SIEMENS Engineering, SCR Statistical Modeling and Performance Characterization

... of a Real-Time Dual Camera Surveillance System

Michael Greiffenhagen

Supervisors: Prof. H. Niemann, Dr. D. Paulus, Uni Erlangen Dr. Visvanathan Ramesh, SCR, Princeton, USA

SCR

Outline

- Introduction
- Application: Auto Cameraman
- Demonstrate Approach on Key-Modules:
 - Statistical Modeling / Performance Analysis
 - Validation of Assumptions and Models, Testing
- Evolution of Existing System:
 - How to relax constraints / add requirements
 - How to fuse existing and new modules correctly
- Results, Demos
- Summary / Outlook

SCR Characteristics of Current Problems in Computer Vision

SIEMENS

- Compete against other techniques (price, robustness).
- *Predictable* and *robust systems* (quantitative performance characterization within predefined bounds)
- We need "*simple*" and *fast* algorithms ⇒ analyze tradeoff between *computation time* versus *accuracy*.
- Simplification only possible through extensive use of *context*

SCR

Outline

- Introduction
- Application: Auto Cameraman
- Demonstrate Approach on Key- Modules:
 - Statistical Modeling / Performance Analysis
 - Validation of Assumptions and Models, Testing
- Evolution of existing System:
 - How to relax constraints / add requirements
 - How to fuse existing and new modules correctly
- Results, Demos
- Summary / Outlook

Application Auto Cameraman: Track moving people, zoom onto faces

- Dual camera approach:
 - constantly monitor large area of interest (Shree Nayar's OmniCamera)
 - simultaneously: high resolution images of faces (e.g. face recognition)
- \Rightarrow Monitoring / surveillance
- \Rightarrow Trigger alarms (sensitive areas)
- \Rightarrow Log information (time, location, face)
- \Rightarrow Post-processing (recognition/data-base)

Lobby scene

Omni-view

Foveal-view

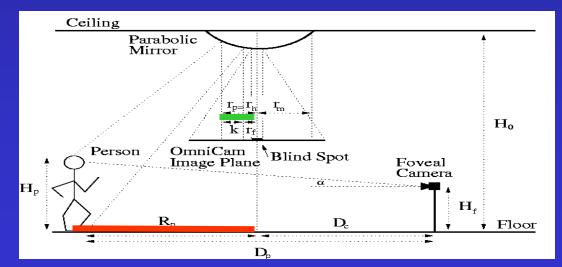
"Simple" Problem to Solve...

- Goal is to control foveal camera (high resolution) by evaluating omni image:
 - find foot-(or head) position in omni-image
 - transform image coordinates into 3D world coordinates
 - *transform* 3D world coordinates into foveal-camera <u>control</u> parameters (pan, tilt, zoom)

Nonlinear Transform

 $=2\frac{p}{r^{2}r^{2}}(H_{0}-H_{p})$

 $R_{p}(r_{p},...) =$



SCR

Unfortunately: Not that simple!

Brute-forth feasibility study (Master's, ACCV'98) showed:

\Rightarrow System unpredictable and unreliable

- > Zoomed *in* too much face cut off / not in captured in frame
- Zoomed *out* too much face too small

\Rightarrow Performance depending on

- Object location
- Mounting position of cameras
- Sensor noise

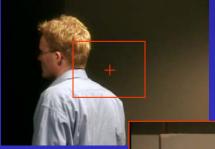
Spatially varying Discrimination Power (background / cloths)

> Time of the day (different light conditions / shadow)

SCR

Solution: On-line Performance Analysis

Why the effort? *Because*, always errors involved; small errors can be fatal; *best estimate not good enough*: we need to know quantitatively *how good* it is!



zoomed out

zoomed in

Where are the feet? Quiet *uncertain*... We better zoom accordingly!

8

9

Preview: The System

- Arbitrary positions, varying discrimination power.
- Different setting no system parameter changes
- Self-adjusting tuning parameters: Adaptive zooming!

