mu})$	$\operatorname{Var}(\hat{\mu})$	Cost
Old	μ	σ_1^2/n	nc_1
New	μ	σ_2^2/n	nc_2

Cost to get RMSE $\leqslant \tau^2$ is $c_j \sigma_j^2/\tau^2, \ \ j=1,2$

Relative efficiency

Relative efficiency of new to old is

$$\frac{c_1 \sigma_1^2}{c_2 \sigma_2^2} = \frac{\sigma_1^2}{\sigma_2^2} \times \frac{c_1}{c_2}$$

We win by lowering the variance σ^2 (unless the cost c goes up more)

We can even gain by raising σ^2 if c goes down by more

Notes on efficiency

- σ_1^2/σ_2^2 depends on the method
- c_1/c_2 also depends on the computer, network, prog. language
- We should think of human time too: saving 10% of 1 second is not interesting
- The scale matters too: 10% of 10^{10} seconds is interesting (save \approx 32 CPU years)
- Cutting 1 second to 10^{-3} seconds **could be** interesting it allows a new outer loop if necessary

More variance reductions

- Control variates
- Conditioning

These use outside knowledge related to the problem at hand.

Control variates

We want $\mu = \int f(\boldsymbol{x}) p(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$ We have $\theta = \int h(\boldsymbol{x}) p(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$ some connection, e.g., $f(\boldsymbol{x}) \approx h(\boldsymbol{x})$

Estimates

Difference	$\hat{\mu} - \hat{ heta} + heta$	
Ratio	$rac{\hat{\mu}}{\hat{ heta}} imes heta$	(commonly arises)
Product	$\hat{\mu} imes rac{\hat{ heta}}{ heta}$	
Regression√	$\hat{\mu} - \beta \hat{ heta} + \beta heta$	(usual choice)
Weird	$\hat{\mu}\cos(\hat{ heta}- heta)$	(unnecessary)

where

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} f(\boldsymbol{X}_i) \qquad \hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} h(\boldsymbol{X}_i)$$

MCQMC 2012, Sydney Australia

Regression estimator

$$\hat{\mu}_{\beta} = \frac{1}{n} \sum_{i=1}^{n} f(\boldsymbol{X}_{i}) - \beta(h(\boldsymbol{X}_{i}) - \theta)$$
$$\beta_{\text{opt}} = \text{Cov}(f(\boldsymbol{X}), h(\boldsymbol{X})) / \text{Var}(h(\boldsymbol{X}))$$
$$\text{Var}(\hat{\mu}_{\text{opt}}) = \frac{1 - \rho^{2}}{n} \sigma^{2}$$
$$\rho = \text{Corr}(f(\boldsymbol{X}), h(\boldsymbol{X}))$$

In practice

Estimate β_{opt} by least squares $\hat{\beta}$ $\hat{\beta}$ essentially as good as using β_{opt}

Extends to $\mathbb{E}((h_1(\boldsymbol{X}),\ldots,h_J(\boldsymbol{X}))) = (\theta_1,\ldots,\theta_J)$

$$\begin{aligned} & \int_{\mathbb{R}^d} \int_0^1 e^{g(\boldsymbol{x})y} p(\boldsymbol{x}) \, \mathrm{d}y \, \mathrm{d}\boldsymbol{x} = \int_{\mathbb{R}^d} \frac{e^{g(\boldsymbol{x})} - 1}{g(\boldsymbol{x})} p(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} \\ & \text{For } \boldsymbol{X}_i \stackrel{\text{iid}}{\sim} p \text{ and } \boldsymbol{Y}_i \stackrel{\text{iid}}{\sim} \mathbf{U}(0, 1) \\ & \operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^n \frac{e^{g(\boldsymbol{X}_i)} - 1}{g(\boldsymbol{X}_i)}\right) \leqslant \operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^n e^{g(\boldsymbol{X}_i)Y_i}\right) \\ & \text{More generally} \end{aligned}$$

$$egin{aligned} &\operatorname{Var}(h(m{X})) \leqslant \operatorname{Var}(f(m{X},m{Y})) & ext{where} \ & h(m{X}) = \mathbb{E}(f(m{X},m{Y}) \mid m{X}) \end{aligned}$$

Integrating out some of the randomness reduces variance and may improve efficiency. It also reduces dimension (valuable for stratification or QMC)

Application

Let $X = (X_1, \ldots, X_d)$ with $X_j \sim F_j$ independent, not identically distributed.

$$\Pr\left(\max_{j} X_{j} = X_{19}\right) = \mathbb{E}\left(\Pr\left(\max_{j} X_{j} = X_{19} \mid X_{19}\right)\right)$$
$$= \int_{\mathbb{R}} \left(\prod_{j=1, j \neq 19}^{d} F_{j}(x)\right) f_{19}(x) \, \mathrm{d}x$$

Estimate by

$$\frac{1}{n} \sum_{i=1}^{n} g(X_{i,19}), \text{ where } X_{i,19} \stackrel{\text{iid}}{\sim} F_{19} \text{ and } g(x) = \prod_{j=1, j \neq 19}^{d} F_j(x)$$

MCQMC 2012, Sydney Australia

Importance sampling

Consider $\mu = \mathbb{E}(f(X)) = \int_{\mathbb{R}^d} f(x)p(x) \, \mathrm{d}x$ where $f \approx 0$ outside of A and $\Pr(X \in A)$ is tiny

Examples: rare events, small probabilities, spiky functions, floods, power outages, way out of money options, probability of network failure, etc.

