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1 Scope

The scope of this work is the development and prototyping of a method to compute
confidences of traffic sign (TS) given multiple observations. A set of traffic sign
observations (type, 3d position, confidence of observation) in a training area as well
as accurate measurements of traffic signs of the same area (reference data) are given
as input for the prototype. The desired output consists of an optimized set of TS
with confidence values based on all observations.

Deliverables are:

• A document on the theory of how to compute optimal confidence values (this
document)

• Source code for confidence computation (e.g. in a script language) that could
be integrated into or re-implemented within the Road Database system

Remarks:

• Prototype can work based on GPS coordinates of TS, but the technique has
to be transferable to a local coordinate system resulting from snippet merging

• The approach for confidence computation should be incremental, i.e. given new
observations the set of TS positions and confidence values must be updated

• The approach should handle correctly changes in the world, i.e. when the
position of signs has changed

• The reference data should be used to learn optimal confidence values. The
method must work without reference data later

• Confidences should be computed regarding 1) existence, 2) type, 3) position
of the TS

• It should be possible to set a threshold for selecting a sub-set of TS, e.g. ”give
me the optimal set of TS given their confidence has to be greater than 95%”

X-C-TR-ContinentalHOLM-16
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2 Data

This section describes the available data, necessary transformations, as well as a first
analysis thereof.

2.1 Reference data

The file Conti A7 Kreuz Memmingen 2016 04 29.xodr contains accurate reference
data in OpenDRIVE format [D+15].

As described in this specification, TS coordinates are encoded with their distance
to the starting point of the road they belong to. Each road is encoded as a starting
point and a series of geometric parts (here: polynomials). In order to extract the TS
coordinates, these geometries have to be calculated.

The python script sign extractor.py implements the necessary functionality and
saves the computed TS coordinates to a XML file with the structure defined in
section 10.2.1.

2.2 TS codes

TS codes and subtypes of the estimated data differ from the official codes defined
in STVO 2013 Anlage 2 (http://www.dvr.de/betriebe bg/daten/stvo/anlage2.htm)
and VZKAT (http://www.vzkat.de/vzkat.htm). The python script SignMapper.py
provides a mapping between both encoding schemes.

2.3 Estimated data format (current)

The latest format adopts another representation for GPS coordinates.

<Document version="0.1" lat="47.996180757731942" lon="10.149478010309279" height="2.6832762886597945">

<Signs>

<Sign id="1" type="626030" subtype="-1" conf_id="1" ts="-1">

<ReferenceLines>

<ReferenceLine type="start point">

<ReferencePoint lat="47.996180757731942" lon="10.149478010309279" height="2.6832762886597945"/>

<PointList>

<Point id="1" x="496.15810381815038" y="-6.2692221544375144" z="1.6565999663895354"/>

</PointList>

</ReferenceLine>

</ReferenceLines>

</Sign>

...

Each sign-entry contains its type and a confidence on it, its position is encoded in
terms of x/y/height-offsets in meter relative to a GPS-coordinate (lat,lon,height in
m). This file currently contains 6 estimates.

Past data formats, analysis and processing efforts thereof can be found in section
10.

2.4 Perturbations and error-sources of data

Table 1 lists possible sources of perturbations/errors in a TS-detection pipeline. The
developed integration- and fusion-algorithm should be able to handle them.

X-C-TR-ContinentalHOLM-16
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Table 1: Error-Sources and their consequences

Source Consequence Specifics

GPS-errors positional errors 1-8m regular, might be as high as 60m

Sync-delays positional errors Synchronization-delays between sensors might
cause positional error along the direction of driv-
ing

Sensor resolution positional errors Different resolutions of sensors might introduce
discretization-errors

Sensor-bias positional errors Systemic errors (of a certain brand of sensor
or computation-system inside a car) that intro-
duces bias

Weather Misdetection Fog/Heavy Rain

Occlusions Misdetection Temporary object between sensor and sign

Algorithm False positive The algorithm might detect a sign although
there does not exist one