SCR

Approach: Statistical Modeling

- Decompose System into Modules
- Model input statistically (true + perturbation)
- Model output statistically as f(input, transform, parameters)
- ⇒ Propagate distributions / uncertainties through each module (calibration, sensor, segmentation, object localization)
- \Rightarrow Perform on-line analysis to estimate uncertainties

Advantages:

AutoCameraMan:

General:

- Not only best estimate on location
 - also quantitative measure on quality of estimate
 - used for optimizing zoom
- estimate parameters / thresholds adaptively
- estimate optimal performance at any position/time given data and task

SCR System UM ortelin/ty Modules / Trafos Requirements + PrRnoßagentilen ge Sys.-Architecture

Robust (predictable

- Invariant to shadow

-Real-time

- Autom. parameter tuning

- On-line system performance estimation

- Quantitative handle on limits of system Sensor Noise: Gaussian in RGB $N(RGB,\sigma_R\sigma_G\sigma_B)$ Illumination: preparates: $A_i p(\lambda)$ $N(rg,\Sigma_{ra})$ ScePiel/Backgrogndostatic X Projection uprigingation floor χ^2_{2m} Or $\chi^2_{2(m+n)}$ Geometry: WminiCam projection $N(r, \varphi, \sigma_r \sigma_{\sigma})$ Calibration programs etup $N(\alpha,\beta,\sigma_{\alpha}\sigma_{\beta})$ Object:-peoplegatitered Foveal comparent optical features

Sensor Model: ideal + noise Illumination compens. Intensity normalization Change detection Mahalanobis distance Fast indexing Integration along lines Foot position estimation 2D image \Rightarrow 3D world Control parameter estim. Simple trigonometry Zoom parameter estim. Simple trigonometry

Example: Distribution Propagation to Estimate System Performance On-line

- **<u>Given</u>**: Sector ROI from previous step (change detection module)
 - Input distribution, here: difference image pixel $\chi^2(c)$ distributed
- **Goal**: Generate "some" accumulative (stable) measure *M* (ft-pos estimation)
- <u>**Trafo</u>:** Sum values within region \Rightarrow get input for next module</u>
- **Key**: This trafo allows to derive output <u>distribution</u>: $\chi 2_{2n}(c)$

Allows to estimate *uncertainty* in foot position for *adaptive zooming*

Known Sector of Interest

<u>Known Distribution</u> $M \sim \chi^2_{2n}(0)$ or $\chi^2_{2n}(c)$

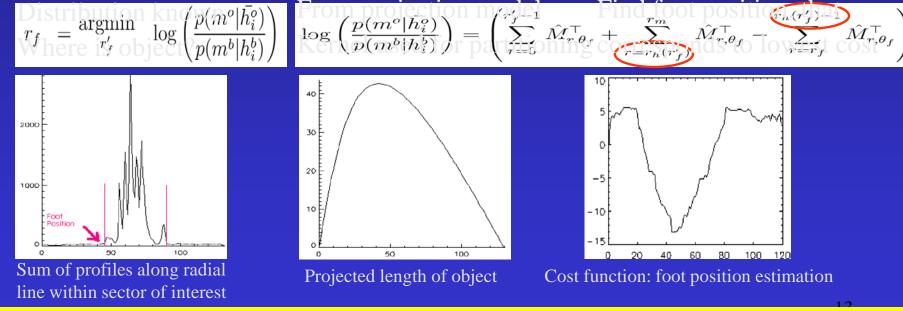
Estimated Centrality Parameter *c* from current data

Estimated Degrees of Freedom *n* from geometry, segmentation result

SCR

Radial Foot Position

- Find best <u>hypothesis</u> h_i which minimizes Bayes error (hypothesis test).
 h_i: ith out of multiple foot P(h_i|m)
- $h_i: i^{\text{th}}$ out of multiple foot position hypothesis.
- •Profidemeasurement M.
- =Valutesekerfowen maximize $P(\underline{Pripr}_{ofile}) \Rightarrow approximate P(\underline{barrothesisrtest})$:



