

Systems Engineering Meets Life Sciences: (Compositionality)

Prepared by: Prof. Dr. Visvanathan Ramesh

- Recap Greiffenhagen Thesis / Systems Engineering Methodology
- Model-Based Recognition Overview (Mann, 1996, Dissertation)
- What is Context ? (Slides based on Derek Hoeim)
- Link to Systems Engineering Methodology
- Simulation for Cognitive Vision (Subbu Veerasavarappu)

Today's Lecture:

- Compositionality (Based on Slides from Borenstein et al, Stuart Geman)
- Compositional Models (P. Felzenswalb)
- Pattern Grammars Introduction (Song-Chun Zhu, Mumford)

Compositionality and Heirarchy (Geman, 2006)

www.goethe-universitaet.de

Parsing Images with Context/Content Sensitive Grammars

Eran Borenstein, Stuart Geman, Ya Jin, Wei Zhang

- I. Structured Representation in Neural Systems
- II. Vision is Hard
- **III.** Why is Vision Hard?
- **IV. Hierarchies of Reusable Parts**
- V. Demonstration System: Reading License Plates
- **VI. Generalization: Face Detection**

Artificial Intelligence

Knowledge Engineering

engineer everything, learn nothing

Learning Theory

engineer nothing, learn everything

Both Lack Model

Natural Intelligence

Strong Representation

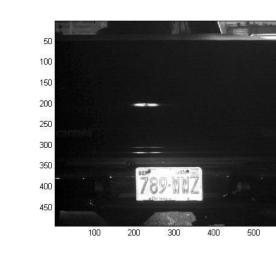
simulation and semantics

Hierarchy and Reusability

ventral visual pathway, linguistics, compositionality

- I. Structured Representation in Neural Systems
- II. Vision is Hard
- **III.** Why is Vision Hard?
- **IV. Hierarchies of Reusable Parts**
- V. Demonstration System: Reading License Plate
- **VI. Generalization: Face Detection**

License plate images from Logan Airport



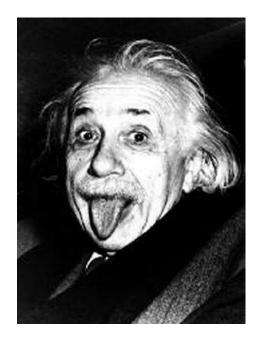
Machines still can't reliably read license plates

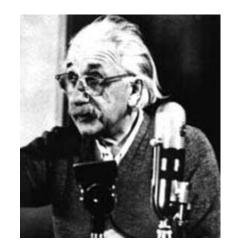
600

Machines can't read fixed-font fixed-scale characters as well as humans

12.06.2017

Super Bowl







Machines can't find the bad guys at the Super Bowl

- I. Structured Representation in Neural Systems RESITAT
- II. Vision is Hard
- **III.** Why is Vision Hard?
- **W.** Hierarchies of Reusable Parts
 - **Demonstration System: Reading License Plates**
- Vivore Face Detection

N

Instantiation

same

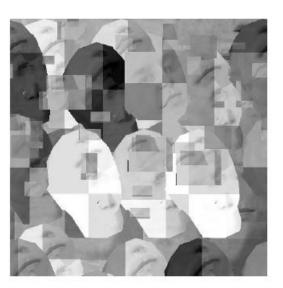
Empire style table

twins

Vision is content sensitive

12.06.2017

MROUTHI CONTONIG CORAT 时色星星至 C

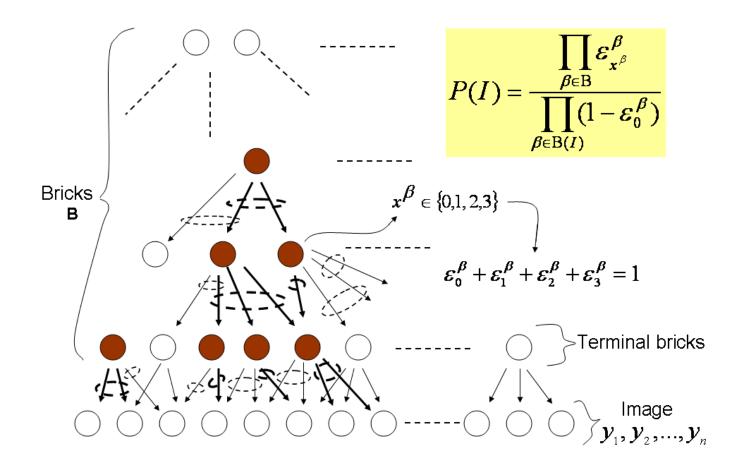


Human Interactive Proofs

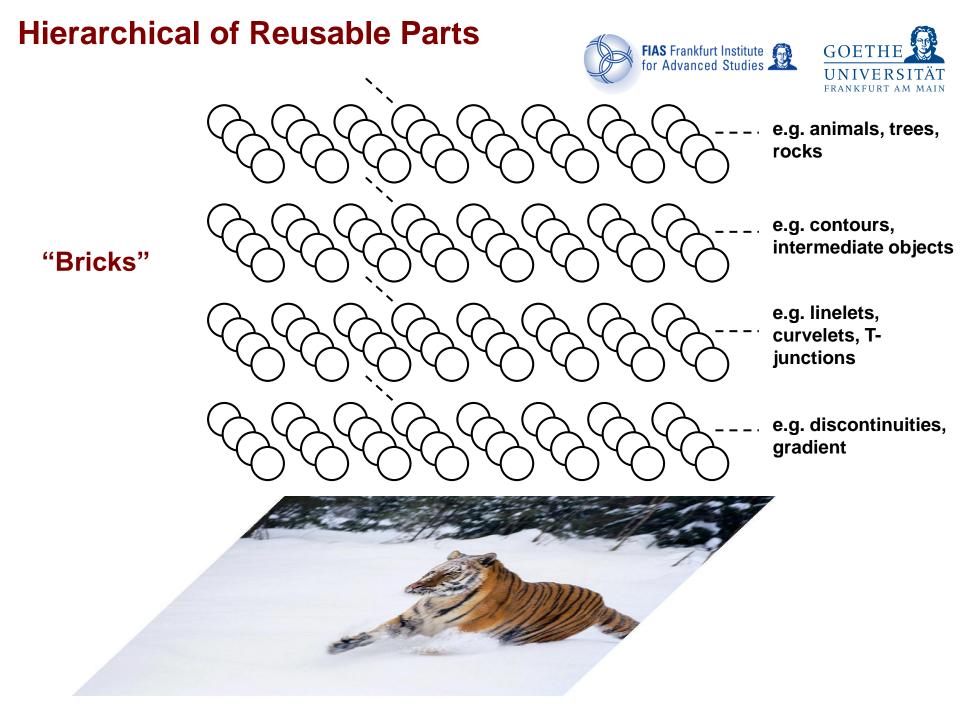
Background is structured, and made of the same stuff!