Without additional knowledge about sensor- and algorithm-specifics, we can work
with nested assumptions about the distributions of errors/uncertainties in the posi-
tion of measurements:

1. No assumptions: Uniformly distributed errors

2. Normal assumption: Normally distributed errors (diagonal covariance, radius
integration)

3. Normal assumption 2: Normally distributed errors, elongated along the street
to reflect sync-delays and positional errors along the driving-direction

4. Normal assumption 2 + Sensor bias: Systematically shifted distributions

Regarding the rates of misdetections, false positives and misclassifications, the
following types of errors can be assumed:

1. Uncorrelated assumption: Uniformly distributed with a certain rate ε

2. Type-Correlated assumption: Systemic errors in detection/classification for
certain TS-types

3. Time-Correlated assumption: Systemic errors during a certain period of time
(to reflect periods of bad weather)

X-C-TR-ContinentalHOLM-16
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3 Simulation

In order to create controlled data on which algorithms can be evaluated, a simulation
scheme has been derived. Arbitrarily curved roads can be created on a metric grid
by using polynomial equations. Evenly spaced TS are simulated on this curve. Signs
can be simulated one-sided (only to the right/left side of the street-polygon with
orthogonal offset), or two-sided. We consider those TS as ground truth traffic sign
(GT-TS).

Figure 1: Simulation of a curved street with double-sided TS

Estimated TS are simulated by drawing from a parametrizable distribution. Under
the assumption of normally distributed errors, the covariance of this distribution
can be set according to assumed measurement uncertainties. Each estimated TS is
assigned the type of the GT-TS it is sampled from, as well as its covariance matrix
and a time-stamp. The simulation-order is always consecutive in terms of the order
of GT-TS on the simulated road.
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Figure 2: Simulations with different distributions of measurements. Upper-Left:
Simulated GT-TS, Upper-right: Uniformly distributed estimates in a ra-
dius, Mid-left: Estimates distributed according to a normal-assumption
(diagonal covariance), Mid-right: Estimates distributed according to a
normal-assumption and elongated along the direction of driving, Lower-
left: Estimates of mid-right with a systematic bias (relative to the cars
heading direction)
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4 Pipeline

It is assumed that estimated TS arrive in sets (TSestt ) if they are uploaded from a
specific car. TS that already exist in the database are denoted as TSdbt . The overall
integration pipeline without specific definitions of underlying implementations can
then be split up into the following steps (as described in pseudocode in Algorithm
1):

1. Extract TS-pairs for both TSestt and TSdbt

2. For each estimated TS-pair, find TS-pairs that already exist in the database
and are within a certain radius. If such a pair is found, integrate. Else add the
estimated TS-pair to the database.

3. Proceed similar with single TS

The rationale behind this matching process can be explained using Figure 3.

Figure 3: Signpairs

During the integration of TS, it is in our interest to set the integration-radius
as high as possible in order to properly integrate matching perturbed signs. But
it should still be possible to correctly distinguish between different TS that have
the same typenumber (e.g. ts-1 and ts-3). One way of integration is then to set the
matching-radius τ to d-2 / 2 or less. However, if we assume that d-1 (the distance
between a sign-pair) is less than d-2 / 2, this would become the new limiting factor
if TS are matched on a per-TS basis. If TS that are paired and belong together
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are encoded, pairs of TS can be matched correctly while still keeping the original
integration-radius of d-2 / 2 or less. Furthermore, if a measured pair ts-1a and ts-2b
(that indeed matches ts-1 and ts-2) is offset by more than the integration radius of
d-1 / 2, one of the TS would be matched to a wrong partner while the other would
not be matched at all (see Figure 4.

Figure 4: If matching was done on a per-sign-basis, mismatches could occur for pairs
of TS. In above figure, ts-2a would be falsely matched to ts-1, whereas ts-1a
would not be matched at all for integration-radii of d-1 / 2.

