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Outline of Lectures so far: LR o ik

Recap — Greiffenhagen Thesis / Systems Engineering Methodology
Model-Based Recognition Overview (Mann, 1996, Dissertation)

« What is Context ? (Slides based on Derek Hoeim)

« Link to Systems Engineering Methodology

« Simulation for Cognitive Vision (Subbu Veerasavarappu)
 Modeling:

« Compositionality (Based on Slides from Borenstein et al, Stuart Geman)
« Compositional Models (P. Felzenswalb)

« Pattern Grammars Introduction (Song-Chun Zhu, Mumford)

* Goal of last lecture

« Sampling as a mechanism for computation of functions of posteriors in high
dimensions (vision examples from S.C. Zhu)

* Introduce Monte Carlo Methods (based on Owen lecture)
* Introduce SMC (based on Vision examples)
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Goal for Today:

* Recap from last week

* |Introduction to MCMC

 Decide on Project in order to focus next lectures on project related work
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Background: choices of modeling & computing paradigms

» Approximate modeling + Exact computing (e.g. Dynamic programming)
» Exact modeling + Local computing (e.g. Gradient descent)
» Exact modeling + Global computing (MCMC)

Approximate model: you simplify the model, such as removing some edges
in a graph to make it a tree or a chain, and thus removing certain energy terms.

Local computing: you may only find a local minimum (or maximum) and rely

on heuristics to find a “good” one. Unfortunately most of the interesting function, like in deep
learning, has astronomic number of local minima !
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Gentler Introduction to Sampling: @ FIAS Frankfurt Ittt €0 ~
(Source: Robert Collins) - UNIVERSITAT

Monte Carlo Integration

Sampling and Expected Values
Inverse Transform Sampling (CDF)
Ancestral Sampling

Rejection Sampling

Importance Sampling

Markov Chain Monte Carlo
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Integration and Area

The 1dea
What is the pfoLaLil:l), tat a a‘ar(‘

thyowmn wnifotmly at vaudow will h;{ tle
red avea?
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(o,0) |/2 |

http://videolectures.net/mlssO08au_freitas_asm/
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Integration and Area

The 1dea

What s the probabilily, tuat a dayt

thyowwn %M:fﬁml.)r at vaudow will h:{ tle
red avea?
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http://videolectures.net/mlss08au_freitas_asm/




@ FIAS Frankfurt Institwte €3 ~ GOETHE @4
. for Advanced Studies <2 "

UNIVERSITAT
Integration and Area

The 1dea
What s e pfolaalail:l), tat o dart

thyown wwifotmly at vaudow Will hil  tLe
red avea?

[ g

(L

(o,0) - |

http://videolectures.net/mlss08au_freitas_asm/



@ FIAS Frankfurt Institwte €3 ~ GOETHE @4
. for Advanced Studies <2 "

UNIVERSITAT
Integration and Area

The 1dea

What s the Pfol,al:ll:ly tlat a a‘ar(‘

thyowmn wnifotmly at vaudow Will hid tle
red avea?

| N

http://videolectures.net/mlss08au_freitas_asm/



GOETHE @a

@ FIAS Frankfurt Institute ¢

. for Advanced Studies &2 "
UNIVERSITAT

Integration and Area

» As we use more samples, our answer should
get more and more accurate

» Doesn’t matter what the shape looks like

(1) l (1,1)
®@ ©
0,0 ' 0,0)
arbitrary region area under curve

(even disconnected) aka integration!
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Monte Carlo Integration

Goal: compute definite integral of function f(x) froma to b

Generate N uniform random
upper bound samples in upper bound volume

(x)

K
Answer= N * Area of upper bound volume

B T T N * (b-a)(c-0)
count the K samples that
fall below the f(x) curve
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Sampling-based integration is useful for computing the
normalizing constant that turns an arbitrary non-negative
function f(x) into a probability density function p(x).

7 - / F(x)dx
Compute this via sampling (Monte Carlo Integration). Then:

P(x) = ——f()

Note: for complicated, multidimensional functions, this is the
ONLY way we can compute this normalizing constant.
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Expected Values

If we can generate random samples x; from a given
distribution P(x), then we can estimate expected values of
functions under this distribution by summation, rather than
Integration.