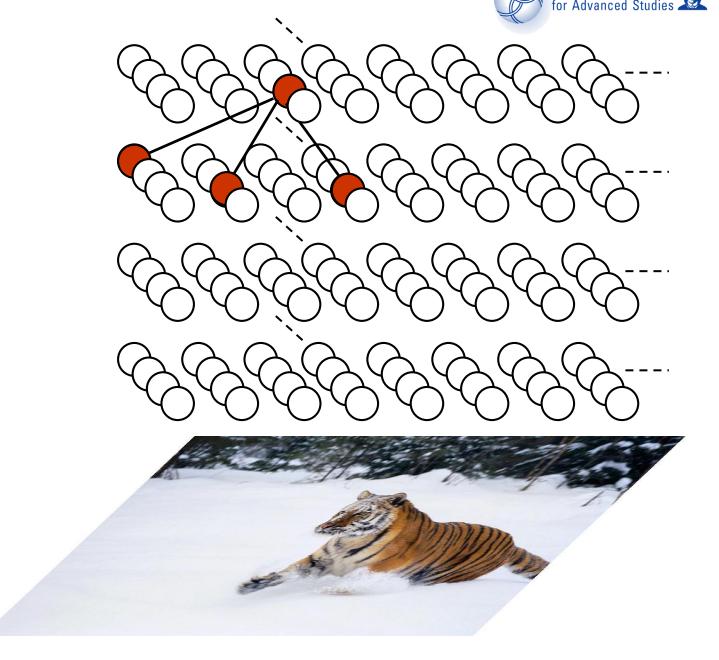
- I. Structured Representation in Neural Systems
- II. Vision is Hard
- **III.** Why is Vision Hard?
- **IV. Hierarchies of Reusable Parts**
- V. Demonstration System: Reading License Plat
- **VI. Generalization: Face Detection**