4.1 Integration and matching

Depending on the assumptions about error-distributions, different models can be
applied for the integration of estimates:

Table 2: Mapping of error-distributions to integration schemes

Error-distribution Integration-Method Parameters

Uniform Mean/Variance/Density Bandwidth, Matching radius

Normal (diag) Bayesian Measurement-matrix H, State-
distribution, Matching radius

Mean/Variance/Density Bandwidth, Matching radius

Normal (free) Bayesian Measurement-matrix H, State-
distribution, Matching radius

Mean/Variance/Density Bandwidth, Matching radius

Normal + Bias Bayesian, Density Measurement-matrix H, State-
distribution, Matching radius

Mean/Variance/Density Bandwidth, Matching radius, Esti-
mated bias

X-C-TR-ContinentalHOLM-16



4.1 Integration and matching 12

Data: TSestt , TSdbt
Result: TSdbt+1

// Compute pairs in estimated TS
TS

est,paired
t = {};

for ∀{tsesti,t , ts
est
j,t } ∈ TSestt , i 6= j do

if distance(tsesti,t , ts
est
j,t ) < τ and

typenumber(tsesti,t ) == typenumber(tsestj,t ) then

TS
est,paired
t = TS

est,paired
t ∪ {{tsest,pairedi,t , ts

est,paired
j,t }};

end

end

// Compute pairs in database TS
TS

db,paired
t = {};

for ∀{tsdbi,t, tsdbj,t} ∈ TSdbt , i 6= j do
if distance(tsdbi,t, ts

db
j,t) < τ and

typenumber(tsdbi,t) == typenumber(tsdbj,t) then

TS
db,paired
t = TS

db,paired
t ∪ {{tsdbi,t, tsdbj,t}};

end

end

// Match pairs
for {tsesti,t , ts

est
j,t } ∈ TS

est,paired
t do

for {tsdbk,t, tsdbl,t} ∈ TS Pairedt do

if pair distance({tsesti,t , ts
est
j,t }, {tsdbk,t, tsdbl,t}) < τ then

integrate pair({tsesti,t , ts
est
j,t }, {tsdbk,t, tsdbl,t});

else
create pair({tsesti,t , ts

est
j,t });

end

end

end

// Match solos
for tsesti,t ∈ TSestt \ TSest,pairedt do

for tsdbj,t ∈ TSdbt do

if distance(tsesti,t , ts
db
j,t) < τ then

integrate(tsesti,t , ts
db
j,t);

else
create(tsesti,t );

end

end

end
Algorithm 1: Integration algorithm
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5 Integration and Confidence estimation - Parametric

As defined in the scope, the goal of this section is to compute optimal confidence
values. The approach should be incremental, handle changes in the world and should
work without reference data. Confidences should be computed regarding existence,
position and type. It should be possible to threshold individual confidences for se-
lecting a subset.

Definition: A traffic sign (TS) denotes a structure that includes a 3D position
in latitude, longitude (WGS84) as well as height (m). It furthermore includes
a covariance-matrix encoding the uncertainties of said coordinates. Its semantic
type is encoded as numeric identifier, usually a 3-digit code for main type (i.e.
speed-limit equals 274) and a subtype with at most 3 digits (i.e. speed limit 80:
274-80).

5.1 Considerations

As we currently have at most three measurements per sign (without covariance ma-
trix) and limited knowledge about the involved factors of the data-generating model,
assumptions about bias/variance of measurements have to be made. Further consid-
erations on potential sources of perturbations/errors can be found in the appendix
(section 8).

5.2 Bayesian minimum-variance-estimator

As per definition of the scope, TS estimates will be encoded as their 3D positions and
according covariance matrices representing the uncertainties. We propose a bayesian
minimum-variance-estimator in form of a modified Kalman filter. The proposed
workflow for map-creation is the following: Anytime a measurement is detected,
its distance to signs with the same type/subtype combination is calculated. If no
match is found within a predefined radius 1, append it to our database with the
covariance of the measurement. If a match is found, integrate the TS by updating
pose and covariance of the sign in the database. Note that in contrast to the classic
Kalman filter, we have no ”time-update” (xk = Axk−1 + Buk + wk−1), as there do
not exist control inputs or state-transitions.

