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Systems Engineering 

Methodology Summary
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Past Lectures: 

System engineering examples

– Greiffenhagen et al (2001) 

Overall theme

(Context,Task,Performance)   Hw plus Sw configuration (hw + programs plus 

parameters) 

– Context, Task, Performance

– What is context -- Derek hoeim's Book and Slides today (2015) 

– Task - estimation of world state (or parts of it) 

– Performance - bias, variance , accuracy vs speed tradeoff

– What is a Program (Inference Engine)?

– Program - filters and combinations (feedforward, deep, feedback and 

recurrent) (ML Literature, Bio-inspired vision literature 2016)

– Program Design – Model based vs Data Driven, or Hybrid combinations

– What about Performance Characterization of Designs?   (Ramesh, 1995)  
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Next Lectures:

• Recap – Greiffenhagen Thesis / Systems Engineering Methodology

• Model-Based Recognition Overview  (Mann, 1996, Dissertation)

• What is Context ?  (Slides based on Derek Hoeim)

• Link to Systems Engineering Methodology
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Dual camera approach: 

• constantly monitor large area of 
interest (Shree Nayar’s
OmniCamera)

• simultaneously: high   resolution 
images of faces  (e.g. face 
recognition)

Foveal-view

Omni-view

Lobby scene

Monitoring / surveillance

 Trigger alarms (sensitive areas)

 Log information (time, location, face)

 Post-processing (recognition/data-base)

Model Based

Systems Engineering Example
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Bayesian Real-time 

System Example

High probability

Object areas

Bayesian

Estimation of

Person Locations

Object 

Parameter

Estimates

Real-time

Hypothesis

Generation

Background

Scene 

Statistics

Current

Video frame

3D Scene

Priors

Camera

Control Parameter

Selection

Pan/tilt, zoom 

Estimates

Computational

Speed

Accuracy

(VR)
5/16/2017
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Indexing Step Modules (1) 

 models influence algorithm design in each module

(VR)
5/16/2017
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Location Estimate 

+ camera control

(VR)
5/16/2017
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Models of Algorithm Steps

5/16/2017
(VR)
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Systems Analysis  

5/16/2017
(VR)
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Parameter Optimization

5/16/2017
(VR)
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System Performance:

Over Continuous Changes over 24h

Day: natural+artificial light; Night: artificial light Morning/afternoon: mixed

saturation low contrast regions light, changing spectrum
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Summary

Showed how to systematically design a complete real-time vision system 
that is predictable, robust & guarantees performance within pre-defined 
bounds in a real-world setting
Decompose system into modules

Statistical modeling and analysis of each module

Propagation of uncertainties from input data to final output 

Complete engineering cycle: design, analysis, validation, test 

Optimize performance given data and task

Optimize setup / camera position

Demonstrated how to evolve an existing system incrementally to meet 
added requirements
without redesign of existing modules

 fusion of existing and 3rd party module combining strength of both

maintaining analysis of prior system valid

 Built working system – stable and in lobby at SCR, Princeton,  in use
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Context - Overview

Visvanathan Ramesh

*Uses Sources from: Derek Hoeim, Mann & Binford, 

Systems engineering work
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Context and 3D Scenes
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Context in Recognition

Objects usually are surrounded by a scene that can provide context in the form of 

nearby objects, surfaces, scene category, geometry, etc.
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Context provides clues for function

What is this?

These examples from Antonio Torralba
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Context provides clues for function

What is this?

Now can you tell?
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Sometimes context is the major component of 

recognition

What is this?
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Sometimes context is the major component of 

recognition

What is this?

Now can you tell?
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More Low-Res

What are these blobs?
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More Low-Res

The same pixels! (a car)
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There are many types of context
Local pixels

• window, surround, image neighborhood, object boundary/shape, global image statistics

2D Scene Gist
• global image statistics

3D Geometric
• 3D scene layout, support surface, surface orientations, occlusions, contact points, etc.

Semantic
• event/activity depicted, scene category, objects present in the scene and their spatial extents, 

keywords

Photogrammetric
• camera height orientation, focal length, lens distorition, radiometric, response function

Illumination
• sun direction, sky color, cloud cover, shadow contrast, etc.