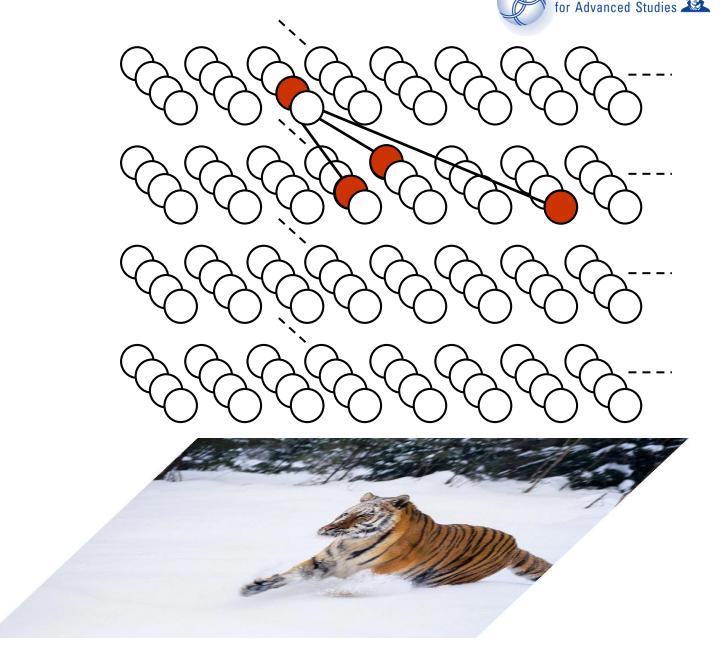
Composition Machine

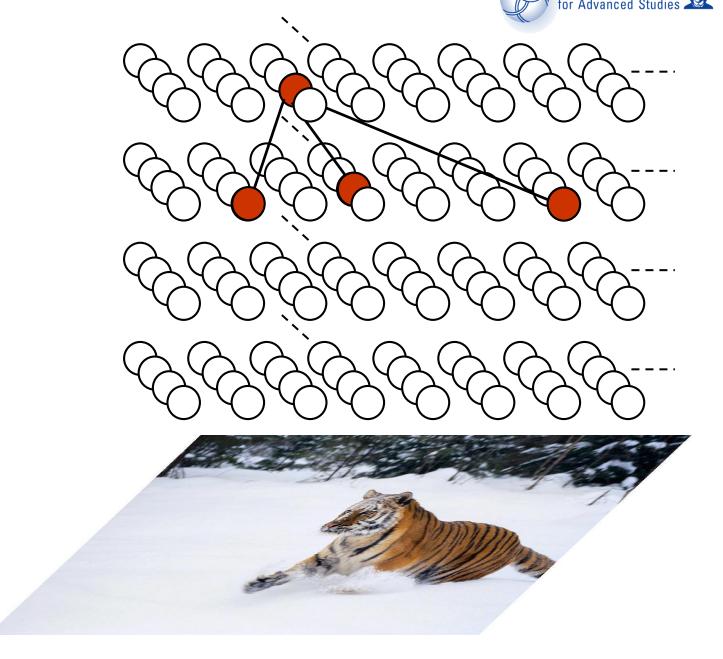


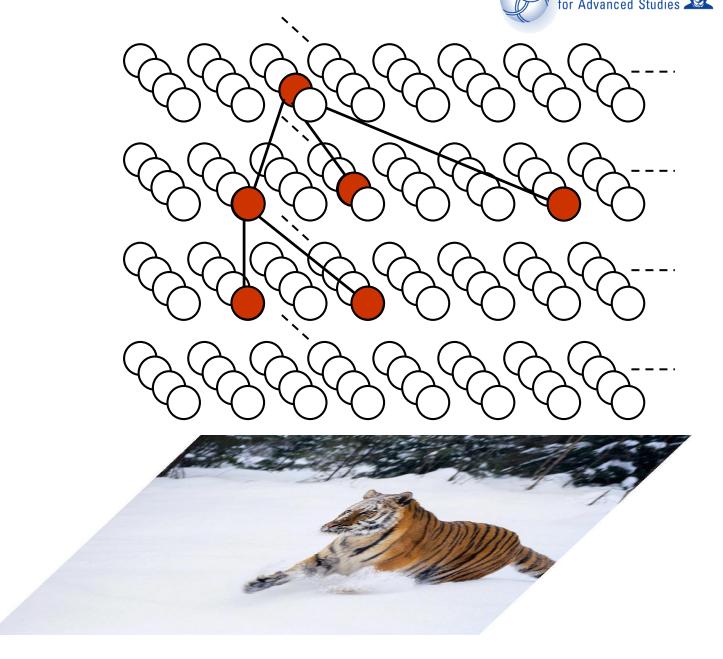
Markov backbone

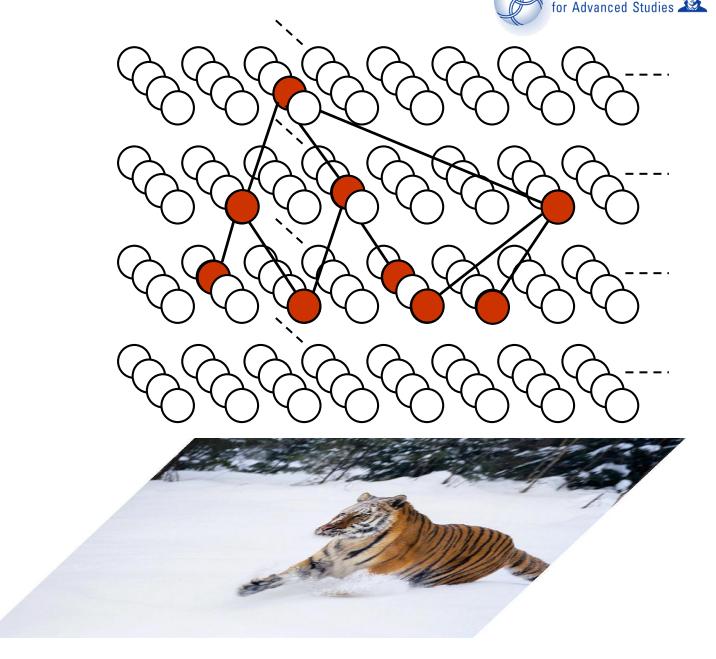


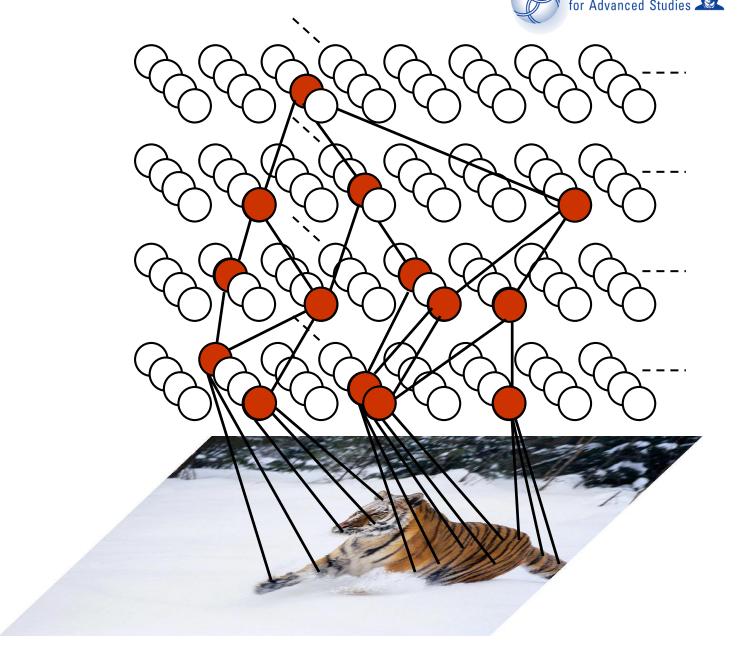


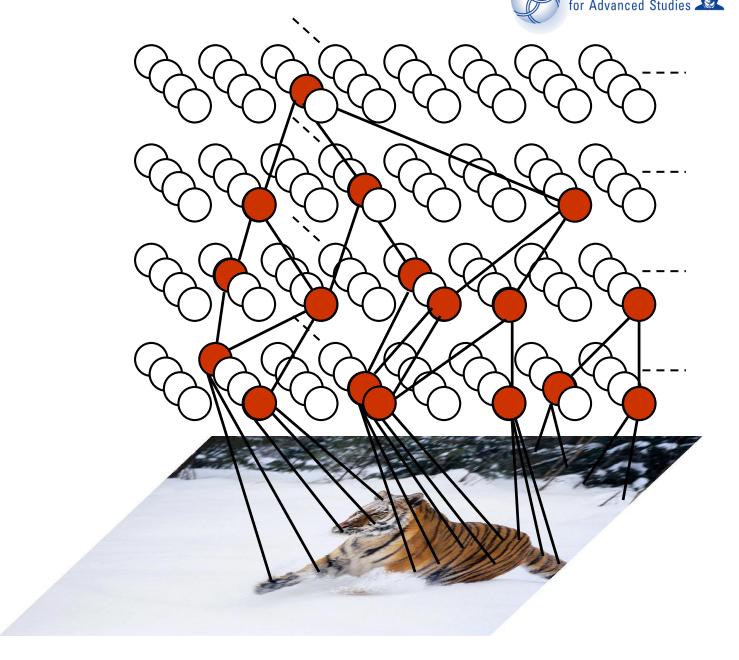








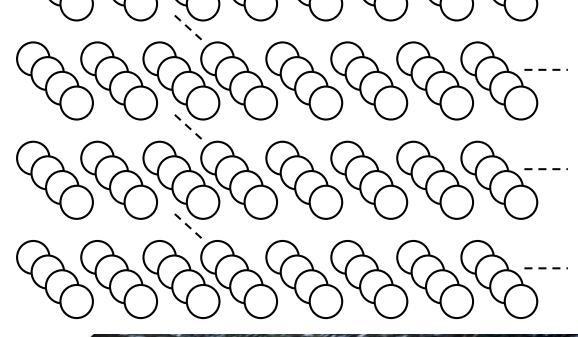




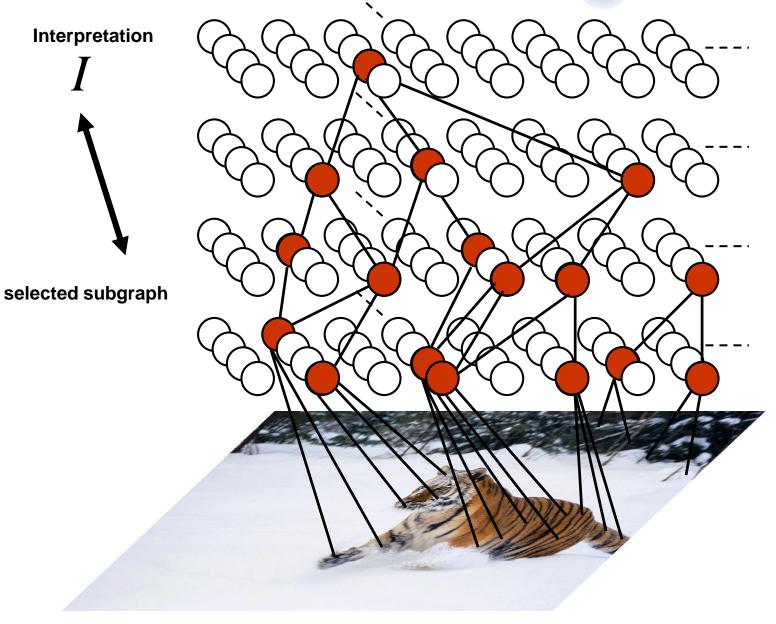
Interpretations and Probabilities

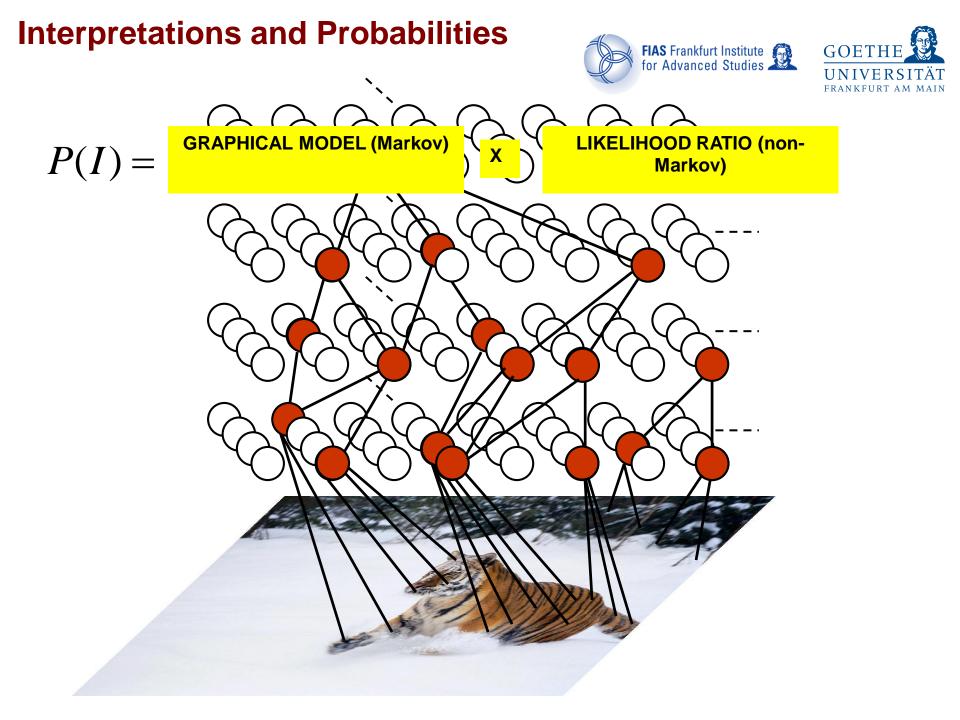
Interpretation

selected subgraph

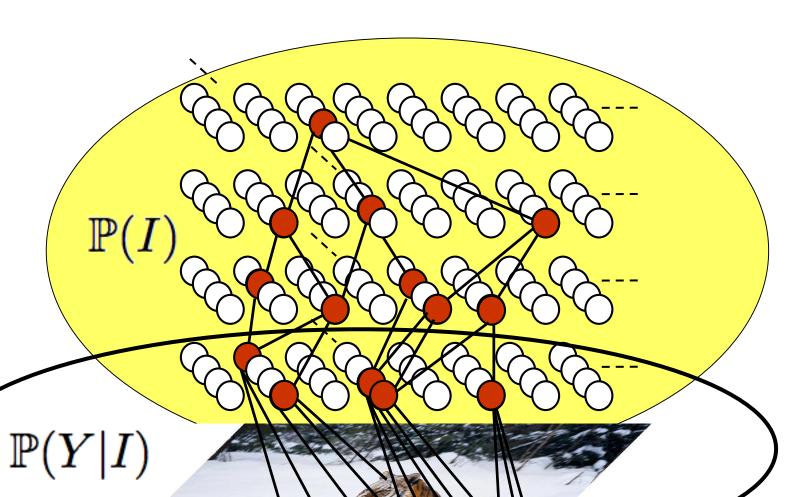


Interpretations and Probabilities





Generative (Bayesian) Model



Formulation:

The state of a brick, say the brick $\beta \in \mathbf{B}$, is a random variable, $x^{\beta} \in \{0, 1, \dots, n^{\beta}\}$, with $x^{\beta} = 0$ representing off, and $x^{\beta} = 1, 2, \dots, n^{\beta}$ representing the selected set of children in Figure 1. The pixels themselves (actually, their grey levels) are represented by a vector of intensities, \vec{y} .