The measurement update involves the following equations:

yk = Hxk + vk, (1)

where H represents the measurement equation that relates the current state xk
(in our case, this is a single TS existent in the database) to a measurement yk (an
estimated TS) under measurement noise vk that is assumed to be normal distributed
with mean zero and variance R: p(v) ∼ N(0, R). Here, there is no special relation

1this radius can be motivated by the average distance between two TS of the same type, as well
as the uncertainties in the measurements
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between the current state xk and a measurement yk, therefore H is set to the identity
matrix H = I.

Now the process of updating the estimated state of a TS, as well as its covariance-
matrix can be formulated as follows:

A distance vector between the current state estimate x−k and the measurement yk
is calculated:

vk = yk −Hkx
−
k (2)

We calculate an intermediate covariance matrix Sk by integrating the current
covariance matrix of the state P−

k and the covariance matrix of the measurement
Rk:

Sk = HkP
−
k H

T
k +Rk (3)

and compute the Kalman gain. This gain determines how strong the current esti-
mate will be moved towards the measurement, as well as how much the covariance
matrix of the state estimate will be rescaled depending on the covariance matrices
of both estimates:

Kk = P−
k H

T
k S

−1
k . (4)

The updated state estimate based on this gain is then computed as

xk = x−k +Kkvk, (5)

and the state covariance matrix as

Pk = P−
k −KkSkK

T
k (6)

5.2.1 Estimation of confidences

Confidences about the position of a TS are naturally encoded in the covariance
matrix of each TS by above approach.

We can select or represent a confidence value by inspecting the area defined by
the ellipse of the covariance matrix. If we assume a covariance

Pk =

(
σ(x, x) σ(x, y)
σ(y, x) σ(y, y)

)
, (7)

we can integrate over a desired range and use the resulting value as a confidence
estimate (how much of the distributions mass is within this radius), see figure 5.
The range can be represented as an integration radius and represents a parameter
of the system. It enables queries like selecting a subset of TS from the database, for
which 99% of the probability distribution are within a certain radius.

5.3 Evaluation on simulated data

We evaluate the behavior of proposed method on estimated TS simulated according
to section 3. Visualizations of sampled TS, the resulting map after integrating all
measurements, as well as the behavior of their distance to the simulated GT-TS are
visualized in figure 6. It can be observed that even if measurements originate from a
distribution with large covariances, the error (distance to GT-sign) rapidly decreases
below 1m.
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Figure 5: Assuming 200 measurements of the same TS, sampled from a multivariate
normal distribution with diagonal covariance ([5,0],[0,5]). Each TS mea-
surement gets assigend the same covariance matrix. The middle plot shows
the final integrated measurement with the covariance ellipse of the esti-
mate. The right plot shows the integration of the pdf within a radius of
0.5m.

5.4 Integration of negative measurements

Definition: Negative measurements are TS measurements that have been pre-
dicted (exist in the database), but not observed.

Several causes for negative TS information exist:

• permanent removal (by authorities)

• temporary removal

• occlusion by static objects (plants, dirt)

• occlusion by dynamic objects (trucks)

• sensor error

An optimal choice on how to integrate negative measurements depends on whether
the above factors can be distinguished by the system.

In [TV07], several methods of integrating missing but predicted observations are
proposed: 1) reduction of sensor’s detection probability, 2) increase of covariance of
process-noise, 3) reducing the existence-probability (a probability-measure unrelated
to the filter with arbitrarily chosen parameters/values.

