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Bayesian Networks for Vision (Discuss W. Mann’s thesis)
Discuss relationships between Mann, 1995 to Ramesh, 1995



Figure 1-1: Drawing Interpretation vs. Reality

As a beginner, the artist drew figure (a) focusing his attention on what he knew the

training to "see as an artist”, the same artist drew figure (b) more true to how it
\L actually appears. ([Edwards 1994), figures used by permission of the author)

object to be. Notice that he drew four wheels even though only three were visible. After
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Figure 1-5: Computer's View of
the Elbow Image

These are the edges of the elbow
displayed with random position
and orientation. Human
observers take for granted the
structure and relationships they
parallelism, proximity,
coincidence, colinearity and other
relationships, the edges appear
as pictured here. Until these
relationships are specifically
identified in the data, this is the
view a simple computer program
has of the information. And even
in this image we already have the
structure of edgels grouped into
linked edges.

J




Figure 1-3: Elbow Image
\_ The elbow is a plastic plumbing part.

Figure 1-4: Edge Image of the Elbow
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Figure 1-6: Some Difficulties in Choosing Significant Edges
An important limb is occluded by the rib; an important edge was not detected because
of low contrast. Parallelism deceives where two curves that are parallel by accident lie
on different primitives and the parallelism of limbs and specularities is
indistinguishable. One tiny edge s the result of noise; the other is a significant
termination to a eylindrical rib. An edge with high noise is a significant limb to the
Jemale part, so notse alone can not be used as a criterion to ignore an edge. And what
looks like an obvious series of edges from the threads tums out to be an alternating
\_ series of limb edges and shadow edges. J
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1 Figure 1-7: Edge Image Information Content

The image on the left contains 2/3 of the edge information, yet the elbow is still hard
‘\L!.::rse:e.w{thnnlyHﬂqfﬂ:eiqfummtﬁm.ﬂmmmseendeaﬂymﬂwﬁght J




Centered Centered
Approach of

this thesis

Figure 1-8: Object-centered va. View-centered

In Object-centered vision, the image is interpreted in terms of geometric component
parts. A geometric description is constructed, regardless of whether or not the specific
image object exists in the model data base. In Vieurcentered vision, the image is
compared with all possible views of specific object models. View-centered vision
suffers from higher combinatoric complexityy and is best for finding specific object

models. Object-centered algorithms are more difficult to design. J




Contributions of Mann (1995)
(10)

SUCCESSOR
* [mplementation of end-to-end interpretation system
» Successful interpretation of some simple, 3-D objects
Classics
= Design and implementation of highly typed constraint system
= Theoretical design of mathematically-based object system
VSCP
* Detailed framework of VSCP representation for object modeling
= Implementation of large modeling data base
Bayesian Networks
* Meodular framework for automated, dynamic Bayes net construction
* Details of automated conditional probabilities for Bayesian networks
* Theoretical analysis of some 3 and 4 point quasi-invariants for viston
= |mplementation of distributed network connection to HUGIN and SPI

Edge Grouping

* Simple edge segmentation, classification and grouping algorithms




;/— Curve classification creates \‘l
theses of lines, circles,
ellipses & general splines.

The result of this level is a
set of curve hypotheses.
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Figure 2-1A: Step One in Pictorial View of Algorithm
Curve Level
This shows the first cyclical step of interpretation. The Wang-Binford edge detector is
itself a major development presented in [Wang 1994A] and [Wang 1994B]. Prediction
is not used at this level. The MAZ-543 example pictured here is our aim, but more
L\ complex than our current implementation will recognize. _/‘




r/r Indexing refines curve pair
hypotheses into more specific
relationships.

The results so far are related curve
(e.g., parallel, coincident,
orthogonal).

Curve pairs predict as yet unseen
urves. Bayesian networks verify
curve pair hypotheses.

Aggregation efficiently Monocular Gray-Scale Image Symbol Key

groups curves into Collection &
pairs which are likely Aggregation
to be related. == Indexing
{l Prediction

Figure 2-1B: Step Two in Pictorial View of Algorithm
Corresponding Curve Level




(’r Indexing groups of curves into

specific region & ribbon
relationships.

Relationships among curves
which define regions that
‘_/ correspond to surfaces and
relationships among surfaces.

Bayesian networks verify region
hypotheses. Regions predict
related curve pairs.

