Computer vision: models, learning and inference

Chapter 10 Graphical Models

Independence

Two variables x₁ and x₂ are independent if their joint probability distribution factorizes as
 Pr(x₁, x₂)=Pr(x₁) Pr(x₂)

 The variable x₁ is said to be conditionally independent of x₃ given x₂ when x₁ and x₃ are independent for fixed x₂.

$$Pr(x_1|x_2, x_3) = Pr(x_1|x_2)$$

$$Pr(x_3|x_1, x_2) = Pr(x_3|x_2)$$

When this is true the joint density factorizes in a certain way and is hence redundant.

$$Pr(x_1, x_2, x_3) = Pr(x_3 | x_2, x_1) Pr(x_2 | x_1) Pr(x_1)$$

= $Pr(x_3 | x_2) Pr(x_2 | x_1) Pr(x_1).$

 $Pr(x_1, x_2, x_3)$

• Consider joint pdf of three discrete variables x₁, x₂, x₃

 $Pr(x_1, x_2, x_3)$

- Consider joint pdf of three discrete variables x₁, x₂, x₃
 - The three marginal distributions show that no pair of variables is independent

 $Pr(x_1, x_2, x_3)$

- Consider joint pdf of three discrete variables x₁, x₂, x₃
 - The three marginal distributions show that no pair of variables is independent
 - But x₁ is independent of x₂ given x₃

Graphical models

 A graphical model is a graph based representation that makes both factorization and conditional independence relations easy to establish

- Two important types:
 - Directed graphical model or Bayesian network
 - Undirected graphical model or Markov network

Directed graphical models

 Directed graphical model represents probability distribution that factorizes as a product of conditional probability distributions

$$Pr(x_{1\dots N}) = \prod_{n=1}^{N} Pr(x_n | x_{\operatorname{pa}[n]})$$

where pa[n] denotes the parents of node n

Directed graphical models

- To visualize graphical model from factorization
 - add one node per random variable and draw arrow to each variable from each of its parents.
- To extract factorization from graphical model
 - Add one term per node in the graph $Pr(x_n | x_{pa[n]})$
 - If no parents then just add $Pr(x_n)$

 $Pr(x_{1}...x_{15}) = Pr(x_{1})Pr(x_{2})Pr(x_{3})Pr(x_{4}|x_{1},x_{2})Pr(x_{5}|x_{2})Pr(x_{6})$ $Pr(x_{7})Pr(x_{8}|x_{4},x_{5})Pr(x_{9}|x_{5},x_{6})Pr(x_{10}|x_{7})Pr(x_{11}|x_{7},x_{8})$ $Pr(x_{12}|x_{8})Pr(x_{13}|x_{9})Pr(x_{14}|x_{11})Pr(x_{15}|x_{12}).$

= Markov Blanket of variable x₈ – Parents, children and parents of children

If there is no route between two variables and they share no ancestors, they are independent.

A variable is conditionally independent of all others, given its Markov Blanket

General rule:

The variables in set \mathcal{A} are conditionally independent of those in set \mathcal{B} given set \mathcal{C} if all routes from \mathcal{A} to \mathcal{B} are blocked. A route is blocked at a node if (i) this node is in \mathcal{C} and the arrows meet head to tail or tail to tail or (ii) neither this node nor any of its descendants are in \mathcal{C} and the arrows meet head to head.

$$x_1 \rightarrow x_2 \rightarrow x_3$$

The joint pdf of this graphical model factorizes as: $Pr(x_1, x_2, x_3) = Pr(x_1)Pr(x_2|x_1)Pr(x_3|x_2)$

$$x_1 \rightarrow x_2 \rightarrow x_3$$

The joint pdf of this graphical model factorizes as: $Pr(x_1, x_2, x_3) = Pr(x_1)Pr(x_2|x_1)Pr(x_3|x_2)$

It describes the original example:

 x_2

Here the arrows meet head to tail at x_2 , and so x_1 is conditionally independent of x_3 given x_2 .

General rule:

The variables in set \mathcal{A} are conditionally independent of those in set \mathcal{B} given set \mathcal{C} if all routes from \mathcal{A} to \mathcal{B} are blocked. A route is blocked at a node if (i) this node is in \mathcal{C} and the arrows meet head to tail or tail to tail or (ii) neither this node nor any of its descendants are in \mathcal{C} and the arrows meet head to head.

$$x_1 \rightarrow x_2 \rightarrow x_3$$

Algebraic proof:

$$Pr(x_1|x_2, x_3) = \frac{Pr(x_1, x_2, x_3)}{Pr(x_2, x_3)}$$

=
$$\frac{Pr(x_1)Pr(x_2|x_1)Pr(x_3|x_2)}{\int Pr(x_1)Pr(x_2|x_1)Pr(x_3|x_2)dx_1}$$

=
$$\frac{Pr(x_1)Pr(x_2|x_1)}{\int Pr(x_1)Pr(x_2|x_1)dx_1},$$

No dependence on x_3 implies that x_1 is conditionally independent of x_3 given x_2 .