X-C-TR-ContinentalHOLM-16



5.4 Integration of negative measurements 16

50 0 50 100
xcoordinate (m)

50

25

0

25

50

75

100
y

co
or

di
na

te
 (

m
)

Sampled measurements

Simulated street
TS GroundTruth
Sampled estimates

0

1

2

3

4

5

6

7

8

1e8

50 0 50 100
xcoordinate (m)

10

0

10

20

30

40

50

y
co

or
di

na
te

 (
m

)

1004.0_0.0
1004.0_0.0

450.0_50.0

450.0_50.0

301.0_0.0

301.0_0.0

625.0_31.0

625.0_31.0

209.0_30.0

209.0_30.0

Integrated map (online mean, pairmatching)

Simulated street
Integrated estimates
TS Groundtruth

0 100 200 300 400 500
Integration step

0

2

4

6

8

10

12

14

M
ea

n 
of

 d
is

ta
nc

es
 (

m
)

Distance, last: 0.26

Mean(distances)

EstimateCov: [[20.0, 0.],[0., 10.0]], num_drives: 500

50 0 50 100
xcoordinate (m)

50

25

0

25

50

75

100

y
co

or
di

na
te

 (
m

)

Sampled measurements

Simulated street
TS GroundTruth
Sampled estimates

0

1

2

3

4

5

6

7

8

1e8

50 0 50 100
xcoordinate (m)

10

0

10

20

30

40

50

y
co

or
di

na
te

 (
m

)

460.0_30.0
460.0_30.0

311.0_0.0

311.0_0.0

460.0_21.0

460.0_21.0

267.0_0.0

267.0_0.0

625.0_10.0

625.0_10.0

Integrated map (online mean, pairmatching)

Simulated street
Integrated estimates
TS Groundtruth

0 100 200 300 400 500
Integration step

0

2

4

6

8

10

12

14

M
ea

n 
of

 d
is

ta
nc

es
 (

m
)

Distance, last: 0.16

Mean(distances)

EstimateCov: [[10.0, 0.],[0., 5.0]], num_drives: 500

50 0 50 100
xcoordinate (m)

50

25

0

25

50

75

100

y
co

or
di

na
te

 (
m

)

Sampled measurements

Simulated street
TS GroundTruth
Sampled estimates

0

1

2

3

4

5

6

7

8

1e8

50 0 50 100
xcoordinate (m)

10

0

10

20

30

40

50

y
co

or
di

na
te

 (
m

)

301.0_0.0
301.0_0.0

205.0_0.0

205.0_0.0

331.0_2.0

331.0_2.0

301.0_0.0

301.0_0.0

531.0_10.0

531.0_10.0

Integrated map (online mean, pairmatching)

Simulated street
Integrated estimates
TS Groundtruth

0 100 200 300 400 500
Integration step

0

2

4

6

8

10

12

14
M

ea
n 

of
 d

is
ta

nc
es

 (
m

)

Distance, last: 0.10

Mean(distances)

EstimateCov: [[4.0, 0.],[0., 2.0]], num_drives: 500

50 0 50 100
xcoordinate (m)

50

25

0

25

50

75

100

y
co

or
di

na
te

 (
m

)

Sampled measurements

Simulated street
TS GroundTruth
Sampled estimates

0

1

2

3

4

5

6

7

8

1e8

50 0 50 100
xcoordinate (m)

10

0

10

20

30

40

50

y
co

or
di

na
te

 (
m

)

460.0_21.0
460.0_21.0

625.0_10.0

625.0_10.0

274.0_80.0

274.0_80.0

626.0_31.0

626.0_31.0

625.0_31.0

625.0_31.0

Integrated map (online mean, pairmatching)

Simulated street
Integrated estimates
TS Groundtruth

0 100 200 300 400 500
Integration step

0

2

4

6

8

10

12

14

M
ea

n 
of

 d
is

ta
nc

es
 (

m
)

Distance, last: 0.08

Mean(distances)

EstimateCov: [[2.0, 0.],[0., 1.0]], num_drives: 500

Figure 6: Resulting estimates and their error with respect to GT-TS for different co-
variances of measurements. In all cases the position of integrated estimated
TS converged to the positions of GT-TS with very low uncertainty (mid-
dle). The shaded regions in the right plot visualize the maximum/minimum
distances of estimated TS to their matching GT-TS.
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5.4.1 Approach 1: Multiplicative factor on TS covariance

Integrating a negative measurement by multiplying the covariance matrix of a TS
by a factor φ:

Pk = P−
k . ∗ φ (8)

Given information about detection probabilities/accuracies of the involved algo-
rithms and probabilities of the causes of negative measurements listed above, as well
as the costs of a) predicting a sign that is gone and b) not predicting an existing
sign, this factor could be chosen to minimize the involved costs. Sample plots for
different values of φ can be seen in figure 7.

