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Summary of Lectures 

System engineering examples

– Greiffenhagen et al (2001)

– S. Veerasavarappu et al (2013-17)  Simulation for vision 

– R. Hota et al (2013-17), Weis et al (2015-17)

Overall theme

(Context,Task,Performance)   Hw plus Sw configuration (hw + programs plus 

parameters) 

– Context, Task, Performance

– What is context -- Derek hoeim's Book (2015) 

– Task - estimation of world state (or parts of it) 

– Performance - bias, variance , accuracy vs speed tradeoff

– What is a Program (Inference Engine)?

– Program - filters and combinations (feedforward, deep, feedback and 

recurrent) (ML Literature, Bio-inspired vision literature 2016)

– Program Design – Model based vs Data Driven, or Hybrid combinations

– Model based design - (Mann, 1996) 

– Graphical model illustration using vscp

– Inference Aggregation Indexing , prediction, verify loops , Hierarchical

– What about Performance?   (Ramesh, 1995)  
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“Challenge in the context of

Computer Vision is in

ambiguity and uncertainty in

models covering Diverse

Contexts”
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Requirements Specification for Real-time 

Vision Systems 

Input Space specification:

• Object-oriented Graphical Models describing generative models for video data given 
scene variables

• Scene variables include: 

– Scene Geometry (static geometry), Material distribution, Environmental Conditions (e.g. weather, 
indoor, outdoor),  Object types in the scene, their shape, dynamics, Illumination distribution (e.g. 
source positions, dynamics), Camera (Sensor) positions, orientations in the world, projection 
geometry, photometric model 

Task Specification: 

• Desired subset of scene parameters to be estimated from video (for example):

– Counts of object

– Object types, Object tracks, Object geometry, Object behavior

– Analysis of Groups of objects

– Illumination/weather state 

Performance Requirements: 

• For each task: probability of error (e.g. p_miss, p_false in two class situations)

• Accuracy in Parameter estimates (tolerances)

• Graceful degradation, Self-Diagnosis

• Computational speed

• Time delay to respond (i.e for computation of results), etc.



402.05.2017

Desired Properties of 

Vision System Designs 

• Modularity in Specifications:

– Nested model spaces to allow for various degrees of approximations in the model 
space 

• Scalability of Design Solutions: 

– Ability to derive families of solutions where the complexity of system is scaled 
according to complexity of tasks, input space approximations.

• Quantifiability:

– Ability to provide quantitative performance models of system designed as a function of 
Graphical Model parameters and tuning parameters/constants of system.

• Computational Complexity tradeoff vs Accuracy:

– Ability to quantify computational complexity of system as function of OODBN 
parameters.

– Use this quantification to provide tradeoffs (e.g.) Reduce accuracy for reducing 
computation. 

• Modular Extensibility:

– Design should allow for modular extensibility when input spaces in one application 
differ from another in a minor way. 

• Mapping to Hardware:

– Design should allow ease of mapping to target hw. (could address this as a separate 
phase. (i.e). Construct designs for general purpose architectures and then have a 
systematic approach to translation of design to hw. 
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Paradigms for Design  

• Model Based Design

– Generative Models – i.e. Probabilistic Graphical 

Models  (Interpretation is estimation of world 

state given observations. Generative model 

uses a likelihood model for sensor observations 

(physics-based) and Prior model.) 

• Data Driven Machine Learning 

– Neural Networks

– Boosting, Support Vector Machines, etc.

• Hybrid designs (combination) 
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Systems Engineering:

Key Ideas

• Formalize domain (i.e. generative) models for 
application contexts 

• Formalize system task requirement specification

• Translate requirements to formal generative models 

• Link generative models to approximate inference 
engines (i.e. module and system implementations)

• Performance characterization of design (white box 
analysis)

• Model Validation and Iteration of Design (comparison of 
empirical and theoretical predictions and model/design 
improvement)
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Key Insight: Learning of

(C, T, P)  Program mappings

Contexts

Tasks

& Performance

Requirements

Space of HW + SW Design

Configurations

“(Contexts, Task and Performance Requirements)  to (System Designs)”  

Extension to new design settings – via re-use of context elements and identification of gaps in 

models
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Methodology Summary
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Visual Cognition: Hierarchical 

Indexing + Iterative Estimation

5/2/2017
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Computational Neuroscientist‘s

View: (C. Von der Malsburg, 2011)
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Demo Video Illustrating 

Decomposition



System Design Process

Design Work flow – From Skeleton Designs  to performance 

evaluation



Solution Approaches

• Model Based Design

• Data Driven Design

• Hybrid Approach : Considering both model and 

data driven designs



Solution Approaches

1. Model Based Design

General setup of Model based methods. 