Geographic
• GPS location, terrain type, land use category, elevation, population density, etc.

Temporal
• nearby frames of video, photos taken at similar times, videos of similar scenes, time of capture

Cultural
• photographer bias, dataset selection bias, visual cliches, etc.

from Divvala et al. CVPR 2009
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Cultural context

Jason Salavon: http://salavon.com/SpecialMoments/Newlyweds.shtml

http://salavon.com/SpecialMoments/Newlyweds.shtml
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Cultural context

Andrew Gallagher: http://chenlab.ece.cornell.edu/people/Andy/projectpage_names.html

“Mildred and Lisa”: Who is Mildred?  Who is Lisa?

http://chenlab.ece.cornell.edu/people/Andy/projectpage_names.html
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Cultural context

Andrew Gallagher: http://chenlab.ece.cornell.edu/people/Andy/projectpage_names.html

Age given Appearance Age given Name

http://chenlab.ece.cornell.edu/people/Andy/projectpage_names.html
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Spatial layout is especially important

1. Context for recognition
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Spatial layout is especially important

1. Context for recognition
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Spatial layout is especially important

1. Context for recognition

2. Scene understanding
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Spatial layout is especially important

1. Context for recognition

2. Scene understanding

3. Many direct applications

a) Assisted driving

b) Robot navigation/interaction

c) 2D to 3D conversion for 3D TV

d) Object insertion
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Spatial Layout: 2D vs. 3D?
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Context in Image Space

[Kumar Hebert 2005][Torralba Murphy Freeman 2004]

[He Zemel Cerreira-Perpiñán 2004]
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But object relations are in 3D…

Close

Not 

Close
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How to represent scene space?
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Wide variety of possible 

representations

Figs from Hoiem - Savarese 2011 book
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Key Trade-offs

Level of detail: rough “gist”, or detailed point cloud?

• Precision vs. accuracy

• Difficulty of inference

Abstraction: depth at each pixel, or ground planes and walls?

• What is it for: e.g., metric reconstruction vs. navigation



3816.05.2017

Low detail, Low/Med abstraction

Holistic Scene Space: “Gist”

Oliva & Torralba 2001

Torralba & Oliva 2002
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High detail, Low abstraction

Depth Map

Saxena, Chung &  Ng 2005, 2007
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Medium detail, High abstraction

Hedau Hoiem Forsyth 2009

Room as a Box
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Med-High detail, High abstraction

Guo Zou Hoiem 2015

Complete 3D Layout
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How do we Specify Context?

Representation Choices ?

Probability Models for Patterns 

• Graphical Models, Bayesian Networks

Role of Learning



4316.05.2017

Examples of spatial layout 

estimation

Surface layout

• Application to 3D reconstruction

The room as a box

• Application to object recognition



4416.05.2017

Surface Layout: describe 

3D surfaces with geometric classes

Sky

Vertical

Support

Planar

(Left/Center/Right)

Non-Planar 

Porous

Non-Planar 

Solid
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The challenge

?

?

?
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Our World is Structured

Abstract World Our World

Image Credit (left): F. Cunin

and M.J. Sailor, UCSD



4716.05.2017

Learn the Structure of the World

…

Training Images
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Infer the most 

likely interpretation

Unlikely Likely 
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Geometry estimation as 

recognition

…

Surface 

Geometry 

Classifier

Vertical, 

Planar

Training Data

Region

Features

Color

Texture

Perspective

Position



Use a variety of image cues

Vanishing points, lines

Color, texture, image location

Texture gradient 
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Surface Layout Algorithm

Segmentation

Hoiem Efros Hebert (2007)

Features

Perspective

Color

Texture

Position

Input Image Surface Labels

…

Training Data

Trained Region 

Classifier
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Surface Layout Algorithm
Multiple Segmentations

Hoiem Efros Hebert (2007)

Features

Perspective

Color

Texture

Position

Input Image

Confidence-Weighted 

Predictions

…Training Data

Trained Region 

Classifier

Final

Surface Labels
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Surface Description Result
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Results

Input Image Ground Truth Hoeim et al Result
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Results

Input Image Ground Truth Hoeim et al Result
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Failures: Reflections, Rare 

Viewpoint

Input Image Ground Truth Hoeim et al Result
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Average Accuracy (Hoeim et al)

Main Class: 88%

Subclasses: 61%



6316.05.2017

Interpretation of indoor scenes
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Vision = assigning labels to pixels?