Figure 7: The parameter φ can be used to steer the integration of negative informa-
tion. Large factors enable rapid ”forgetting”, whereas small factors increase
the duration for which a sign is maintained despite negative measurements.
Simulated values for φ are: 1.025 (left), 1.05 (middle), 1.2 (right).
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6 Integration and Confidence estimation - Non-parametric

This chapter describes and evaluates methods that can be applied if no covariances
or error-models can be derived and input-data is limited.

As before, we assume that input data stems from a distribution. However, we
assume that the underlying distribution and error-model is not known.

6.1 Mean integration

Once single and paired TS are identified (as described in Algorithm 1), a possibility
of nonparametric integration is computing the new mean for both saved signs and
the newly matched estimated sign:

tsdbt+1 =
(
∑N

i=0 ts
db
i ) + tsestt+1

N + 1
(9)

The variance of the measurements can also be computed and can be used as a
measure of confidence:

V ar(tsdbt ) =
1

N

N∑
i=0

(tsdbi − tsdbt )2 (10)

6.2 Kernel Density Estimation

A non-parametric way to estimate the probability density function of a random
variable.

Let TSestt = {tsest0 , tsest1 , ...tsestt } be the set of all estimated TS until time t, and
assume those are samples from an unknown density f . We can estimate the shape
of f at every point x using the kernel density estimator, where K is a kernel with
bandwidth h:

f̂h(x) =
1

N

N∑
i=0

Kh(x− tsesti ) (11)

Possible kernels are the Gausskernel

k(t) :=
1√
2π
exp

(
−1

2
t2
)
, (12)

or the Cauchy-Kernel

k(t) :=
1

π(1 + t2)
(13)

among others (Picard-, Epanechnikov- kernel).
The bandwidth of the kernels is a free parameter that has strong influence on the

resulting estimate. Large bandwidths may oversmooth the data (we might aggre-
gate too many signs into one estimated mode), whereas too small bandwidths may
undersmooth the data (we might split estimates into different modes, whereas they
belong to the same GT-TS.
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7 Parameter estimation/optimization

Every parameter ultimately relates back to the uncertainties in the processes of
measuring the TS. In order to capture these uncertainties and optimize integration
parameters, the displacements of TS to their respective GT-TS can be investigated.

Given a set of estimated traffic signs, TSestt = {tsest0 , tsest2 , ..., tsestt } and the re-
spective reference traffic sign (GT-TS) tsgt, we can estimate the following quantities:

Without any assumed prior knowledge

1. Groundtruth-facts to determine the integration radius: Minimum distance of
two GT-TS of the same type that are not paired

2. Distances of paired GT-TS to determine radius for pair-matching

3. The average error

e =

∑N
i=0(ts

est
i − tsgt)

N
(14)

which can help in determining an integration radius, selecting the bandwidth-
parameter of a kernel-density-estimator as presented in section 6.

4. The distribution of estimated TS by using distribution fitting techniques like
maximum likelihood methods, the method of moments or the method of L-
moments. If the estimated data is distributed according to a matching distri-
bution, this information can be used to select appropriate parameters for the
parametric integration and confidence estimation presented in section 5.

5. Given a subset of estimates that can be distinguished due to sensor-characteristics
and -brands or system-variants, their specific error-characteristics (as listed in
Table 1: gps,sync,sensor-specific characteristica, weather) can be calculated
and used to compensate for biases in future integrations. An example of sys-
tematic bias can be found in Figure 8. Given the cars heading direction at the
time of measurement, a systematic bias can be calculated by analyzing the
mean offset to the reference TS.