That 1s, we can approximate:

E(/() = [ fx)P@)dx

by first generating N 1.1.d. samples from P(x) and then forming
the empirical estimate:

E(fw) = 43 1)
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Example:

a discrete pdf

P(x) P(1)=1/4
s P@-14
1 2 3 P3)=2/4
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generate 10 samples from P(x) P(x)
2231331 ol
1 10 ( )
= — g xi
10X

= 5180 +(3) +403) +8(2) +5(2)
+8(3)+8(1)+8(3) +(3) +¢(1)]

= i [3g(1) +2g(2) +5¢(3)]

X;

13

W =

- 10g(1)+120g(2)+f—0g(3) ~ g(l) +g(2) +g(3)—
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It 1s easy to sample from a discrete 1D distribution,
using the cumulative distribution function.

k N

clk)=Ywi/Yw

N

0

1 k N

cumulative distribution function
- Fx)=P(X<x)
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Inverse Transform Sampling F G M

It 1s easy to sample from a discrete 1D distribution,
using the cumulative distribution function.

1) Generate uniform u
in the range [0,1]

2) Visualize a horizontal
line intersecting bars

3) If index of intersected
bar is j, output new
sample x;=j
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Why it works:

cumulative distribution function
F(x)=PX <x)

mverse cumulative distribution function

F ' t)=min{x:F(x)=t.0<t <1}

Claim: if U is a uniform random variable on (0,1) then X=F"'(U) has distribution function F.

Proof:
P(F~!(U) <x)
= P(min{x: F(x)=U} <x) (defof F 1)
= P(U < F(x)) (applied F to both sides)
= F(x) (def of distribution function of U)

1
CDFof U PU) <=y
=Y
0

0 1
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(Arulampalam) EONTR AR

Algorithm 2: Resampling Algorithm

[, wf, )] = RESAMPLE [fac), i}l

* Initialize the CDF: ¢ =10

® FOR ¢ = 2: N,

— Conetruct CDF: & = ¢;—1 —l-'wi

END FOR

Start at the bottom of the CDF: ¢=1
Draw a starting point: u; ~ U0, N7
FOR j = 1: N,

— Move along the CDF: u; =1 +NG=-1)
— WHILE u; > ¢
* t=1+1 Basic idea: choose one initial small
— END WHILE random number; deterministically
— Assign sample: x]{ = x:i sample the rest by “crawling” up the
— Assign weight: w 5{ =N cdf function. This is O(N).

— Assign parent: -
# END FOR

& & & 4

l_'h-

=4

odd property: you generate the “random”
numbers in sorted order...

Due to Arulampalam
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Algorithm 2: Resampling Algorithm

[(x, w], ¥}Y] = RESAMPLE [{), wi}ls
® Initialize the CDF: ¢ =0
® FOR 7 = 2: N

— Construct CDF: ¢ = ¢—1 + wj

® END FOR
e Start at the bottom of the CDF: =1
# Draw a starting point: wuy ~ U[0, N7t
® FOR j = 1: N,
— Move along the CDF: wu; =1 +NG=-1)
— WHILE u; > ¢
* i =14+1 This approach, called “Systematic
— END WHILE i | Resampling” (Kitagawa ‘96), is known
— Assign sample: x{* = Xj, to produce Monte Carlo estimates with
— Assign weight: wy = NI | minimum variance (more certainty).
— Assign parent: # =1
® END FOR




Example: Sampling from a Weight
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“Likelihood image” to sample from.
Concatenate values into 1D vector and normalize to form prob
mass function . Do systematic resampling. Accumulate
histogram of sample values generated and map counts back
into the corresponding pixel locations.

10 10K
20 20 o
30 30 L

10 20 30 10 20 30 10 20 30 10 20 30

10 20 30

500 samples 1000 samples 5000 samples 10000 samples
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There are many situations in which we wish to draw samples from a given prob-
ability distribution. Although we shall devote the whole of Chapter 11 to a detailed
discussion of sampling methods. it is instructive to outline here one technique, called
ancestral sampling, which is particularly relevant to graphical models. Consider a
joint distribution p(xry....,xrg ) over K variables that factorizes according to (8.5)
corresponding to a directed acyclic graph. We shall suppose that the variables have
been ordered such that there are no links from any node to any lower numbered node,
in other words each node has a higher number than any of its parents. Our goal is to
draw a sample Ty, ..., Tk from the joint distribution.