Lamp

Wall

Sofa

Floor
Floor

Table
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Vision = interpreting within physical space

Wall

Sofa

Floor

Table
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Physical space needed for affordance 

Could I stand over 

here?
Is this a good place 

to sit?

Walkable path

Can I put my cup 

here?
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Physical space needed 

for recognition

Apparent shape depends 

strongly on viewpoint
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Physical space needed for recognition
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Key challenges

How to represent the physical space?

• Requires seeing beyond the visible

How to estimate the physical space?

• Requires simplified models

• Requires learning from examples
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Example Box Layout

Room is an oriented 3D box

• Three vanishing points specify orientation

• Two pairs of sampled rays specify position/size

Hedau Hoiem Forsyth, ICCV 2009
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Box Layout

Room is an oriented 3D box

• Three vanishing points (VPs) specify orientation

• Two pairs of sampled rays specify position/size

Another box consistent with 

the same vanishing points
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Image Cues for Box Layout

Straight edges

• Edges on floor/wall 

surfaces are usually 

oriented towards VPs

• Edges on objects might 

mislead

Appearance of visible 

surfaces

• Floor, wall, ceiling, object 

labels should be 

consistent with box

left wall right wall

floor objects
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Box Layout Algorithm

1. Detect edges

2. Estimate 3 orthogonal vanishing points

3. Apply region classifier to label pixels with 

visible surfaces

• Boosted decision trees on region 

based on color, texture, edges, 

position

4. Generate box candidates by sampling pairs of 

rays from VPs

5. Score each box based on edges and pixel 

labels

• Learn score via structured learning

6. Jointly refine box layout and pixel labels to 

get final estimate

+
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Evaluation

Dataset: 308 indoor images

• Train with 204 images, test with 104 images
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Experimental results

Detected Edges Surface Labels Box Layout

Detected Edges Surface Labels Box Layout
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Experimental results

Detected Edges Surface Labels Box Layout

Detected Edges Surface Labels Box Layout



7916.05.2017

Experimental results

Joint reasoning of surface label / box layout helps

• Pixel error: 26.5%  21.2%

• Corner error: 7.4%  6.3%

Similar performance for cluttered and uncluttered rooms
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Things to remember

Objects should be interpreted in the context of the surrounding scene

• Many types of context to consider

Spatial layout is an important part of scene interpretation, but many open problems

• How to represent space?

• How to learn and infer spatial models?

• Important to see beyond the visible

Consider trade-off of abstraction vs. precision
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Relationship to 

Systems Engineering Example



“Our View” of Real-time Vision 

Systems Construction -- Summary

Overall Philosophy:  

• Model-based Design using Graphical Models for Contexts

• (Context, Task, and Performance) requirements map to choice of (quasi-

invariants and fusion, optimization) dual-system processing pipelines.

• Vision is Hierarchical Indexing (via use of quasi-invariants) followed by 

iterative estimation in a coarse to fine manner. 

Key Observations:

• Bayesian formulation without proper design of priors and likelihood models 

is as “Adhoc” as any other approach

• “Real-time Bayesian Inference” is not possible with conventional 

approaches to Bayesian inference (e.g. Sampling techniques ). Hence need 

a way to deal with the situation.



“Our View” of Real-time Vision 

Systems Construction -- Approach

Our Approach: 

• Define appropriate statistical representations for application context (i.e. a 

graphical model, G) and learn them. 

• Use these contextual priors, tasks, and performance requirements to select 

transforms (i.e. quasi-invariants) that devise hypothesis generator modules 

and configurations, M.  

 This process is non-trivial, currently structure of the module 

configuration is provided by expert while parameters can be learned.

• Perform systems identification of hypotheses generator pipeline, M. 