(Normally) distributed measurements

1. Estimate the covariance and shape of the underlying distribution profile using
(weighted) least squares algorithms. These are the parameters needed to per-
form an optimal Bayesian integration and confidence estimation as presented
in section 5.
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Figure 8: Biased measurements
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8 Appendix - Error sources

GPS uncertainties([Lan99], [Gl]):
Position errors are caused mainly by GPS- and measurement uncertainty. Common

perturbations of a GPS position are:

• Atmospheric effects (molecules in trophosphere affect electromagnetic signal
transmission)

• Multipath effects (reflection of signal, difference in pathlength causes signals
to interfere with each other and contribute to errors in the pseudorange ob-
servables)

• Satellite geometry (dilution of precision, modulates other errors)

• Measurement noise (obstacles, satellite blocks)

• Ephemeris data (list of a i single satellites positions (in comparison to almanac
that is a rough prediction of all satellites orbits) as a function of time, contains
locations computed from orbit measurements, along with corrections. Orbital
position errors may be present in ephemeris data, causing errors in calculated
positions.)

• Satellite clock drift

The only source of error that can reliably be calculated is the DOP (dilution of
precision). This can be split up into the following factors: PDOP (position dilution
of precision) is a unitless measure that refers to the quality of horizontal (HDOP)
and vertical (VDOP) measurements. A low PDOP indicates a higher probability of
position accuracy.

PDOP 2 = HDOP 2 + V DOP 2 (15)

US government accuracy specification: 7.8 meters (95%), but the satellite geome-
try (DOP) can magnify or reduce the effects of other GPS errors.

8.0.1 GPS/Camera synchronization

If the framerate of the camera (and therefore the visual detections) and the GPS-
updates are not synchronized, this will introduce an additional error.
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9 Appendix: Past experiments

9.1 Kernel density estimation

We can use a kernel density estimation to calculate confidence values for the lo-
cations/existence of sings: As we are working with geospatial data in the WGS84
coordinate system, we choose haversine as metric and consequently the ball tree al-
gorithm. However, it remains open how to find an optimal bandwidth-parameter for
this technique to both separate single signs in pairs and still integrate measurements
that are further apart. Global scaling of resulting probabilities influences confidences
of single signs. KDE has therefore not been considered futher.

Figure 9: The result of the kernel density estimation on estimated traffic signs
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Figure 10: Initial data-integration (icons and black lines) and corrected version (red)
after heading-integration. Blue circles denote the ground-truth-position,
the other ellipses visualize the GPS-uncertainty as well as the timestamp
(black is older, white is newer. In the old integration, the measurements
may point ”backwards” considering the driving direction, which is fixed
by the proposed approach.

10 Appendix - Past and intermediate data, preprocessing
and analysis

10.1 Estimated data format II (legacy)

Format of estimated signs (2) stayed the same as in 10.2, but additional data of
corresponding GPS-data (3) as well as raw sign-measurements (unfused single-frame
measurements) (4) have been supplied.

Thanks to the GPS-data, it has been possible to detect a flaw in the conversion of
measurements from the camera-coordinate-system to a global coordinate system (the
heading of the car did not seem to be considered in this transformation). Figure 10
displays some examples of the expression of this as well as the proposed corrections.

10.2 Estimated data format I (legacy)

Estimated data is supplied by another group in the XML-format specified in section
10.2.1. Coordinates are already in WGS84 (5).

10.2.1 XML

The XML structure for TS is as follows:

<Signs>

<Sign id="000" subtype="000" lat="0.000000" lon="0.000000" height="0.0000" conf_id="0.00" ts="0" />

...