 $= P(h_i^b|m^b) P(h_i^o|m^o) = P(h_i^b|m^b) \left(1 - P(\bar{h_i^o}|m^o)\right)$

 $= \frac{p(m^{b}|h_{i}^{b})P(h_{i}^{b})}{p(m^{b})} \frac{p(m^{o}) - p(m^{o}|\bar{h_{i}^{o}})P(\bar{h_{i}^{o}})}{p(m^{o})}$

⇒ Since distributions known: Estimate uncertainty using bootstrap/sampling technique

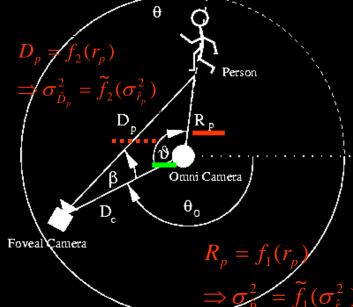
SCR

Foveal Camera Parameter Estimation

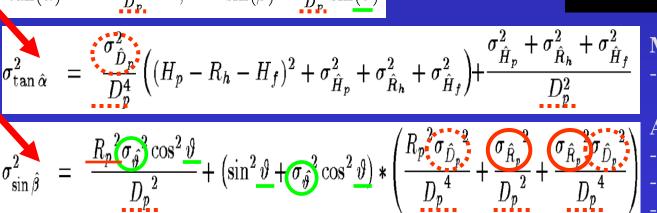
Now, all parameters available:

from current image: foot position
from calibration: remaining parameters
r_p ⇒ R_p (see geometry model) **3-D & covariances** (*covar. propagation*)
⇒ foveal camera control-parameters & σ²

$$D_p = \sqrt{D_c^2 + \frac{R_p^2}{2} - 2D_c R_p \cos(\vartheta)}$$
$$\tan(\alpha) = \frac{H_p - R_h - H_f}{D_p}; \qquad \sin(\beta) = \frac{R_p}{D_p} \sin(\vartheta)$$



Model: -Calibration parameters normal distributed Assumptions: -small errors (Linearization) -parameters independent -single level floor

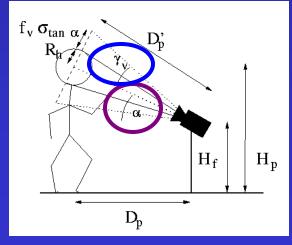


Zoom Setting

Models involved:

- Function of **geometry**: relative position of object to foveal camera
- Function of **calibration**, **signal to noise** ratio
- Function of **location** and **quality of segmentation**: uncertainty in pan and tilt
 - \Rightarrow Function of relative angular position of object / omni-camera (uncertainty in 9)

 \Rightarrow Function of discrimination power between background / object (uncertainty in r_p)



$$\gamma_{v} = 2 \operatorname{atan} \left(\frac{\hat{R}_{h} + f_{v} \sigma_{\tan \hat{\alpha}} \hat{P}'_{p}}{\sqrt{\hat{R}_{h}^{2} + \hat{D}'_{p}^{2}}} \right) \operatorname{with} \quad \hat{D}'_{p} = \frac{\hat{D}_{p}}{\cos \alpha}$$

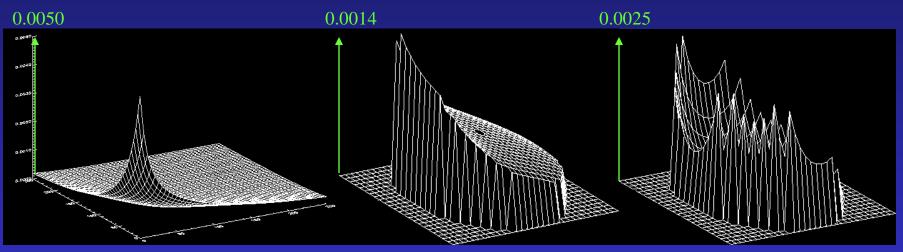
where factor f_{v} solves for $\int_{0}^{\frac{f_{v}}{2}} N(0, 1) d\xi = \underbrace{\mathfrak{P}_{z}}_{z} \mathcal{P}_{z}$

