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Summary of Lectures

System engineering examples
— Greiffenhagen et al (2001)
— S. Veerasavarappu et al (2013-17) Simulation for vision
— R. Hota et al (2013-17), Weis et al (2015-17)
Overall theme
(Context, Task,Performance) -> Hw plus Sw configuration (hw + programs plus
parameters)
— Context, Task, Performance
— What is context -- Derek hoeim's Book (2015)
— Task - estimation of world state (or parts of it)
— Performance - bias, variance , accuracy vs speed tradeoff
— What is a Program (Inference Engine)?

— Program - filters and combinations (feedforward, deep, feedback and
recurrent) (ML Literature, Bio-inspired vision literature 2016)

— Program Design — Model based vs Data Driven, or Hybrid combinations
— Model based design - (Mann, 1996)
— Graphical model illustration using vscp
— Inference Aggregation Indexing , prediction, verify loops , Hierarchical
— What about Performance? (Ramesh, 1995)
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Input Space specification:
» Object-oriented Graphical Models describing generative models for video data given
scene variables

« Scene variables include:

— Scene Geometry (static geometry), Material distribution, Environmental Conditions (e.g. weather,
indoor, outdoor), Object types in the scene, their shape, dynamics, Illumination distribution (e.g.
source positions, dynamics), Camera (Sensor) positions, orientations in the world, projection
geometry, photometric model

Task Specification:
« Desired subset of scene parameters to be estimated from video (for example):

— Counts of object
— Object types, Object tracks, Object geometry, Object behavior

— Analysis of Groups of objects
— lllumination/weather state
Performance Requirements:
* For each task: probability of error (e.g. p_miss, p_false in two class situations)
« Accuracy in Parameter estimates (tolerances)
» Graceful degradation, Self-Diagnosis
« Computational speed
« Time delay to respond (i.e for computation of results), etc.

Requirements Specification for Real-time %« FIAS Frankfut Instute @) GOETHE &
or Advanced Studies &%
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Modularity in Specifications:

— Nested model spaces to allow for various degrees of approximations in the model
space

Scalability of Design Solutions:

— Ability to derive families of solutions where the complexity of system is scaled
according to complexity of tasks, input space approximations.

Quantifiability:
— Ability to provide quantitative performance models of system designed as a function of
Graphical Model parameters and tuning parameters/constants of system.
Computational Complexity tradeoff vs Accuracy:

— Ability to quantify computational complexity of system as function of OODBN
parameters.

— Use this quantification to provide tradeoffs (e.g.) Reduce accuracy for reducing
computation.

Modular Extensibility:

— Design should allow for modular extensibility when input spaces in one application
differ from another in a minor way.

Mapping to Hardware:

— Design should allow ease of mapping to target hw. (could address this as a separate
phase. (i.e). Construct designs for general purpose architectures and then have a
systematic approach to translation of design to hw.
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Paradigms for Design

* Model Based Design

— Generative Models — I1.e. Probabillistic Graphical
Models (Interpretation is estimation of world
state given observations. Generative model
uses a likelihood model for sensor observations
(physics-based) and Prior model.)

- Data Driven Machine Learning

— Neural Networks

— Boosting, Support Vector Machines, etc.
» Hybrid designs (combination)
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Formalize domain (i.e. generative) models for
application contexts

Formalize system task requirement specification
Translate requirements to formal generative models

Link generative models to approximate inference
engines (i.e. module and system implementations)

Performance characterization of design (white box
analysis)
Model Validation and Iteration of Design (comparison of

empirical and theoretical predictions and model/design
Improvement)
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Contexts

Tasks
Performance
quirements

Space of HW + SW Design
Configurations

“(Contexts, Task and Performance Requirements) - to (System Designs)”
Extension to new design settings — via re-use of context elements and identification of gaps in
models
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“Wisual Cognition i1s "‘guasi-invanant Indexing’ followed by detailed estimation {or deliberation, iteration) — component level research is quite
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Essence of Overall Design Framework: {Application contexts} x {sensor types + configurations} x {questions posed} x {perf
specs/requirements} -—> {specific hypotheses generators} + {reasoning / optimization engine}
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Inputimage Rank Oder llluminaiton com pensation Morm RGE Background Subtraction Shadow Detection
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Performance
Evaluation

Refine:

Modify

Parameters

Design Work flow — From Skeleton Designs to performance
evaluation
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Solution Approaches

 Model Based Design
« Data Driven Design

* Hybrid Approach : Considering both model and
data driven designs
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Solution Approaches

1. Model Based Design

DATA

l

Build model Infer hidden quantities Criticize model

Mbtures and mbed-membership models " Markovchan Monte Carlo, — Performance on a task
time-series modek, generalzed Inear modds, variational inference, prediction on unseen data,
factor models, Bayesian nonparametrics Laplace approxmat ion posterior predictive checks

| |

Apply model

Predictive systems,
data exploration,
data summarz ation

REVISE MODEL

General setup of Model based methods.
Image Source: [6], Blel (2015)
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Classic Example for Model Based Design
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Left: Bayesian Network for Text Appearance in an Image.
System Design (See [3])
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24x24x1