Redundancy

Conditional independence can be thought of as redundancy in the full distribution

$$Pr(x_{1}, x_{2}, x_{3}) = Pr(x_{1})Pr(x_{2}|x_{1})Pr(x_{3}|x_{2})$$

$$A + 3x4 + 2x3$$
= 22 entries

4 x 3 x 2 = 24 entries

Redundancy here only very small, but with larger models can be very significant.

Blue boxes = Plates. Interpretation: repeat contents of box number of times in bottom right corner. Bullet = variables which are not treated as uncertain

Undirected graphical models

Probability distribution factorizes as:

Undirected graphical models

Probability distribution factorizes as:

Alternative form $Pr(x_{1...N}) = \frac{1}{Z} \prod_{c=1}^{C} \phi_c[x_{1...N}]$

Can be written as Gibbs Distribution:

$$Pr(x_{1...N}) = \frac{1}{Z} \exp \begin{bmatrix} -\sum_{c=1}^{C} \psi_c[x_{1...N}] \end{bmatrix}$$

where
$$\psi_c[x_{1...N}] = -\log[\phi_c[x_{1...N}]]$$

Cost function
(positive or negative)

Cliques

Better to write undirected model as

Undirected graphical models

- To visualize graphical model from factorization
 - Sketch one node per random variable
 - For every clique, sketch connection from every node to every other
- To extract factorization from graphical model
 - Add one term to factorization per maximal clique (fully connected subset of nodes where it is not possible to add another node and remain fully connected)

• Much simpler than for directed models:

One set of nodes is conditionally independent of another given a third if the third set separates them (i.e. Blocks any path from the first node to the second)

Represents factorization:

$$Pr(x_1, x_2, x_3) = \frac{1}{Z}\phi_1[x_1, x_2]\phi_2[x_2, x_3]$$

By inspection of graphical model:

 x_1 is conditionally independent of x_3 given x_2 , as the route from x_1 to x_3 is blocked by x_2 .

No dependence on x_3 implies that x_1 is conditionally independent of x_3 given x_2 .

- Variables x₁ and x₂ form a clique (both connected to each other)
- But not a maximal clique, as we can add x₃ and it is connected to both

Graphical model implies factorization:

$$Pr(x_{1\dots 5}) = \frac{1}{Z}\phi_1[x_1, x_2, x_3]\phi_2[x_2, x_4], \phi_3[x_3, x_5]\phi_4[x_4, x_5]$$

 $Pr(x_{1...5}) = \frac{1}{Z}\phi_1[x_1, x_2, x_3]\phi_2[x_2, x_4], \phi_3[x_3, x_5]\phi_4[x_4, x_5]$ Or could be....

$$Pr(x_{1...5}) = \frac{1}{Z} (\phi_1[x_1, x_2]\phi_2[x_2, x_3]\phi_3[x_1, x_3]) \phi_4[x_2, x_4], \phi_5[x_3, x_5]\phi_6[x_4, x_5]$$

... but this is less general

Comparing directed and undirected models

Executive summary:

- Some conditional independence patterns can be represented as both directed and undirected
- Some can be represented only by directed
- Some can be represented only by undirected
- Some can be represented by neither

Comparing directed and undirected models

These models represent same independence / conditional independence relations

There is no undirected model that can describe these relations

Comparing directed and undirected models

Chain model (hidden Markov model)

Interpreting sign language sequences

Tree modelParsing the human bodyNote direction of links, indicating that we'rebuilding a probability distribution over the data, i.e.generative models: $Pr(\mathbf{x}|\mathbf{w})$

Grid model Markov random field (blue nodes)

Semantic segmentation

Chain model Kalman filter

Tracking contours

Inference in models with many unknowns

- Ideally we would compute full posterior distribution Pr(w_{1...N} | x_{1...N}).
- But for most models this is a very large discrete distribution – intractable to compute
- Other solutions:
 - Find MAP solution
 - Find marginal posterior distributions
 - Maximum marginals
 - Sampling posterior

Finding MAP solution

$$\hat{w}_{1...N} = \underset{w_{1...N}}{\operatorname{argmax}} \left[Pr(w_{1...N} | \mathbf{x}_{1...N}) \right]$$
$$= \underset{w_{1...N}}{\operatorname{argmax}} \left[Pr(\mathbf{x}_{1...N} | w_{1...N}) Pr(w_{1...N}) \right]$$

 Still difficult to compute – must search through very large number of states to find the best one.

Marginal posterior distributions

$$Pr(w_n|\mathbf{x}_{1...N}) = \int \int Pr(w_{1...N}|\mathbf{x}_{1...N})dw_{1...n-1}dw_{n+1...N}$$

- Compute one distribution for each variable w_n.
- Obviously cannot be computed by computing full distribution and explicitly marginalizing.
- Must use algorithms that exploit conditional independence!

Maximum marginals

$$\hat{w}_n = \operatorname*{argmax}_{w_n} \left[\Pr(w_n | \mathbf{x}_{1...N}) \right]$$

- Maximum of marginal posterior distribution for each variable w_n.
- May have probability zero; the states can be individually probable, but never co-occur.