<u>Requirement</u>: guarantee, that entire head is in x_z % in frame, given segmentation, stationary (\rightarrow outlook)

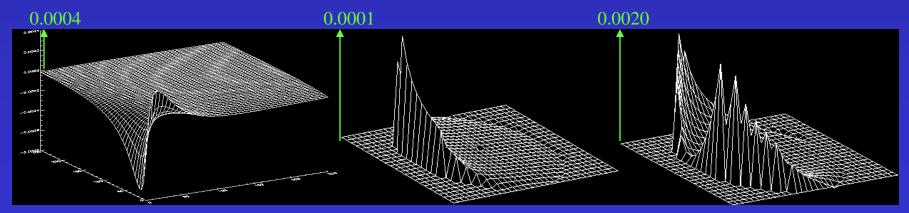
Overview

- Introduction
- Application: Auto Cameraman
- Demonstrate Approach on Key- Modules:
 - Statistical Modeling / Performance Analysis
 - Validation of Assumptions and Models, Testing
- Evolution of existing System:
 - How to relax constraints / add requirements
 - How to fuse existing and new modules correctly
- Results, Demos
- Summary / Outlook

Theoretical variances for: color normalization, tilt, pan over scene



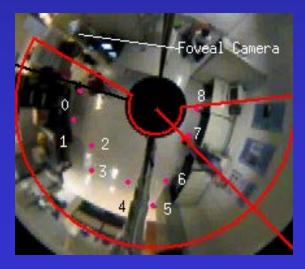
Difference between simulation and theory (see scale!)



Validation of Models

• With best theory, and nicest models we can not "buy" anything; *unless we verify correctness of models* used!

Here, 9 positions:



<u>Ground-truth</u> against model-estimates (tilt, pan):

×10	-5	P1	P2	P3	P4	P5	P6	P7	P8
$\hat{\sigma}_{ an}^2$	â	2.10	2.12	1.57	1.40	1.35	1.31	1.31	1.32
$\widetilde{\sigma}_{ an}^2$	â	2.05	2.04	1.60	1.34	1.36	1.32	1.40	1.31
$\hat{\sigma}_{\sin k}^2$	ŝ	28.9	26.1	21.3	17.9	15.3	15.2	18.4	20.1
$ ilde{\sigma}^2_{\sin eta}$	ŝ	25.9	24.1	19.5	15.1	14.9	15.0	18.1	19.3

Overview

- Introduction
- Application: Auto Cameraman
- Demonstrate Approach on Key- Modules:
 - Statistical Modeling / Performance Analysis
 - Validation of Assumptions and Models, Testing
- Evolution of existing System:
 - How to relax constraints / add requirements
 - How to fuse existing and new modules correctly
- Results, Demos
- Summary / Outlook

SCR

New System-Requirements Relaxed Constraints

<u>Previous system</u>

- Invariant to shadows
- Constant background
- Constant illumination
- Single mode background
- Restricted operational in black and saturated background areas

Extended system

- Invariant to shadows
- *Variable* background
- *Variable* illumination
- Multi modal background
- Operational on *full range* of sensor input

Approach:

Add new background adaptation moduleFusion with existing system

SCR

Requirements for Fusion

- *Reuse* of old system modules & analysis.
- *Maintain design and statistical behavior* of old modules after new modules are added to system.
- ⇒ "Open" chain of transforms, "insert" additional module
- ⇒ *Maintain interface distribution* requirements (sequential case)
- ⇒<u>Maintain output distribution</u> of module that takes <u>extended</u> feature vector as input (parallel case)
- ⇒ *Maintain output feature space* (shadow assignment).
- \Rightarrow Find module and stable features that fulfill these requirements
- \Rightarrow Describe it statistically and fuse it accordingly
- ... preferably, existing 3rd party module!