To do this, we start with the lowest-numbered node and draw a sample from the
distribution p(xy ). which we call 7. We then work through each of the nodes in or-
der, so that for node n we draw a sample from the conditional distribution p( ., |pa,,)
in which the parent variables have been set to their sampled values. Note that at each
stage. these parent values will always be available because they correl.:;pond to lower-
numbered nodes that have already been sampled. Techniques for sampling from
specific distributions will be discussed in detail in Chapter 11. Once we have sam-
pled from the final variable ;. we will have achieved our objective of obtaining a
sample from the joint distribution. To obtain a sample from some marginal distrib-
ution corresponding to a subset of the variables, we simply take the sampled values
for the required nodes and ignore the sampled values for the remaining nodes. For
example, to draw a sample from the distribution p(rg, r4), we simply sample from
the full joint distribution and then retain the values 5. r4 and discard the remaining
values {7 =24}
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P(x2|x1) P(x3|x2) P(x4(x3)

Conditional probability

P(x1) 4 .6 8 .2 5 5| tables where values in
[7 3] 9.5 2 .8 7 3 each row sumto 1

P(x1,x2,x3,x4) = P(x1) P(x2|x1) P(x3|x2) P(x4[x3)
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Ancestral Sampling Dok o A
P(x2|x1) P(x3|x2) P(x4(x3)

Conditional probability

P(x1) 4 6 8 2 .5 .5 | tables where values in
[7 3] 5 5 2 8 7 3 each row sum to 1

P(x1,x2,x3,x4) = P(x1) P(x2|x1) P(x3|x2) P(x4[x3)
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P(x2|x1) P(x3|x2) P(x4(x3)

Conditional probability

P(x1) 4 .6 8 .2 .5 .5 tables where values in
[.7 3] 5 5 2 8 7 3 each row sum to 1
P(x1,x2,x3,x4) = P(x1) P(x2[x1) P(x3|x2) P(x4[x3)

To draw a sample from the joint distribution:

* Start by sampling from P(x1).

*  Then sample from P(x2|x1).

* Then sample from P(x3|x2).

* Finally, sample from P(x4|x3).

«  {x1,x2,x3,x4} is a sample from the joint distribution.
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Need a proposal density Q(x) [e.g. uniform or Gaussian|, and a
constant ¢ such that ¢(Qx) 1s an upper bound for P*(x)

Example with Q(x) uniform
generate uniform random samples
upper bound in upper bound volume

cQx)

the marginal density of the
BE g £ X coordinates of the points
B i \: is then proportional to P*(x)
sz

accept samples that fall . .
below the P*(x) curve Note the relationship to

Monte Carlo integration.
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More generally:

1) generate sample x, from a proposal density Q(x)
2) generate sample u from uniform [0,cQ(x,)]

3) ifu<=P*(x;) accept x;; else reject

O(x;
/C i P(x)
cO(x)
7 P*(x)
O(x)
i
u X;
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Not for generating samples. It 1s a method to estimate
the expected value of a function f(x;) directly

1) Generate x. from Q(x)

2) an empirical estimate of E(f(x)), the expected
value of f(x) under distribution Q(x), 1s then

~

Eol/ () = 3 3 (x)

3) However, we want Ep(f(x)), which 1s the expected
value of f(x) under distribution P(x) = P*(x)/Z
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P*(x)
0w

When we generate from Q(x), values of x where Q(x) 1s
greater than P*(x) are overrepresented, and values
where Q(x) 1s less than P*(x) are underrepresented.

To mitigate this effect, introduce a weighting term
_ P'(x)
O(x:)

Wi
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New procedure to estimate E,(f(x)):
1) Generate N samples x; from Q(x)
2) form importance weights
I (xi)
C 0O)
3) compute empirical estimate of Ep(f(x)), the
expected value of f(x) under distribution P(x), as

2 Wlf(xz)
Wi

Ep(f(x)) =



GOETHE %
UNIVERSITAT

FRANKFURT AM MAIN

FIAS Frankfurt Institute §8
. for Advanced Studies &2
Resampling

Note: We thus have a set of weighted samples (x, w, | 1=1,...,N)

[f we really need random samples from P, we can generate them

by resampling such that the likelithood of choosing value x; 1s
proportional to its weight w.

This would now involve now sampling from a discrete
distribution of N possible values (the N values of x; )

Therefore, regardless of the dimensionality of vector x, we are
resampling from a 1D distribution (we are essentially
sampling from the indices 1...N, in proportion to the
importance weights w;). So we can using the inverse
transform sampling method we discussed earlier.