Maximum marginals

 $Pr(w_1, w_2 | \mathbf{x}_1, \mathbf{x}_2)$

44

Sampling the posterior

- Draw samples from posterior $Pr(w_{1...N} | \mathbf{x}_{1...N})$.
 - use samples as representation of distribution
 - select sample with highest prob. as point sample
 - compute empirical max-marginals
 - Look at marginal statistics of samples

Drawing samples - directed $Pr(x_{1...N}) = \prod_{n=1}^{I} Pr(x_n | x_{pa[n]})$

To sample from directed model, use ancestral sampling

- work through graphical model, sampling one variable at a time.
- Always sample parents before sampling variable
- Condition on previously sampled values

Ancestral sampling example

 $Pr(x_1, x_2, x_3, x_4, x_5) =$ $Pr(x_1)Pr(x_2|x_1)Pr(x_3|x_4, x_2)Pr(x_4|x_2, x_1)Pr(x_5|x_3)$

Ancestral sampling example

To generate one sample:

- 1. Sample x_1^* from $Pr(x_1)$
- 2. Sample x_2^* from $Pr(x_2 | x_1^*)$
- 3. Sample x_4^* from $Pr(x_4 | x_1^*, x_2^*)$

4. Sample x₃* from Pr(x₃ | x₂*,x₄*)
5. Sample x₅* from Pr(x₅ | x₃*)

Drawing samples - undirected

- Can't use ancestral sampling as no sense of parents / children and don't have conditional probability distributions
- Instead us Markov chain Monte Carlo method
 - Generate series of samples (chain)
 - Each depends on previous sample (Markov)
 - Generation stochastic (Monte Carlo)
- Example MCMC method = Gibbs sampling

Gibbs sampling

To generate new sample **x** in the chain

- Sample each dimension in any order
- To update n^{th} dimension x_n
 - Fix other N-1 dimensions
 - Draw from conditional distribution $Pr(x_n | x_{1...N \setminus n})$
- Get samples by selecting from chain
 - Needs burn-in period
 - Choose samples spaced apart, so not correlated

Gibbs sampling example: bi-variate normal distribution

Gibbs sampling example: bi-variate normal distribution

Learning in directed models

$$Pr(x_{1...N}) = \prod_{n=1}^{I} Pr(x_n | x_{pa[n]})$$

Use standard ML formulation

$$\hat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}} \left[\prod_{i=1}^{I} \prod_{n=1}^{N} \Pr(x_{i,n} | x_{i, \text{pa}[n]}, \boldsymbol{\theta}) \right]$$
$$= \operatorname{argmax}_{\boldsymbol{\theta}} \left[\sum_{i=1}^{I} \sum_{n=1}^{N} \log[\Pr(x_{i,n} | x_{i, \text{pa}[n]}, \boldsymbol{\theta})] \right]$$

where $x_{i,n}$ is the nth dimension of the ith training example.

Learning in undirected models

Write in form of Gibbs distribution

$$Pr(\mathbf{x}) = \frac{1}{Z} \exp\left[-\sum_{c=1}^{C} \psi_c[x_{1...N}, \boldsymbol{\theta}]\right]$$

Maximum likelihood formulation

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \frac{1}{Z(\boldsymbol{\theta})^{I}} \exp \left[-\sum_{i=1}^{I} \sum_{c=1}^{C} \psi_{c}(\mathbf{x}_{i}, \boldsymbol{\theta}) \right]$$
$$= \arg \max_{\boldsymbol{\theta}} -I \log[Z(\boldsymbol{\theta})] - \sum_{i=1}^{I} \sum_{c=1}^{C} \psi_{c}(\mathbf{x}_{i}, \boldsymbol{\theta})$$

Learning in undirected models

PROBLEM: To compute first term, we must sum over all possible states. This is intractable

Contrastive divergence

Some algebraic manipulation

$$\frac{\partial \log[Z(\theta)]}{\partial \theta} = \frac{1}{Z(\theta)} \frac{\partial Z(\theta)}{\partial \theta}$$

$$= \frac{1}{Z(\theta)} \frac{\partial \sum_{\mathbf{x}} f[\mathbf{x}, \theta]}{\partial \theta}$$

$$= \frac{1}{Z(\theta)} \sum_{\mathbf{x}} \frac{\partial f[\mathbf{x}, \theta]}{\partial \theta}$$

$$= \frac{1}{Z(\theta)} \sum_{\mathbf{x}} f[\mathbf{x}, \theta] \frac{\partial \log[f[\mathbf{x}, \theta]]}{\partial \theta}$$

$$= \sum_{\mathbf{x}} Pr(\mathbf{x}) \frac{\partial \log[f[\mathbf{x}, \theta]]}{\partial \theta}.$$

Contrastive divergence

Now approximate:

Where x_j^{*} is one of J samples from the distribution. Can be computed using Gibbs sampling. In practice, it is possible to run MCMC for just 1 iteration and still OK.

Contrastive divergence

Conclusions

Can characterize joint distributions as

- Graphical models
- Sets of conditional independence relations
- Factorizations
- Two types of graphical model, represent different but overlapping subsets of possible conditional independence relations
 - Directed (learning easy, sampling easy)
 - Undirected (learning hard, sampling hard)