SIEMENS SCR

Multi-Modal Background Adaptation

Third party module: Stauffer/Grimson: "Adaptive Background mixture model for real-time tracking", CVPR 1999

$$P(X_t) = \sum_{i=1}^{K} w_{i,t} * \zeta(X_t, \mu_{i,t}, \sigma_{i,t})$$

 \Rightarrow Sum of *K* weighted Gaussians.

For *i*<*B*: mode *i* labeled background with:

$$B = \operatorname{argmin}_{b} \left(\sum_{k=1}^{b} w_{k} > T \right)$$

w_k ordered
T application dependent
(not illumination dependent)

 \Rightarrow Online parameter update (mean, variance, weight). ²²

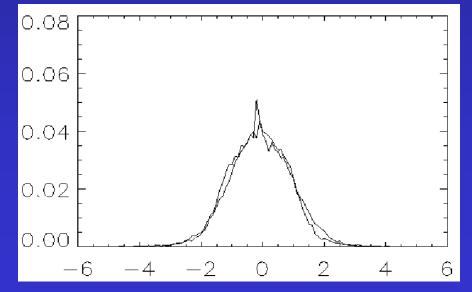
SCR

Only Mean is Stable Feature!

$$X_{b,t} = \mu_{j,t} | j = \frac{\operatorname{argmin}}{k} \left(\mu_{k,t} - X_t \right)^2 \forall k \in \{0 \dots B\}$$

$$\Delta_t = X_{b,t} - X_t \sim N(0, \sqrt{2}\sigma_{\hat{\mu}_X, j, t})$$

Difference between current value and <u>*closest*</u> background mean. Linear error propagation not feasible: $P(X_t)$ is no stable feature!



SCR

Fusion 1: *Update* Normalized Color Based Change Detection Module

Stauffer/Grimson <u>applied to *R*,*G*,*B*</u> bands provides stable mean estimate, which is <u>used to update</u> background parameters in <u>normalized color space (mean and</u> <u>covariance matrix)</u>

$$\hat{d}^2 = \left(\hat{\mu}_{\mathbf{b}} - \hat{\mu}_{\mathbf{c}}\right)^T \left(2\boldsymbol{\Sigma}_{\hat{\mathbf{r}}_{\mathbf{b}},\hat{\mathbf{g}}_{\mathbf{b}}}\right)^{-1} \left(\hat{\mu}_{\mathbf{b}} - \hat{\mu}_{\mathbf{c}}\right)$$

$$\boldsymbol{\Sigma_{\hat{\mathbf{r}}_{\mathbf{b}},\hat{\mathbf{g}}_{\mathbf{b}}}} = \frac{\sigma_{I}^{2}}{S^{2}} \left(\begin{array}{c} \frac{\sigma_{R}^{2}}{\sigma_{I}^{2}} \left(1 - \frac{2R}{S}\right) + 3\frac{R^{2}}{S^{2}} & -\frac{\sigma_{G}^{2}R + \sigma_{R}^{2}G}{\sigma_{I}^{2}S} + 3\frac{RG}{S^{2}} \\ -\frac{\sigma_{G}^{2}R + \sigma_{R}^{2}G}{\sigma_{I}^{2}S} + 3\frac{RG}{S^{2}} & \frac{\sigma_{G}^{2}}{\sigma_{I}^{2}} \left(1 - \frac{2G}{S}\right) + 3\frac{G^{2}}{S^{2}} \end{array} \right)$$

with $\sigma_I^2 = \sigma_S^2/3 = (\sigma_R^2 + \sigma_G^2 + \sigma_B^2)/3$

SCR

Fusion 2: *Add Intensity* to Normalized Color Based Change Detection Module

Probability of pixel being background ⇒ **Mahalanobis distance**

$$\hat{d}'^{2} = (\hat{\mu}'_{b} - \hat{\mu}'_{c})^{T} \left(2\Sigma_{\hat{\mathbf{r}}_{b},\hat{\mathbf{g}}_{b},\hat{\mathbf{l}}_{b}} \right)^{-1} (\hat{\mu}'_{b} - \hat{\mu}'_{c}) \quad \text{with}$$