22.06.2017 30
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Computational efficiency 1s best 1f the proposal
distribution looks a lot like the desired distribution
(area between curves 1s small).

These methods can fail badly when the proposal
distribution has 0 density 1n a region where the
desired distribution has non-negligeable density:.

For this last reason, it 1s said that the proposal
distribution should have heavy tails.
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Sequential Monte-Carlo E

Sequential Importance Sampling (SIS) and the closely
related algorithm Sampling Importance Sampling (SIR)
are known by various names in the literature:

bootstrap filtering
particle filtering
Condensation algorithm
survival of the fittest

General 1dea: Importance sampling on time series data,
with samples and weights updated as each new data

term 15 observed. Well-suited for simulating Markov
chains and HMMs!

22.06.2017 32
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Sampling in High-dimensional Spaces

Standard methods fail:
* Rejection Sampling
— Rejection rate increase with N -> 100%
* Importance Sampling
— Same problem: vast majority weights -> 0

Intuition: In high dimension problems, the “Typical Set” (volume of
nonnegligable prob in state space) is a small fraction of the total space.

ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert / Tu October 2005
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consider ratio of volumes of hypersphere inscribed inside hypercube

r

2D

~
NI

4 ]

X X r
V(S(r) m? =n V(si(r) $m® n
—_— :—,,:—%75% = 3 =—=~50%
V(H(2r) 47 4 V(H3(2r)) 8r 6

Asymptotic behavior:

most of volume of the hypercube lies outside of
hypersphere as dimension d increases

http://www.cs.rpi.edu/~zaki/Courses/dmcourse/Fall09/notes/highdim.pdf
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Segmentation Example

* Binary Segmentation of image

each pixel has two
states: on and off

ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert / Tu October 2005
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Probability of a Segmentation

Very high-dimensional
256*256 pixels = 65536 pixels
* Dimension of state space N = 65536 !!!!

# binary segmentations = finite , but...
265336 = 2% (19726 >>1077= atoms in universe

ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert / Tu October 2005
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Representation P(Segmentation)

* Histogram ? No !

("‘

* Assume pixels independent ? ignores neighborhood
_ structure of pixel lattice
P(x1x2x2‘ ")_P(XI)P(XZ)P(X3) «++= and empirical evidence

that images are “smooth”
—

» Approximate solution: samples !!!




@ FIAi Erankfuglélsti;pte "
- . or Advanced otudies ”
Metropolis Algorithm IR

Brilliant Idea!

* Published June 1953
* Top 10 algorithm !

» Set up a Markov chain
* Run the chain until stationary

* All subsequent samples are from stationary
distribution

ICCVO05 Tutorial: MCMC for Vision. Zhu / Dellaert / Tu October 2005
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https://www.youtube.com/watch?v=12eZWG0Z5gY

22.06.2017 39
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Markov Chain:
+ A sequence of random variables Y ,Y,,Y;,...
+ Each variable has a distribution over states (X,,X,,Xj,...)

 Transition probability of going to next state only depends
on the current state. e.g. P(Y ., =X, | Y = X))

\ / transition probs can be arranged

in an NxN table of elements

kij = P(Yn+1=Xj | Yn = Xl)

where the rows sum to one
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MCMC Sampling: General Idea

Start in some state, and then
run the simulation for some
number of time steps. After
you have run it “long enough”
start keeping track of the states
you visit.

0.1 0.3

... X1 X2 X1 X3 X3 X2 X1 X2 X1 X1 X3 X3 X2..}

These are samples from the distribution you want,
so you can now compute any expected values with
respect to that distribution empirically.

22.06.2017 41
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every state is accessible from

every other state. expected return time to every state is finite

If the kov chain is positive recurrent, there
exists a stationary distribution. If it is positive
recurrent and irreducible, there exists a unique
stationary distribution. Then, the average of a
function 7over samples of the Markov chain is
equal to the"average with respect to the
station distribution

This is what we want to compute,
We can compute this empirically as and is infeasible to compute in
we generate samples. any other way.

22.06.2017 42
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A simple Markov chain

ICCV05 Tutorial: MCMC for Vision.

Zhu | Dellaert / Tu

K=

0.1 05 06
0.6 02 03
0.3 03 0.1

|

K= transpose of transition
prob table {k ;;} (cols sum

to one. We do this for
computational convenience
(next slide)
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Question

Assume you start in some state, and then run the
simulation for a large number of time steps. What
percentage of time do you spend at X1, X2 and X3?