</Signs>

2Seq 2016 11 23 12h53m24s Filt.xml
3Seq 2016 11 23 12h53m24s gpsCAN.xml
4Seq 2016 11 23 12h53m24s Raw.xml
5cap 20160602102549 Signs 2.xml
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The entries have the following semantics:
Name Semantic

id TS code

subtype Subtype of TS code (e.g. value of speedlimit)

lat Latitude in WGS84

lon Longitude in WGS84

height Height above ground plane in meters

conf id Confidence in the type of the sign

ts Timestamp of estimate in Microseconds since capture start

10.3 Pre-processing

As a first step, associated consecutive measurements (estimate clusters) of the same
TS need to be identified and grouped.

A single estimate has the following structure:

e(TS) =



lat
lon
height
c
sc
ts

 (16)

We first divide the set of all TS estimates (e(TS)) into the respective sign-type
clusters (SC) based on their code (c) and sub-code (sc) (see Figure 14, bottom): To
identify estimates that belong together (consecutive in time, belonging to the same
TS), we further identify temporal groups in these sign-type clusters by grouping
estimates based on their timestamp. Based on assumptions about ego-speed of the
capturing vehicle, the capturing framerate and the spacing of traffic-signs, it can be
assumed that estimates of which the temporal difference is bigger than 2 seconds be-
long to different TS. The resulting set of estimate clusters (EC) contains temporally
grouped estimates of the same type and subtype (see Figure 11).

ECc,sc,t = {e(TS)c,sc,t|ci == cj , sci == scj , ti − tj < 2000000 ∀i, j ∈ |{e(TS)}|}
(17)

Some signs appear in pairs (left and right side of the road). The DBSCAN (ball-
tree algorithm with haversine distance metric) algorithm can be used to further
spatially cluster estimates (eps has to be set to value smaller than road-width and
larger than the spacing between estimates of the same TS, here: 7m).

To get a final estimate of each cluster, we can use the mean of the coordinates:

fec,sc,t =

∑
e(TS) ∈ Ec,sc,t

|Ec,sc,t|
(18)
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Figure 11: Clustering pipeline: 1) all estimates, 2) estimates with same code and
subcode, 3) temporal estimate clusters 4) spatial groups
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10.4 Matching

Goal of this chapter is to identify

1. if reference data for a final estimate fe exists, and if this is the case,

2. calculate the distance between both

Reference data has the following structure:

r(TS) =


lat
lon
height
c
sc

 (19)

The goal is now to identify a reference TS (r(TS)) with same code and subcode
and minimal distance to each final estimation fe:

min(haversine(r(TS)c,sc, fe(TS)c,sc,t))∀c, sc, t (20)

In the current implementation, we can search the set of all reference TS with same
code and subcode, later on this can be implemented using geospatial algorithms
directly on a database. The result of all final estimates can be seen in Figure 12.
Detailed visualizations can be seen in Abstract I.

10.5 Measurement errors

Out of 99 final estimates, the following 61 signs have a matching reference TS with
a distance below 100m:
Description Count

Arrow right (white on blue) 9 times
Speed lim 80 28 times
Speed lim 100 6 times
Arrow straight (white on blue) 11 times

Figure 13 shows the histogram of minimal distances of the final estimates to the
nearest reference TS.

10.5.1 Analysis

(Figure 14, top) shows an overlay of the given reference data on a map of Open-
StreetMap, whereas (Figure 14, middle) displays all estimates and (Figure 14, bot-
tom) shows the estimates for one specific TS type and subtype (Speed limit:80).

Regarding the timestamps of the data, it becomes obvious that

• several estimates exist for a single TS

• the estimates exhibit a spread along the driving direction, indicating that there
are errors either in distance-computation, ego-speed- or GPS-compensation.
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Figure 12: Final estimates, all (top) and with (bottom) matching reference TS

Figure 13: Histogram of the minimal distances of final estimates to nearest reference
TS
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• some tracks have been driven several times, resulting in multiple estimate-
groups per TS

X-C-TR-ContinentalHOLM-16



10.5 Measurement errors 29

Figure 14: Top: Reference data overlayed on OSM map, middle: Estimated data
overlayed on OSM map, bottom: Estimates for TS ”Speed Limit: 80”
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