$$(\hat{\mu}'_{b} - \hat{\mu}'_{c}) = \begin{pmatrix} \hat{r}_{b} - \hat{r}_{c} \\ \hat{g}_{b} - \hat{g}_{c} \\ \hat{I}_{b} - \hat{I}_{c} \end{pmatrix} \sim N \left(\begin{pmatrix} \hat{\mu}_{b} - \hat{\mu}_{c} \\ \hat{I}_{b} - \hat{I}_{c} \end{pmatrix}, 2\Sigma_{\hat{\mathbf{r}}_{b},\hat{\mathbf{g}}_{b},\hat{\mathbf{l}}_{b} \end{pmatrix}$$

$$\hat{d}'^{2} = (\hat{\mu}_{b} - \hat{\mu}_{c})^{T} (2\Sigma_{\hat{\mathbf{r}}_{b},\hat{\mathbf{g}}_{b}})^{-1} (\hat{\mu}_{b} - \hat{\mu}_{c}) + (\hat{I}_{b} - \hat{I}_{c})^{T} \frac{1}{2\sigma_{\hat{I}_{c}}^{2}} (\hat{I}_{b} - \hat{I}_{c})$$

$$\hat{d}'^{2} = \hat{d}^{2} + \frac{(\hat{I}_{b} - \hat{I}_{c})^{2}}{2\sigma_{\hat{I}_{b}}^{2}} \quad \begin{array}{c} \text{Background:} \quad d^{2} \sim \chi^{3}(0) \\ \text{Object} \quad d^{2} \sim \chi^{3}(c) \end{array}$$

⇒Distribution form <u>maintained</u>; only degrees of freedom increased!

Maintain Feature space

Problem:

Normalized color space segments into: object vs. background *including shadow*Stauffer/Grimson scheme segments into: object *including shadow* vs. background

Solution:

 \Rightarrow Assign shadow mode to background classes by hypothesis testing (feature space has to be maintained!).

Hypothesis Testing [K.V. Mardia]

Shadow:
$$H^{0}: \vec{\mu}_{t-1} = k\vec{\mu}, \vec{\mu}, \Sigma$$
 known. ...all bands experience same change
m.l.e. for $\hat{k} = (\mathbf{v_{t-1}}^{T}\Sigma^{-1}\mu)/(\mu^{T}\Sigma^{-1}\mu)$
Non-
Shadow: $H^{1}: \vec{\mu}_{t-1} = \mathbf{K}\vec{\mu}, \quad \mathbf{K} = \begin{pmatrix} k_{1} & 0 & 0\\ 0 & k_{2} & 0\\ 0 & 0 & k_{3} \end{pmatrix}; \quad \vec{\mu}, \Sigma$ known. ...all bands
experience different change
m.l.e. for $\hat{k}_{i} = \frac{\mathbf{v_{t-1}}^{T}\Sigma_{i}^{-1}}{\mu^{T}\Sigma_{i}^{-1}}$
Likelihood ratio test for $\hat{d}_{i} = ln(p(shadow)/p(non-shadow))$:

 $\hat{d}_{t} = (\hat{\mathbf{v}}_{t-1} - \hat{k}\vec{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\hat{\mathbf{v}}_{t-1} - \hat{k}\vec{\mu}) - (\hat{\mathbf{v}}_{t-1} - \hat{\mathbf{K}}\vec{\mu})^{T} \boldsymbol{\Sigma}^{-1} (\hat{\mathbf{v}}_{t-1} - \hat{\mathbf{K}}\vec{\mu})$

Known distribution: chi-square distributed with 2 degrees of freedom: $\hat{d}_t \sim \chi^2(0)$

Revised Background Estimate

Background estimation for each band (R,G,B,I):

Similar: Choose closest background mode but *including* shadow mode!