0.1

K=
0.1 05 0.6
0.6 02 0.3
0.3 03 0.1




Example:

Four initial distributions

[100]

[010]

[001]

GOETHE %
UNIVERSITAT
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FIAS Frankfurt Institute §8
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[.33.33.33]

] (Jo initial distribution

Ill 4, — K (] istribution after one time step
M 0. =Kq,=Kq,

II. Q3:Kq3:K3 d, = K3 do
[l

o

[n

(o

[
Meq,-Kq=...K"q,

all eventually end up with same distribution -- this is the stationary distribution!

22.06.2017
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Eigen-analysis

0.1000 0.5000 0.6000 KE =ED in matlab:.
0.6000 0.2000 0.3000 [E,])] = elgs(K)

0.3000 0.3000 0.1000

Eigenvalue v, always 1

E= (Perron-Frobenius theorem; K is column stochastic)
0.6396 0.7071 -0.2673 . . . .
0639 07071 08018 Stationary distribution
04264 0.0000 -0.5345 %= 8 / sum(el)

. Le. Kn=mn

1.0000 0 0

Note also connection to power method for computing

0 -0.4000 0 eigenvector associated with largest eigenvalue.
0 0 -0.2000
ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert / Tu October 2005
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The Web as a Markov Chain

ﬁ ~ |i|

The PageRank of a webpage as used by Google is defined by a Markov chain. It is the
probability to be at page / in the stationary distribution on the following Markov chain on
all (known) webpages. If Vis the number of known webpages, and a page 7 has 47 links
then it has transition probability (1-g) /47+ ¢/Nfor all pages that are linked to and ¢g/Nfor
all pages that are not linked to. The parameter ¢is taken to be about 0.15.
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FIAS Frankfurt Institute @
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Google Pagerank

Pagerank == First Eigenvector of the Web Graph !

_h\“

/ www. yahoo . com

Computation assumes a 15% "random restart” probability

Sergey Brin and Lawrence Page , The anatomy of a large-scale hypertextual
{Web} search engine, Computer Networks and ISDN Systems, 1998

ICCVO05 Tutorial: MCMC for Vision. Zhu / Dellaert / Tu October 2005
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Another Question EEN L

Assume you want to spend a particular percentage of
time at X1, X2 and X3. What should the transition
probabilities be?




% FAS Frakurt ntiuts £ GOETHE @L

for Advanced Studies

Thought Experiment N ERSTAT

L - a

Consider only two states. What transition probabilities should we
use so that we spend roughly equal time in each of the two states?
(L.e. 50% of the time we are in state 1 and 50% of the time we are

in state 2)
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Detailed Balance

» Consider a pair of configuration nodes r,s

« Want to gencrate them with frequency relative to their
likelihoods L(r) and L(s)

» Let q(r,s) be relative frequency of proposing configuration
s when the current state 1s r (and vice versa)

. " q(r;s)
A sufficient condition to generate r,s

with the desired frequency is L(r)

L(r) q(r;s) = L(s) q(s,r) L(s)

“detailed balance”

q(s,r)
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 In practice, you just propose some transition probabilities.

« They typically will NOT satisfy detailed balance (unless
you are extremely lucky).

« Instead, you “fix them” by introducing a computational
fudge factor

Detailed balance:

a* L(r) q(r,s) =L(s) q(s,r) a* q(r,s)

Solve for a: L(r)

a = L(s) q(s,r) L(s)
L(r) q(r,s)

q(s,r)
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Metropolis-Hastings Algorithm

This leads to the following algorithm:
0. Start with x(V), then iterate:
1. propose x” from q(xV.x")

Note: you can just make up

transition probability q
2. calculate ratio on-the-fly, using whatever
criteria you wish.
~a(x)g(x' x™")
B (1) (1)
m(x)g(x T, x")

3. ifa>1 accept x(t"D=x’
else accept with probability a
if rejected: x(t*D=x®

—— diff with rejection sampling: instead of
throwing away rejections, you replicate

ICCVO05 Tutorial: MCMC for Vision. Zhu | Dellaert / Tu . .
them into next time step.
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Proposal Density q(x,x’)

Note: the transition probabilities q(x,x) can be arbitrary
distributions. They can depend on the current state and
change at every time step, if you want.

<1 q(xV,x)

q(x*.x)

.
. "
.