Cycles of collection,
aggregation, indexdng and
prediction continue to
functon at lower levels.
New input for the lower
level cycles may be
generated by prediction
from above. Bayesian
networks are used to focus
the global algorithm.

i curve pairs into
j likely ribbons and §

Collection &
Aggregation




' Indexing into more specific 3-D
primitives. Viewing direction
and parameters are mostly

Models of 3-D primitives

#) including SHGC's.

Prediction at this peint includes
models of the projection and
imaging process,

This enfire graph
can be seen as a
state machine,
Instances are
created during
aggregation &
predietion, and
transformed during
indexing as they
move from node to
node along the arcs.

Aggregate reglons
into likely 3-D

primitives using




Step by Step System Overview (5)

;|

related primitives into specific
models.

(’ Indexing refines hypotheses of ™

Generie 3-D object models.

The interpretation to this point is
of the geometry of the scene,
regardiess of whether or not the
specific object is known. The
recognition of the object (the
“knowing”) is generie; for
example in this case to the level
of “multi-wheeled vehicle™.

The interpretation has gone to as

high a level as it will go. From this

primitives into likely | point on indexing will dominate
relationships | as we seek a more specific

interpretation of the generic
maodel,




Step by Step System Overview (6)

(16)

"'f Indexing refines a generic model, “multi- _“‘\
wheeled vehicle®, into a more specific More specific
model, “rocket launcher”. E? E generic models
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Figure 2-1G: Final Step in Pictorial View of Algorithm - Specific Models
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Basic Cycle in the Algorithm

(VR)

Ff._l:;t:!mfﬁd Object Indexing .“Hﬂdﬂl -\'ﬁ
Hypothesis ,_:L‘? Hypothesis
Prediction
Aggregation

Strong Enll:-l:_n_tlnn Weaker
Evidence Evidence
Figure 2-3: Fundamental Cycle of Interpretation

\_ This is the basic cycle of the algorithm in this work. -

11/8/2011
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Figure 2-5: Elbow Image & Wang-Binford Edges




Classification of Edges in Curves

F(r | o '-".._ﬂ___ 1"\

Our algorithm _finds the probability
that each edge is a line, circle, ellipse,
ar general spline curve. This figure
shows the most likely classification
of each edge. with the thickness and

darkness proportional to the
probability of that dassification. Our
: algorithm uses classification of |

- . simple curve shape, but the overall
—  methodology does not depend on

/'( . i curue specific methods,

. y

(VR) 11/8/2011




=] Cuarves I
~ —
e G
_ apter 1
—~ = g == P
> & e . .

Colleetion &
Aggregation

== Indexing
![:!v Prediction

Figure 2-7: BSummary View of Street Elbow Interpretation




Elbow — Interpretation Example (2)
7\

4 Generic Model  Specific Model I

Details af G- 11
found in Secton
V-8,

in

Details of 1- 6
% found
Chapter III




Extraction of Parallel Curve Groups

~
Figure 2-8 Groups of Possible Parallel
Curves

We find transiational parallelism for any

direction of translation of general curves,

This corresponds to point 3 of Figure 2-7.

An effictent algorithm finds these groups
of curves which are deemed likely to be
parallel. Model constraints, similarity
measures and regularity measures are
used to further group these curves into

well defined collectives

/
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Ribbons from Parallel Curves

g i?ﬁ*@ )

Figure 2-0: Ribbons from Parallel I
Curves

| To get to points 5, 6 and 7 of Figure

2-7 we use simple yet fundamental
geometric relations.,

11/8/2011



3D Hypotheses

Figure 2-10: 3-D Hypotheses

At points 7 and 8 gf Figure 2-7 we have
created the hypothesis of wo cylinders
in the scene, one of which has an
associated helix. No further refinement
occurs in this image during indexing

from 7T to 8.




.

These are three specific object models from the generic class of eylinder pairs.
The blend relation takes the process from point 8 to 9 of Figure 2-7.

J/




Model Structure Examples

SBR
(%%Q (pejemﬂr

Perpendicular
Cylinder Pair

Figure 2-12: Portion of the Generic Model SBtructure
This shows the generic models immediately relevant to the elbow. It is this
portion gf the model data base that guides the algorithm _from steps 9- 11
pictured in Figure 2-7. -/




Probabilities of Hypotheses
N

Figure 2-14: Using Probabilities to Refine Hypotheses
If we assume the actual angles take on only the tuwo discrete values in the model data
base (45 and 90}, this gives the posterior probability distributions on the actual angle |

between two cylinders, given an observed angle. This figure shows the results for the |
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Another Example View

Figure 2-17: Edges for Second Elbhow View




Curves Extracted

l'\.. Figure 2-18: Curves for Second Elbow View __,)
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Another Example
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More Complex Example

Although we have not completed model-based recognition of the MAZ-543, this repre-
sents the level of complexity of object that we alm to achleve. The sysiem generates
Bayesian networks automatically for this complex example.