$$X_{b,t} = \mu_{j,t} | j = rac{\operatorname{argmin}}{k} (\mu_k - X_{c,t})^2 \, \forall k \in \{0 \dots B, K+1\}$$

old background modes

added shadow mode

Stauffer/Grimson model parameter update:

- Object model parameters: weighted by *P*(*non-shadow*)
- Shadow model parameters: weighted by *P*(*shadow*)

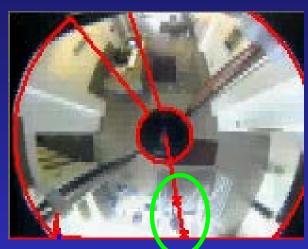
SCR

Overview

- Introduction
- Application: Auto Cameraman
- Demonstrate Approach on Key- Modules:
 - Statistical Modeling / Performance Analysis
 - Validation of Assumptions and Models, Testing
- Evolution of existing System:
 - How to relax constraints / add requirements
 - How to fuse existing and new modules correctly
- Results, Demos
- Summary / Outlook

SCR

Continuous Changes over 24h



Day: natural+artificial light; saturation



<u>Night</u>: artificial light low contrast regions

Morning/afternoon: mixed light, changing spectrum



SCR

Results (Hybrid Setting)

- Experiment: 24h a day, 2 weeks (day and night)
- High / low contrast
- Changing background / shadow
- Varying object size

SCR

Overview

- Introduction
- Application: Auto Cameraman
- Demonstrate Approach on Key- Modules:
 - Statistical Modeling / Performance Analysis
 - Validation of Assumptions and Models, Testing
- Evolution of existing System:
 - How to relax constraints / add requirements
 - How to fuse existing and new modules correctly
- Results, Demos
- Summary / Outlook

Summary / Contributions

- Showed how to systematically design a complete real-time vision system that is predictable, robust & guarantees performance within pre-defined bounds in a real-world setting
 - \Rightarrow Decompose system into modules
 - \Rightarrow Statistical modeling and analysis of each module
 - \Rightarrow Propagation of uncertainties from input data to final output
 - \Rightarrow Complete engineering cycle: design, analysis, validation, test
 - \Rightarrow Optimize performance given data and task
 - \Rightarrow Optimize setup / camera position

• Demonstrated how to evolve an existing system incrementally to meet added requirements

- \Rightarrow without redesign of existing modules
- \Rightarrow fusion of existing and 3rd party module combining strength of both
- \Rightarrow maintaining analysis of prior system valid

\Rightarrow Built working system – *stable* and in lobby at SCR, Princeton, *in use* 33

Outlook / Future Work

- Sudden light changes that require <u>new</u> state
- Multiple people along *same* radial line
- Analysis of tracker to improve foveal camera control dynamics
- Feedback / evaluate foveal image

Thank you!

Acknowledgements

Many thanks to *Prof. Heinrich Niemann, Dr. Visvanathan Ramesh,* and my future wife, *Katja*.

They gave me the opportunity and supported the idea of performing this research work abroad – it was a great experience, not only from the academic point of view!

~				
- QI	IEN	$\Lambda \mathbf{F}$	N	S
ີບັ			ТЛ	U

SCR

Modules / Requirements

Chair for Pattern Recognition FAU Erlangen-Nuremberg

Transforms / Priors: Constraints High-Level Algo.

Sensor-noise model

Illumination compensation

P(change) on pixel level

Indexing (real-time)

Hypothesis generation: BG?

Foot position estimation

Control parameter estim.

Zoom parameter estim.

Sensor Noise: Gaussian in RGB

Illumin.-sources: n, $A_i p(\lambda)$

Background: static

Object : person upright on floor

Scene : mainly background

Geometry: OmniCam projection

Calibration: dual-cam setup

Object geometry: head centered Foveal camera: optical features

Model: ideal + noise Intensity Normalization Mahalanobis distance Integration along lines Dynamic thresholding 2D image \Rightarrow 3D world Simple trigonometry Simple trigonometry

SCR

Transforms / High-Level Algo.