• Transform graphical model, G, to ‘G*’ corresponding to graphical model 

including random variables corresponding to hypotheses. Belief propagation 

or Markov-Chain Monte Carlo using ‘G*’  provides the solution.



“Step 1: Vision System Specification  

Context Modeling + Task Requirements”

 Graphical Models as a 

specification of the generative 

model for observations

 Task specification including 

variables to be estimated, 

performance requirements 

(speed, accuracy)

Inference:

“Real-time

Inference intractable”

Observations

I(x,y,t)

Shape,Pose 

& Speed 

Light 

source 

Sun 

Position 

Weather 

state  
Camera

E(x,y,t)   

Irradiance

Sensor 

Noise 

Model

Autotype

Camera 

Gain/offset

Material 

state

Fresnel 

reflectanc

e



“Step 2: Design of Hypothesis Generation 

Module for specific context”

Translate Priors to a sequence of 

operator steps that generate feature 

measurements & hypotheses in real-

time

 Key requirement: Hypothesis 

generator has to be quantifiable in 

performance via P(correct 

hypothesis generation), P(false 

hypothesis generation), and 

L(Features|Theta_Scene) is 

derivable.

Real-time 

Hypothesis Generator

‘M’

G



“Step 3: Systems Identification of 

Hypothesis Generation Module”

 Perform Systems analysis of 

hypothesis generation module: I.e. 

compute: P(correct hypothesis 

generation), P(false hypothesis 

generation) 

Derive L(Features|Theta_Scene) 

as a function of M and G. (I.e. Treat 

M like a soft-sensor and develop the 

likelihood model for measurements).
Real-time 

Hypothesis Generator

‘M’

Performance

Measures

Likelihood

Model L(.)

G



“Step 4: Hypothesis Verification 

& Estimation Module”

Use Likelihood model  derived in 

system identification step along with 

priors to perform Bayesian 

estimation
G

Estimation

Using L(.) +

BN Priors

Hypothesis

+ Features

Estimate +

Uncertainty



Real-time Vision Systems –

Technical challenges

• Systems Analysis is complex, but critical to develop proper statistical 

likelihood models. “Analysis for Linear transforms solved, made progress on 

non-linear transform characterization but lots of fundamental issues 

remain.” (Ramesh and Haralick, 1992-97, Forstner 1994-2001, Parra, Lai 

and Ramesh 1998, Greiffenhagen and Ramesh, 1999-2001, Gao, Boult, 

Ramesh (2000, 2002), Tsin, Ramesh, Kanade (2001), Meer et al (1995-

2001) etc.)

• Prior models and their choices for application space still an art. Empirical 

Bayesian methods can be used to learn these priors, but choice of 

representation for priors a difficult issue.  “Priors at various levels interact” 

(Ramesh, Parra, Qian 1997, Greiffenhagen and Ramesh 2001).

• Priors in the 3D scene parameters are relatively easy to model. However, 

their counterparts in 2D have multiple plausible representations and one 

has difficulty to decide what representation to describe the prior in 2D. Our 

view is that there is a mapping from Applications  appropriate 

representations. (Coetzee and Ramesh 1999, Greiffenhagen and Ramesh 

2001)



Technical challenges: Continued

• Stability of representation is dependent on variability and perturbations in 

data  “Explore statistical distributions in various representation spaces: 

e.g. 2D geometry, Image pattern distributions, and intermediate data-

structures, level sets”  Study various representations and understand 

their limits (e.g. Ramesh and Haralick (1994), Paragios (1998-2001), Zhu et 

al (2001), Gao et al (2000), Sun et al (1999-2001))

• Distributional representations cannot be simple  “ World is Non-Gaussian”  

 Our approach is to mix Non-parametric statistical representations with 

parametric ones (I.e) Semi-parametric representations. (e.g. Mean-shift, 

adaptive mean-shift, Comaniciu et al (1998-2001))

• Choice of  Feature representations and Transforms  Motivate from 

Physics and scene constraints (e.g. Greiffenhagen and Ramesh 2000, Tsin, 

Ramesh, Kanade 2001), Motivate through learning (Coetzee and Ramesh, 

1999), Motivate through operator analysis (Gao, Ramesh, Boult 2002), 

Motivate from brain sciences. Automating this choice will be a major 

challenge!!!!
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Contextual Models:

Simulation from Generative Models

• Camera geometry -- projection model (orthographic, perspective), camera blur, lens 

distortion, intrinsic parameters, extrinsic parameters.