Parallel Curve Finding

Figure 3-11: Projection of Edges in Parallel Curve Finding

In the left image, the curves are not_found to be parallel for the shown projection direction.
| In the right image, they are parallel, as indicated by the large degree of overlap of the
N prajections. v

i —
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Measure for Parallelism

Figure 3-12: Mapping Arc Length to Distinguish Parallelism

| The curves on the left are parallel and thus have a linear mapping between their arc
length parameters. The curves on the right are not parallel, and have a highly

nonlinear map between are lengths. In particular, this algorithm_finds only curves

'\._ that are replicas of each other (Le.. the mapping has a unity scale factor), _/J




Figure 3-13: Scaled, Parallel Curves
A non-implemented extension to the parallel

curve_finding algorithm would be to find the
parallel curves pictured here. All profection

directions converge at a single point, __/I




Groups of Curves

(39)
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Figure 3-14: Example of Collectives
These curves are from the threads of the elbow edge image. On the left is the set of
cllipses found to be parallel One subset of those parallel ellipses is the set of similar
ellipses shown in the middle. They have similar major and minor axis lengths, and
similar orientations. On the right is a regular collective of ellipses found to be not only
similar, but whose centers are spaced af regular infervals. /




Finding Regularity

[ Center line )
| Figure 3-15: Finding Regularity
__51____fmm The centers of the ellipses are

projected onto the best fit line through

D1 _/Elllpm the centers. The arc length values of

! o those projections form the metric. The
I ------ o D1-D4 are the distances between the |
are length values. DI & D2 are equal |

_/ and thus _form a regular triple. D2 &

.:‘55.‘--.... D3 are irregularly spaced. as are D3

D3 & D4, Thus D] = D2 = D becomes the

S4___. p interval of regularity. Finally, only

Dy .. ..—_/y ellipse d will be eliminated because

55 its center is not close to an integer

| _/ multiple of D atway from the end.

. -/
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VSCP Representation for Objects
(41)
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Relationships in VSCP (1)
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Figure 5-3: Relationships in VSCP
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Figure 6-1: Overall Bayes Model

This shows how the models are
connected together, Not all models
are always constructed. The
existence model may be quite
complex, reflecting the subpart
hierarchy and other relationships
of the geometric model. Existence,
exclusion and profjection tend to be
boolean conditional distributions,
while visibility and observability
contain more general distributions.




Figure 6-3: Existence Model ““-.

Only one of the object hypotheses can be
true. A feature exists only if an object gives
rise to its existence. F1 is a _feature of object
01, and F2 is a feature of O2. Fr is a feature

common to both objects.




Visibility Model

Figure 6-4: Visibility Model )

A nonexistent feature is not seen, to the
extent that it is caused by this object.

-/




Exclusion Model

Figure 6-5: Exclusion Model N

The two parents are visibility nodes. The
child node expresses which of the two
Jeatures, if either, is actually visible as the
particular data associated with the child
node, Only one of the two _features can be
connected to the data. That is, the Data
will provide evidential support to only one
of hypothesis V1 or V2, The hypotheses
V1 and V2 are not mutually exclusive as if
they were in the same state space. Only

the evidential support is exclusive. )




— 2 Figure 6-7: Projection Model I
Comnect Commoct  Nelther N .y, ) obilities are assessed as for the
toData  Connect P as jor
observability models. If neither feature
connects to the data, a uniform conditional
removes the influence of the data on the
object belief.




Figure 6-8: Observability Model Y
The image data are instantiated as being
true. Implicitly there exist likelihoods P{Not-
Data/Hypol as well. These form the leaf
nodes.




" VSCP Bayes Integ_aretation
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Figure 7-1: Putting it all together
This shows how the instantiated VSCP representation, the Bayes network, and the
interpretation all grow in complexity as the image interpretation proceeds from the
bottom up. What is not shown is the prediction and verification steps that also occur
\_ along the way. J




“What is the relationship between this
dissertation and Ramesh, 1995 ?”



Other Related References
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