Markovian distribution on \mathcal{I} . Each brick $\beta \in \mathbf{B}$ is assigned a probability vector $(\epsilon_0^{\beta}, \epsilon_1^{\beta}, \dots, \epsilon_{n^{\beta}}^{\beta})$. In terms of these parameters, the probability P(I) of an interpretation (i.e. a complete subgraph) I is

$$P(I) = \frac{\prod_{\beta \in \mathbf{B}} (\epsilon_{x^{\beta}}^{\beta})}{\prod_{\beta \in \mathbf{B}(I)} (1 - \epsilon_{0}^{\beta})}$$
(1)

Formulation: Non-Markov Part

bone. Briefly, the derivation is as follows: Associate with each brick $\beta \in \mathbf{B}$ a (possibly vector-valued) attribute function $a^{\beta}(I)$, which measures the "fit" among the "parts" that instantiate β , as it appears in the particular interpretation $I \in \mathcal{I}$. If β is a "4-digit-string" brick, specifically, then

In a compositional distribution, the *null* attribute distributions are compared to their *composed* counterparts: given $I \in \mathcal{I}$,

$$P(I) \propto \frac{\prod_{\beta \in \mathbf{B}} (\epsilon_{x^{\beta}}^{\beta})}{\prod_{\beta \in \mathbf{B}(I)} (1 - \epsilon_{0}^{\beta})} \prod_{\beta \in \mathbf{A}(I)} \frac{p_{\beta}^{c}(a^{\beta}(I))}{p_{\beta}^{0}(a^{\beta}(I))}$$
(2)

where A(I), the "above set", is the set of non-terminal on

- Structured Representation in Neural Systems
- II. Vision is Hard
- **III.** Why is Vision Hard?
- **IV. Hierarchies of Reusable Parts**
- V. Demonstration System: Reading License Plates
- **VI. Generalization: Face Detection**

Test set: 385 images, mostly from Logan Airport

Courtesy of Visics Corporation

Architecture

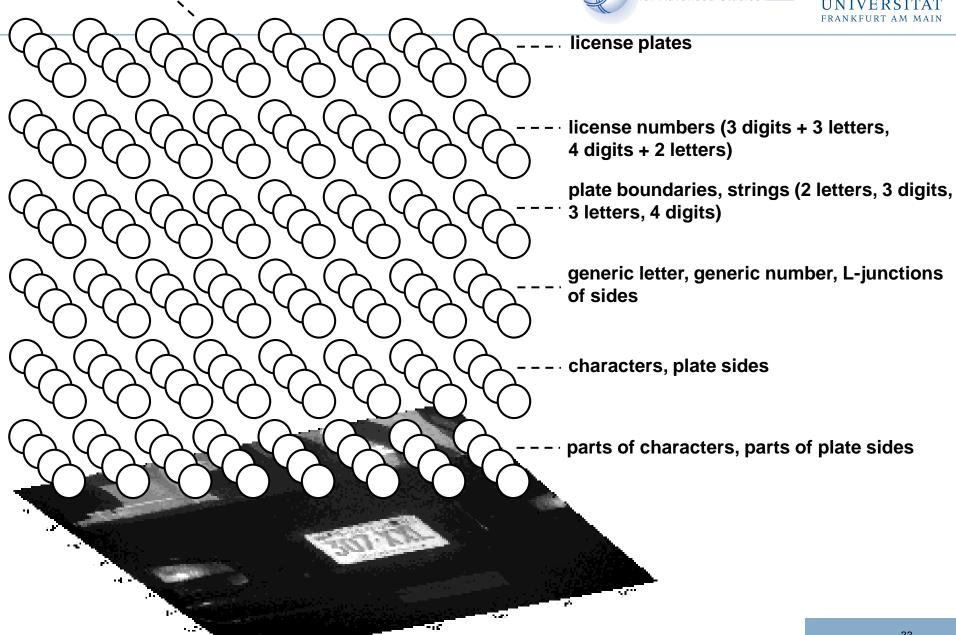


Image interpretation

Original Image

Top 10 objects

Top object

Top 25 objects

Image interpretation

6456 BY 6836 DF 4993 SD 1462 PB 7188 CR 330 XJY

Top objects

Test image

- 385 images
- Six plates read with mistakes (>98%)
- Approx. 99.5% characters read correctly
- Zero false positives

Efficient discrimination: Markov versus Content-Sensitive dist.