• Camera - gray level transformation model of camera pipeline 

• Shape representation (surface/contour, volume) 

• Material property (brdf) 

• Appearance (texture map) dictionary 

• Graphics pipeline parameters 
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Pattern Models

• Image models for textures 

• sparsity based 

• MRF model Pipelines 

• Texture classification 

• Hand engineered features plus ML - deep learning 

• Texture synthesis 

• Deep learning 

• Exemplar based with smoothness constraint (efros) 

• Bio-inspired (wavelets plus correlation, constrained sampling) - mrf models



11016.05.2017

Spatial Statistics - Simulation 

Simulation Models –

• spatial point processes 

• poisson point process 

• in homogenous process 

• cluster processes (cox, matern hard core, etc) 

• Boolean germ-grain models 

• dead leaves model 

• Simulation apparoach

• rejection sampling 

• Markov Chain Monte Carlo 

• CFTP - Coupling from the past 

• Representations: Sparsity based reps, Texture models using MRF's 

• Open questions: 

• Realism of models ? 

• Model validation against real data
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Simulation for Systems Design,

Analysis and Evaluation

• Groundtruth collection seems to be an obstacle for Supervised learning based

vision systems.

• Major advances in Computer Graphics (CG) field has spurred a renewed recent

interest to utilize CG for CV.
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Rendered Data - various scene 

conditions

Lambertian Ray traced Path traced (130 spp)

Noon Night Rain
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Annotations are “free”
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Simulation Research –

Problem Statement

• In 1990’s, CV community had been skeptic to use CG to train.

• CG may use some mathematical simplifications and approximations that CV models

based on. Hence, they might generate ideal or near ideal to CV models.

• That was good question in the days of model-driven designs.

• Recent video games may also use approximated models for realistic effects for

the sake of interactive real time display.

• Now, in the days of data driven designs, how these approximations effects the CV ?

• Deviations of Scene (parameters) distributions plus Physical accuracy of

rendering processes contributes towards Domain-shift issue b/w virtual and real

world data.

• Especially, the impact of modeling errors and computational rendering

approximations, due to choices in the rendering and generation pipeline, on

trained CV systems generalization performance is still not clear.
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Transfer and Domain shift

Virtual world 

models
෠𝑃(𝜃𝑤)

Real world

Models

𝑃(𝜃𝑤)

Simulated 

data

𝐷𝑣

Real 

Data

𝐷𝑟

Hypothesis

(𝑆𝑣)

Rendering 
෠𝐺

Camera

𝐺

Training

Training

Space of 

Hypotheses 

Testing

Testing
Hypothesis

(𝑆𝑇)

Performance

𝐴𝑣→𝑟

Performance

𝐴𝑟→𝑟

Real world

testing data 𝛻𝜃𝑤 𝛻𝐺 𝛻𝐷 𝛻𝑆 𝛻𝐴

• No free lunch in the selection of ෠𝑃 and ෠𝐺 for data simulation processes.

• In principle, 𝛻𝜃𝑤 and 𝛻𝐺 impact the magnitudes of 𝛻𝐷, 𝛻𝑆, and 𝛻𝐴.

• What is the impact of ෠𝐺 on 𝚫𝐀?

• Real time Photo-realism vs Expensive physics-realism?

• What is the impact of parameters of ෠𝑃(𝜽𝒘) on 𝚫𝐀?

• How far can we go with an arbitrary scene generative model?

• Can unsupervised generative learning from target real data help?

• However, one can bypass these issues by simply adding some real samples to

simulated data.

+
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Anomaly Detection – Case Study
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Next Classes

– Introduction to Probabilistic Graphical Models

– Pattern Grammars and Inference 
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‘Thank you’ -- The End
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Backup