Image Source: [6], Blei (2015)



Solution Approaches

Classic Example for Model Based Design

Left: Bayesian Network for Text Appearance in an Image. 

System  Design  (See [3])
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Solution Approaches

2. Data Driven Design

Convolutional Neural Networks. The method uses four CNNs. These share the

first two layers, computing "generic" character features and terminate in

layers specialized into text/no-text classification, case-insensitive and case-

sensitive character classification, and bigram classification. Each connection

between feature maps consists of convolutions with maxout groups. Figure

and caption from [7]
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Solution Approach: 

Hybrid

• Combine strengths of model-based thinking as well as

data driven machine learning.

• Several feature maps are extracted based on several

feature extraction kernels.

• This is followed by a deep neural network architecture or

any data driven architecture for the purpose of

classification and recognition.
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Contextual Models:

Simulation from Generative Models

• Camera geometry -- projection model (orthographic, perspective), camera blur, lens 

distortion, intrinsic parameters, extrinsic parameters.

• Camera - gray level transformation model of camera pipeline 

• Shape representation (surface/contour, volume) 

• Material property (brdf) 

• Appearance (texture map) dictionary 

• Graphics pipeline parameters 
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Pattern Models

• Image models for textures 

• sparsity based 

• MRF model Pipelines 

• Texture classification 

• Hand engineered features plus ML - deep learning 

• Texture synthesis 

• Deep learning 

• Exemplar based with smoothness constraint (efros) 

• Bio-inspired (wavelets plus correlation, constrained sampling) - mrf models
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Spatial Statistics - Simulation 

Simulation Models –

• spatial point processes 

• poisson point process 

• in homogenous process 

• cluster processes (cox, matern hard core, etc) 

• Boolean germ-grain models 

• dead leaves model 

• Simulation apparoach

• rejection sampling 

• Markov Chain Monte Carlo 

• CFTP - Coupling from the past 

• Representations: Sparsity based reps, Texture models using MRF's 

• Open questions: 

• Realism of models ? 

• Model validation against real data
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Simulation for Systems Design,

Analysis and Evaluation

• Groundtruth collection seems to be an obstacle for Supervised learning based

vision systems.

• Major advances in Computer Graphics (CG) field has spurred a renewed recent

interest to utilize CG for CV.
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Rendered Data - various scene 

conditions

Lambertian Ray traced Path traced (130 spp)

Noon Night Rain
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Annotations are “free”
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Simulation Research –

Problem Statement

• In 1990’s, CV community had been skeptic to use CG to train.

• CG may use some mathematical simplifications and approximations that CV models

based on. Hence, they might generate ideal or near ideal to CV models.

• That was good question in the days of model-driven designs.

• Recent video games may also use approximated models for realistic effects for

the sake of interactive real time display.

• Now, in the days of data driven designs, how these approximations effects the CV ?

• Deviations of Scene (parameters) distributions plus Physical accuracy of

rendering processes contributes towards Domain-shift issue b/w virtual and real

world data.

• Especially, the impact of modeling errors and computational rendering

approximations, due to choices in the rendering and generation pipeline, on

trained CV systems generalization performance is still not clear.
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Transfer and Domain shift

Virtual world 
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Real world

testing data 𝛻𝜃𝑤 𝛻𝐺 𝛻𝐷 𝛻𝑆 𝛻𝐴

• No free lunch in the selection of ෠𝑃 and ෠𝐺 for data simulation processes.

• In principle, 𝛻𝜃𝑤 and 𝛻𝐺 impact the magnitudes of 𝛻𝐷, 𝛻𝑆, and 𝛻𝐴.

• What is the impact of ෠𝐺 on 𝚫𝐀?

• Real time Photo-realism vs Expensive physics-realism?

• What is the impact of parameters of ෠𝑃(𝜽𝒘) on 𝚫𝐀?

• How far can we go with an arbitrary scene generative model?

• Can unsupervised generative learning from target real data help?

• However, one can bypass these issues by simply adding some real samples to

simulated data.

+
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Anomaly Detection – Case Study
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Next Classes

– Introduction to Probabilistic Graphical Models

– Pattern Grammars and Inference 
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‘Thank you’ -- The End
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Backup