Original image

Top object under Markov distribution

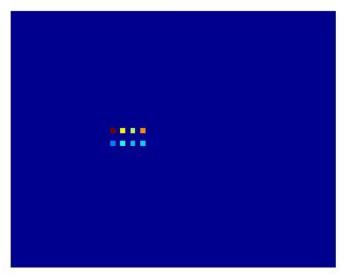
RSITÄT

Zoomed license region

Top object under content-sensitive distribution

Efficient discrimination: testing objects against their parts

Test image



9 active "8" bricks under whole model

1 active "8" brick under parts model

Vision is Content Sensitive

Non-Markovian probability models

Background is Structured, and Made of the Same Stuff

Objects come equipped with their own background models

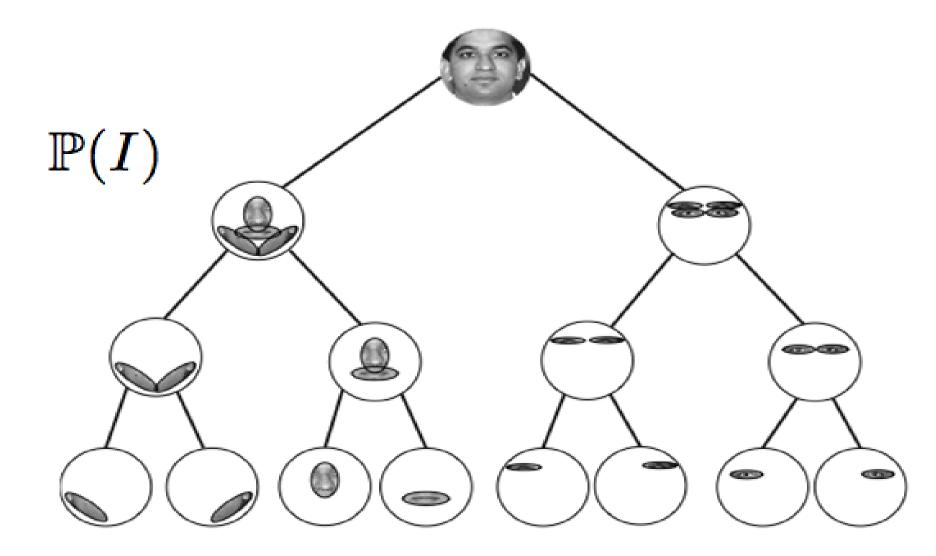
- I. Structured Representation in Neural Systems
- II. Vision is Hard
- **III.** Why is Vision Hard?
- **IV. Hierarchies of Reusable Parts**
- V. Demonstration System: Reading License Plate
- **VI. Generalization: Face Detection**

Rigid → **Deformable**

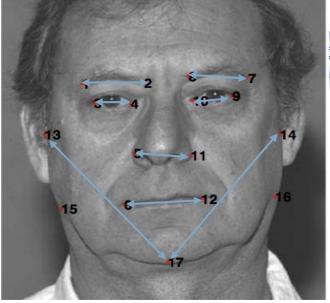
"Black/White" Data Model → Intensity Model

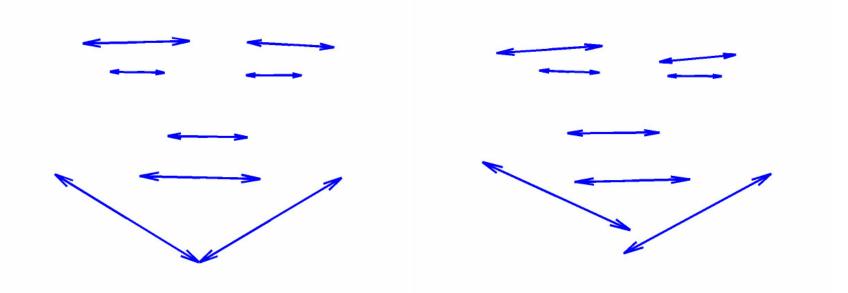
Hand-Crafted Probabilities — Learned Probabilities