The idea

Arrange for $X \in A$ to happen more often. Then adjust for bias.

Importance sampling ctd.

Probability density $q({\pmb x})>0$ whenever $f({\pmb x})p({\pmb x})\neq 0$

$$\mu = \int f(\boldsymbol{x}) p(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \int \frac{f(\boldsymbol{x}) p(\boldsymbol{x})}{q(\boldsymbol{x})} q(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}$$
$$\hat{\mu}_q = \frac{1}{n} \sum_{i=1}^n \frac{f(\boldsymbol{X}_i) p(\boldsymbol{X}_i)}{q(\boldsymbol{X}_i)}, \quad \boldsymbol{X}_i \stackrel{\text{iid}}{\sim} q$$

Variance

$$\operatorname{Var}(\hat{\mu}_q) = \frac{\sigma_q^2}{n} \quad \text{where} \quad \sigma_q^2 = \int \frac{(f(\boldsymbol{x})p(\boldsymbol{x}))^2}{q(\boldsymbol{x})} \, \mathrm{d}\boldsymbol{x} - \mu^2$$

small $q({m x})$ are problematic

MCQMC 2012, Sydney Australia

$$\sigma_q^2 = \int \frac{(f(\boldsymbol{x})p(\boldsymbol{x}))^2}{q(\boldsymbol{x})} \, \mathrm{d}\boldsymbol{x} - \mu^2 = \int \frac{(f(\boldsymbol{x})p(\boldsymbol{x}) - \mu q(\boldsymbol{x}))^2}{q(\boldsymbol{x})} \, \mathrm{d}\boldsymbol{x}$$

Consequences

1) If
$$q(oldsymbol{x}) \propto f(oldsymbol{x}) p(oldsymbol{x})$$
 then $\sigma_q^2 = 0$

2) Best is
$$q({m x}) \propto |f({m x})p({m x})|$$

3) For safety, take
$$q(x)$$
 'heavier tailed' than $p(x)$
E.g. $p = \mathcal{N}(0, 1)$ with $q = t_5$

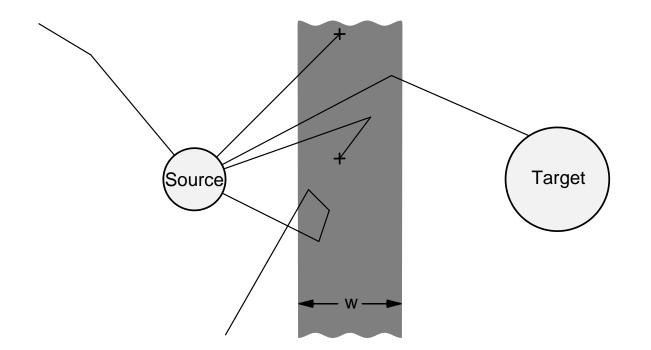
Finding a good importance sampler is an art and a science.

Success is not assured.

A poor choice can give
$$\sigma_q^2=\infty$$
 even when $\sigma^2<\infty$ For adaptive importance sampling, see Evans & Swartz, Rubinstein

Sequential Monte Carlo

Particle transport



E.g., follow particles from source count flux into target as function of width w of barrier

Efficiency improvement

Sometimes we increase variance but reduce costs by even more.

Russian roulette

If a particle is unlikely to reach the target:

- 1) toss a coin
- 2) if Heads, remove the particle,
- 3) if Tails, count it double

Splitting

If a particle might reasonably reach the target:

- 1) replace it by two particles
- 2) follow each independently,
- 3) carrying half the weight of the original

These are early methods of sequential Monte Carlo (SMC). SMC merges efficiency MCQMC 2012, Sydney Australia improvements and variable generation ideas.

Variance reductions ctd.

Multiple versions

- multiple stratification (Latin hypercube sampling)
- multiple control variates
- multiple importance sampling

Combinations

- control variates & importance sampling
- stratification & antithetic sampling
- etc.

Main problems with MC

- 1) We often cannot sample $oldsymbol{X} \stackrel{\mathrm{iid}}{\sim} p$ for desired p
- 2) Sometimes \sqrt{n} rate is too slow

Solutions (partial credit only)

- MCMC: greatly expands the range of problems evolves out of acceptance-rejection uses dependent values
- QMC, RQMC: improves the convergence rate evolves out of stratification exploits smoothness

Combinations

Latest MCMC \cap QMC in Stanford thesis of S. Chen (2011)

Deeper theory than before

Good performance for GARCH and stochastic volatility models

Thanks

- Organizers: Ian H. Sloan, Frances Y. Kuo, Josef Dick, Gareth Peters
- UNSW
- National Science Foundation of the U.S. DMS-0906056
- The number theorists and algebraists without whom MC would be impossible!