-
-
.........

z() & z?) &

ICCVO05 Tutorial: MCMC for Vision. Zhu / Dellaert/ Tu October 2005
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% simple metropolis hastings example
% Bob Collins, Penn State University

fdesired stationary distrbution

P(Xl) — .2 pdist = [.2 .3 .5)

start state
state = [;
P(XZ) .3 statelist = [state);
for i=1:10000
P 3 5 $proposal function (nonsymmetric)
X . tgo to mod(state-1) with prob .4
$go to mod(state+l) with prob .6
tmp = rand(l);
if (tmp <= .4)
propstate = mod(state-1-1,3)+41;
proptrans = .4;
else
propstate = mod(state-1+1,3)+1;
proptrans = .6;
end
a = (pdist(propstate) * (l-proptrans)) / (pdist(state) * proptrans);
tmp = rand(l);
if (tmp <= a)

$accept

state = propstate;

$else reject -- leave state the same
end
statelist = [statelist state);

Proposal distribution s
q(xi, (xi-1)mod3 ) = .4 G o

length(find(statelist==3)));
. . - prob = prob / sum(prob);
q(Xl’ (X1+1)m0d3) a '6 bar([prob; pdist]')

prob
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* there are many variations on this general
approach, some derived as special cases of
the Metropolis-Hastings algorithm
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When q is symmetric, i.e., q(X,x")=q(x",X) : e.g. Gaussian
0. Start with x(V), then iterate:
1. propose x’ from q(xV.x")
2. calculate ratio camcels
NGO I (LV:3,
7( X! )) q(X, X )

3. lf a>l accept x(t+l)=xs
else accept with probability a
if rejected: x(t*D=x®

ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert/ Tu October 2005
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Gibbs Sampler

Special case of MH with acceptance ratio always 1 (so you
always accept the proposal).

_ a(y.|x.) Yo =X i=1,..,k,
9%, y) = { 0 otherwise.

Whel‘e X = (xl) cees Xy Xpggs oo xk)& [ = la vy k9 1<k= P,

With this proposal, the corresponding acceptance probability is given by
(y) q(y, X)
7(x) g(x. y)

_ Jf(y)/ﬂ(y,|X(,))
7(x) /7(x, |y ()

a(x,y) =

n(Y)/“(Y:ly(r)) .
= , since Y., = X,
() /70(%, %) Yo = %o
T Y .. .. .
= Jrg:;;’ by definition of conditional probability for @ = (@, 6,,),

=1, since y,, = X,).

S.Brooks, “Markov Chain Monte Carlo and its Application”
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simpler version, using 1D conditional distributions

Gibbs Sampling

UNIVERSITAT
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- Example: target m(x,.X, ) 2

- Algorithm:
- alternate between x,; and x,
- L. sample from x, ~ P(x,[x,)
- 2. sample from x, ~ P(x,[x,)
After a while: samples from target
density !

Iy
- Sampler equivalent of “Gauss-
Seidel” iterations or line search, or ...
ICCV05 Tutorial: MCMC for Vision. Zhu / Dellaert / Tu October 2005



FIAS Frankfurt Institute @
for Advanced Studies &%

GOETHE @4

Example A AR
1D conditional distr
I I2
.._.,' '-."' ¢ (t)
...... g el (X, [x,)
L/ x(®)
(a) (b) -
R I
- d
(©) = @ -

1D conditional distr

interleave
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» introduce a “temperature” term that makes it more
likely to accept proposals early on. This leads to
more aggressive exploration of the state space.

« (Gradually reduce the temperature, causing the

process to spend more time exploring high
likelihood states.

« Rather than remember all states visited, keep track
of the best state you’ve seen so far. Thisis a
method that attempts to find the global max
(MAP) state.

22.06.2017 61
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« Exploring alternative state spaces of differing
dimensions (example, when doing EM, also try to
estimate number of clusters along with parameters
of each cluster).

« Green’s reversible-jump approach (RJIMCMC)
gives a general template for exploring and
comparing states of differing dimension.
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Problem statement: Given a foreground image, and person-sized
bounding box*, find a configuration (number and locations) of
bounding boxes that cover a majority of foreground pixels while
leaving a majority of background pixels uncovered.

foreground
image

person-sized
bounding box

*note: height, width and orientation of the
bounding box may depend on image
location... we determine these relationships
beforehand through a calibration procedure.