Face Hierarchy



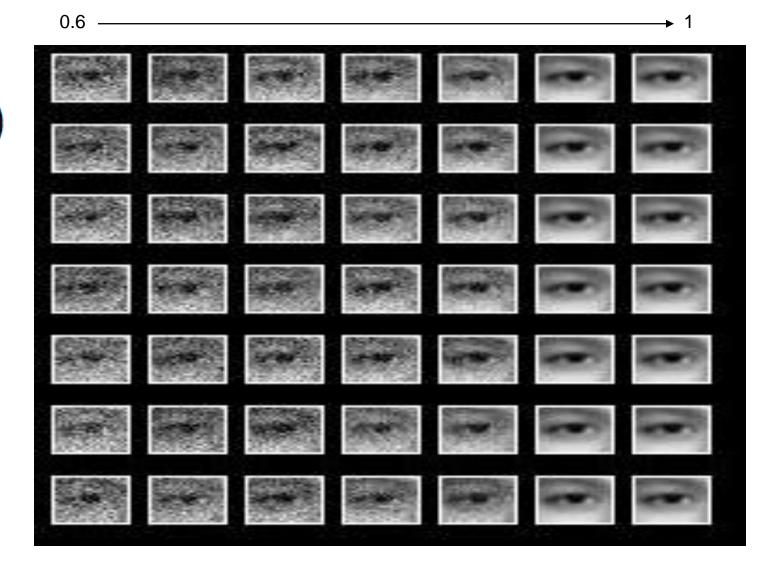
$\mathbb{P}(I)$



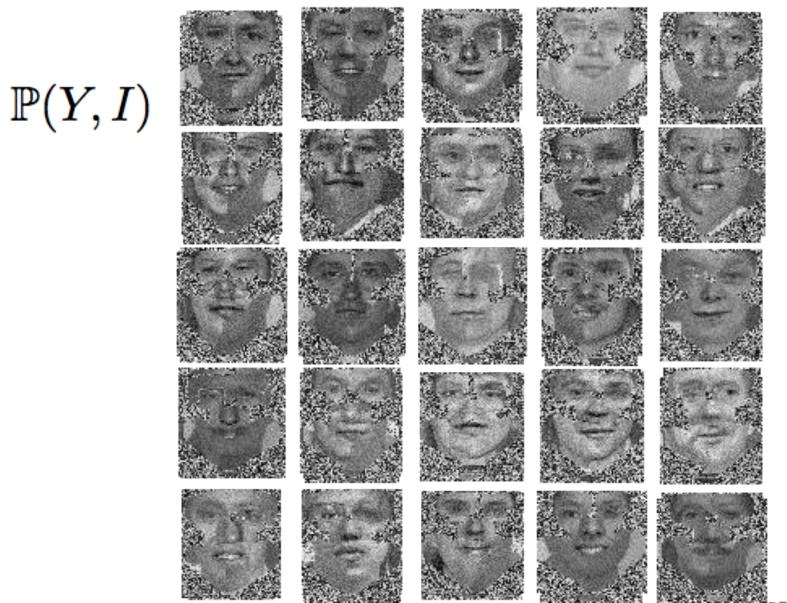


Sampling from Data Model

$\mathbb{P}(Y|I)$



Sampling faces from the distribution



A-1983-0

PATTERN SYNTHESIS

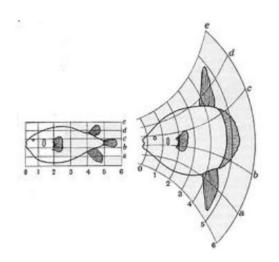
= PATTERN RECOGNITION

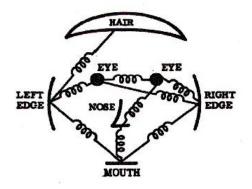
Ulf Grenander

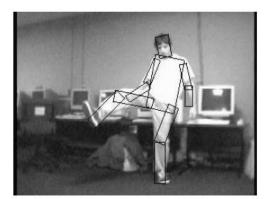
Compositional Models: Pedro Felsenzwalb

Deformable models

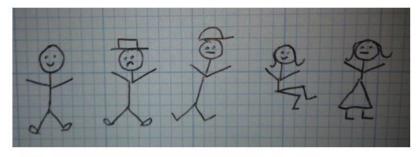
- Can take us a long way...
- But not all the way



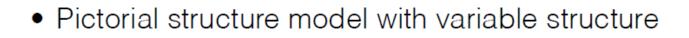




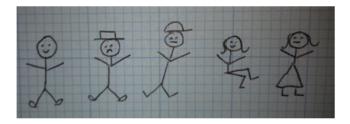
• Object in rich categories have variable structure



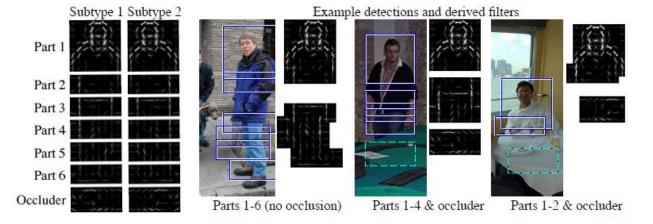
- These are NOT deformations
- There is always something you never saw before
- Mixture of deformable models? too many combined choices
- Bag of words? not enough structure
- Non-parametric? doesn't generalize



- Stochastic context-free grammar
 - Generates tree-structured model
 - Springs connect symbols along derivation tree
 - Appearance model associated with each terminal



- person -> face, trunk, arms, lower-part
- face -> hat, eyes, nose, mouth
- face -> eyes, nose, mouth
- hat -> baseball-cap
- hat -> sombrero
- lower-part -> shoe, shoe, legs
- lower-part -> bare-foot, bare-foot, legs
- legs -> pants
- legs -> skirt



- Instantiation includes a variable number of parts
 - 1,...,k and occluder if k < 6
- Parts can translate relative to each other
- Parts have subtypes
- Parts have deformable sub-parts (not shown)
- Beats all other methods on PASCAL 2010 (49.5 AP)

- Universal And-Or Tree can have an infinite size (as in the example)
- Rules are explicitly named (r1, r2, ...)
- Each or-node A have one child for each rule having A at its left side
- A parsing tree is a sub-graph of a universal and-or tree

Grammar - And-Or trees

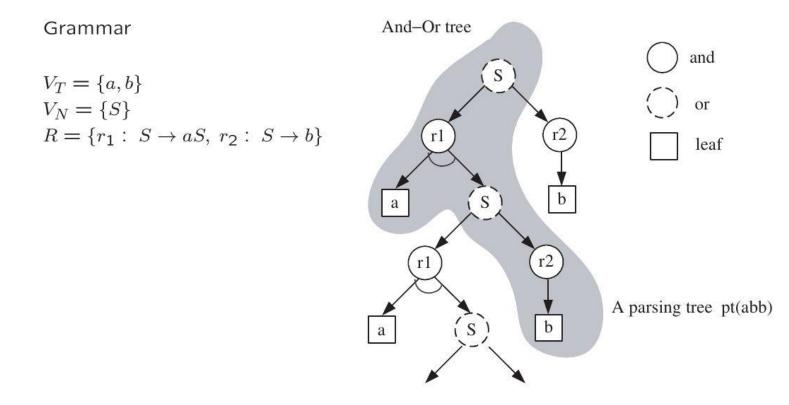


Fig. 2.2 A very simple grammar, its universal And–Or tree and a specific parse tree in shadow.