2. Data Driven Design

16X 16x48

F1x1x128 L 1x1x128

‘ 1x1x37 ! ' 1x1x%63
Case-insensitive Case-sensitive
Characters - Characters

Convolutional Neural Networks. The method uses four CNNs. These share the
first two layers, computing "generic" character features and terminate in
layers specialized into text/no-text classification, case-insensitive and case-
sensitive character classification, and bigram classification. Each connection
between feature maps consists of convolutions with maxout groups. Figure
and caption from [7]
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Solution Approach:
Hybrid B

Combine strengths of model-based thinking as well as
data driven machine learning.

Several feature maps are extracted based on several
feature extraction kernels.

This Is followed by a deep neural network architecture or
any data driven architecture for the purpose of
classification and recognition.
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« Camera geometry -- projection model (orthographic, perspective), camera blur, lens
distortion, intrinsic parameters, extrinsic parameters.

« Camera - gray level transformation model of camera pipeline
« Shape representation (surface/contour, volume)

« Material property (brdf)

« Appearance (texture map) dictionary

« Graphics pipeline parameters
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« Image models for textures
« sparsity based
*  MRF model Pipelines
« Texture classification
« Hand engineered features plus ML - deep learning
» Texture synthesis
« Deep learning
« Exemplar based with smoothness constraint (efros)
* Bio-inspired (wavelets plus correlation, constrained sampling) - mrf models




% FAS Frakurt ntiuts £ GOETHE @L

for Advanced Studies

Spatial Statistics - Simulation ONIVERSITAT

Simulation Models —

« spatial point processes

poisson point process

* in homogenous process

» cluster processes (cox, matern hard core, etc)
* Boolean germ-grain models

* dead leaves model

« Simulation apparoach

rejection sampling

Markov Chain Monte Carlo

CFTP - Coupling from the past

Representations: Sparsity based reps, Texture models using MRF's

 Open questions:
Realism of models ?
Model validation against real data
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« Groundtruth collection seems to be an obstacle for Supervised learning based
vision systems.

 Major advances in Computer Graphics (CG) field has spurred a renewed recent
interest to utilize CG for CV.

(a) 2001 (b) 2003 | (c) 2005

@ 2006 | (e) 2013 - (£) 2015

Figure 1-1: Evolution of Graphics in Video games from 2001 to 2016
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Lambertian Path traced (130 spp)
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Problem Statement

In 1990’s, CV community had been skeptic to use CG to train.

« CG may use some mathematical simplifications and approximations that CV models
based on. Hence, they might generate ideal or near ideal to CV models.

« That was good question in the days of model-driven designs.

Recent video games may also use approximated models for realistic effects for
the sake of interactive real time display.

* Now, in the days of data driven designs, how these approximations effects the CV ?

Deviations of Scene (parameters) distributions plus Physical accuracy of
rendering processes contributes towards Domain-shift issue b/w virtual and real
world data.

Especially, the impact of modeling errors and computational rendering
approximations, due to choices in the rendering and generation pipeline, on
trained CV systems generalization performance is still not clear.
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« No free lunch in the selection of P and G for data simulation processes.
* In principle, V6,, and VG impact the magnitudes of VD, V'S, and VA.

« What is the impact of G on AA?
* Real time Photo-realism vs Expensive physics-realism?
« What is the impact of parameters of P(8,,) on AA?
« How far can we go with an arbitrary scene generative model?
« Can unsupervised generative learning from target real data help?

« However, one can bypass these issues by simply adding some real samples to
simulated data.
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Thesis / case study — Brakelight transition detection

@ @
World(t)

\

car-pos
car-spatial
car-BL/TL

tllum
sensor-tf
SCNSOT-EXIT
sensor-intr
pixel
group
pairs

7

Obs(1)

bad-pose of observed car

spatial layout of observed car's parts
Brakelight/Tmllight charactenstics
{eolor, emission-strength)
illumination

transfer function

extrinsic parameters

intrinsic parameters

observed pixel values

spatial poolings of pixels
configurations of groups

12 Dezember 2016  Continental Inteligent Transportation Systems - confidential
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Worldmodel:
* Latent variables
« (Causal relations

Populate by

» Specifications
» Physics
 Simulations

Mapping to algorithms & pipeline:

» |dentification of relations of latent
contextual variables and observations ->
submodalities

* C,T,P->Modules + Parameters

Model-based Sys-engy approach:

* Loose coupling, single module
evaluation

* Uncertainty propagation
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Next Classes

— Introduction to Probabilistic Graphical Models
— Pattern Grammars and Inference
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