W.Ge and R.Collins, "Marked Point Processes for Crowd Counting," IEEE Computer
Vision and Pattern Recognition (CVPR'09), Miami, FL, June 2009, pp.2913-2920.

22.06.2017 63
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To measure how “good” a proposed configuration is, we
generate a foreground image from it and compare with the
observed foreground image to get a likelihood score.

config = {{x,,y;,w,h,theta,},{x,,y,,w,,h,,theta,},{x;,y;,w3,h;,theta;}}

generated foreground image observed foreground image

Likelihood Score

22.06.2017 64
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LIKCIINOO0U dCOre

Bernoulli
distribution model

poo = pl(yi=0|x;=0) = prob of observing background given a label of background

poi = p(yi=0|x;=1) = probof observing background given a label of foreground

pio = plyi=1x;=0) = prob of observing foreground given a label of background
)

P11 p(yi=1lx; =1) = prob of observing foreground given a label of foreground

coo = count of pixels where observation is background and label is background
co1 = count of pixels where observation is background and label is foreground
cjo = count of pixels where observation is foreground and label is background
c¢11 = count of pixels where observation is foreground and label is foreground
likelihood
L(Y|X) Hp(yelxa = poo ™ por” pro“p11"
simplify, by
assuming po=pui=p and po=pro=1—p Number of
log likelihood pixels
logL(Y|X) = (coo+cn)logu+(co1+c .
SUTX) = oo bou)logiton +og that disagree!

1+Clo)10 (1—p)
logu —log(1 — )]

= Nlog,u—
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The space of configurations is very large. We can’t exhaustively
search for the max likelihood configuration. We can’t even really
uniformly sample the space to a reasonable degree of accuracy.

config, = {{x;,y,,W;,hy,theta },{x,,y,,w,,h,,theta,},... (X, ¥, W,,h,theta, }}

Let N = number of possible locations for (x,,y;) in a k-person
configuration.

Size of config, = Nk
And we don’ t even know how many people there are...

Size of config space = N+ N1+ N2 + N3 + ...

If we also wanted to search for width, height and orientation, this
space would be even more huge.



@ FIAS Frakfur nstiut @ GOETHE @,
for Advanced Studies "
. IVERSITAT
Searching for the Max UNIVERSITAT

* Local Search Approach

— Given a current configuration, propose a small
change to 1t

— Compare likelthood of proposed config with
likelithood of the current config

— Decide whether to accept the change
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Proposals

» Add a rectangle (birth)

current proposed
configuration configuration

22.06.2017 68
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Proposals

« Remove a rectangle (death)

e=)

current proposed
configuration configuration

22.06.2017 69
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Proposals

* Move a rectangle

current proposed
configuration configuration

22.06.2017 70
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« Naive Acceptance

— Accept proposed configuration 1f it has a larger
likelihood score, 1.e.

Compute a = L(proposed)
L(current)
Acceptifa>1

— Problem: leads to hill-climbing behavior that gets
stuck 1n local maxima

/’

But we really want
to be over here!

Brings us
here

Likelihood




@ flAi zrankfuﬁlgsti;gte 1
. or Advanced otudies ”
MCMC Sampling Dok o A

* Metropolis Hastings algorithm

Propose a new configuration

Compute a = L(proposed) q(proposed,current)
L(current) | g(current,proposed)

Acceptifa>1

Glse accept anyways with probability a

Difference from
Naive algorithm
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« The MCMC approach

— Generates random configurations from a
distribution proportional to the likelithood!

Generates many high
likelihood conﬁgurations\\\_)

Likelihood

— Generates few low likelihood ones. /

— This searches the space of configurations in an
efficient way.

— Now just remember the generated configuration
with the highest likelithood.
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Max likelihood configuration Looking good!
num objects: 4 etime: 1.7 sec num objects: 4 penalty 0.10 itr: 1500...
|y ' s —
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Examples

0100 150 200 B0 30 30 400 40
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Other Examples

CVPR, ICCV Papers

Bayesian Human Segmentation in Crowded Situations *

Tao Zhao Ram Nevatia
University of Southern California
Institute for Robotics and Intelligent Systems
Los Angeles, CA 90089-0273

{taozhao|nevatia}@usc.edu

Fast Crowd Segmentation Using Shape Indexing

Lan Dong* Vasu Parameswaran, Visvanathan Ramesh, Imad Zoghlami
Dept. of Electrical Engineering Real-Time Vision and Modeling Department
Princeton University Siemens Corporate Research
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