Visual vs Text Grammars

No left-to-right ordering in language

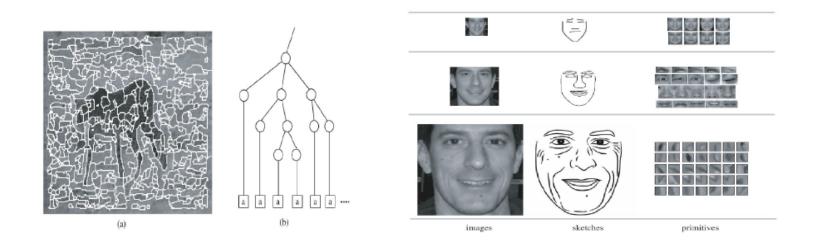
Solution: explicitly add horizontal edges to represent adjancy

Objects appear in arbitrary scales

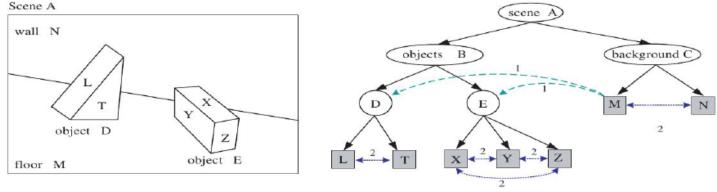
Solution: termination rules at different levels (higher leaves)

Much wider spectrum of quite irregular local patterns

Solution: combine Markov random fields with stochastic grammars



Contextual Information



relation 1: support = $\{(M,D), (M,E)\}$

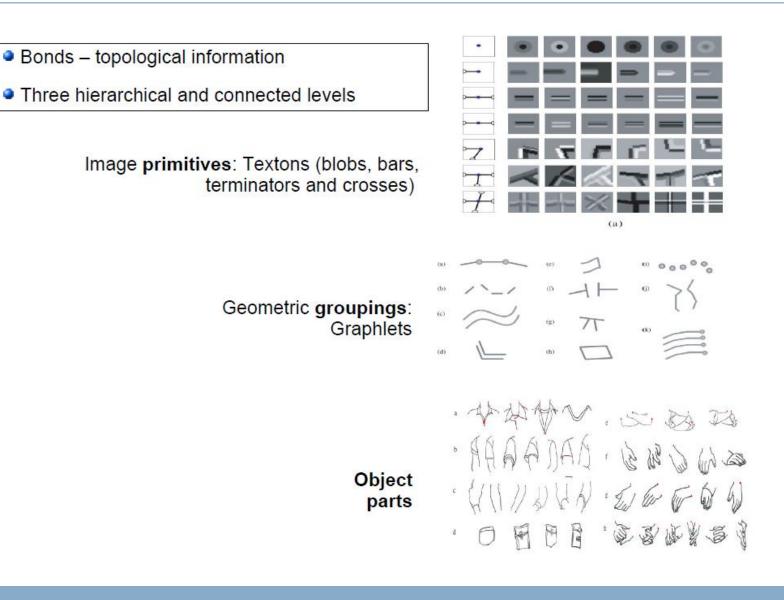
relation 2: adjacency = $\{(L,T), (X,Y), (Y,Z), (Z,X), (M,N)\}$

Fig. 2.11 A parser tree for a block world from [22]. The ellipses represents non-terminal nodes and the squares are for terminal nodes. The parse tree is augmented into a parse graph with horizontal connections for relations, such as one object supporting the other, or two adjacent objects sharing a boundary.

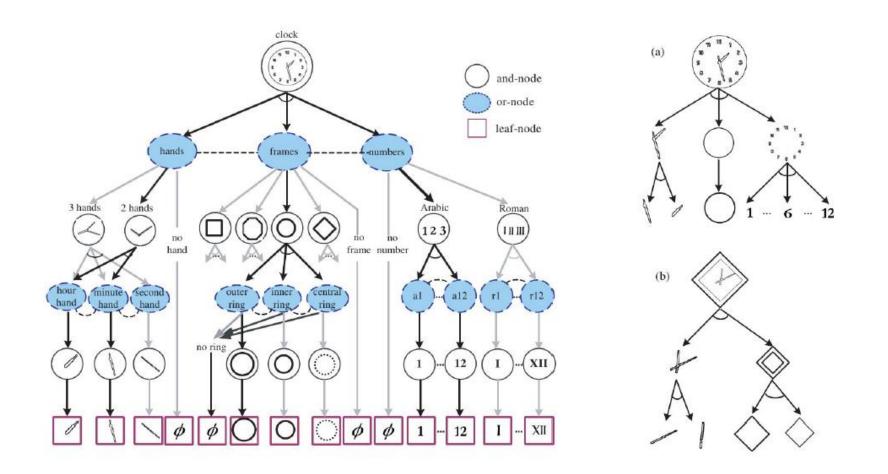
- Horizontal lines to represent relations and constraints:
 - Bonds and connections (more dense)
 - Joints and junctions
 - Interactions and semantics (less dense). E.g.: person eating an apple

- Probabilities for rules (stochastic grammars). One local probability at each Or-node to account for the relative frequency of each alternative
- Probabilities of relations (Markov random fields). Local energies associated with each horizontal link.
- A Configurations is a "word" of the "visual language".

Visual Vocabulary



Clock Example



And-Or Graph (Grammar)

And-Or Parse Graphs

Learning and Estimation with And-OR graphs

- Main elements to be learned: (1) Vocabulary and And-Or tree, (2) Relations Horizontal Line and (3) Parameters
- What is available (training data): Images and parse trees (manually constructed ground-truths)
- Three phases:
 - Learning parameters from training data given relations and vocabulary (gradient method)
 - Learning news relations given vocabulary and learned parameters (inspired in texture synthesis)
 - Learning vocabulary and And-Or tree

Backup