Computer vision: models,
learning and inference

Chapter 10
Graphical Models



Independence

* Two variables x; and x, are independent if their
joint probability distribution factorizes as

Pr(x,, X,)=Pr(x;) Pr(x,)



Conditional independence

The variable x, is said to be conditionally
independent of x; given x, when x, and x, are
independent for fixed x,.

Pr(xi|xe,x3) = Pr(xi|ze)
Pr(xs|xy,xe) = Pr(as|es)
When this is true the joint density factorizes in a
certain way and is hence redundant.

Pr(ﬂjlﬁﬂfg,ﬂig) _— P?“(ﬂfg‘ilfg,ﬂfl)PT‘(ﬂig‘xl)Pr(Jfl)
=  Pr(zs|re)Pr(zs|xy)Pr(xzy).
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Conditional independence

Pr(xy, xo, x3)

* Consider joint pdf of three discrete variables x;, x,, X;



Conditional independence

Pr(xy, xo, x3)

PT(.’L’l,il?g)

Pr(xq,x3) Pr(xq,x3)

* Consider joint pdf of three discrete variables x;, x,, X;
* The three marginal distributions show that no pair of variables is independent



Conditional independence

Pr(xy, xo, x3)

CPr(wi,mslza=1)  Prleiaslea=2)  Prizi,zslz=3)

x3

T

* Consider joint pdf of three discrete variables x;, x,, X;
* The three marginal distributions show that no pair of variables is independent
* Butx, isindependent of x, given x;



Graphical models

* A graphical model is a graph based
representation that makes both factorization
and conditional independence relations easy
to establish

* Two important types:
— Directed graphical model or Bayesian network
— Undirected graphical model or Markov network



Directed graphical models

* Directed graphical model represents probability
distribution that factorizes as a product of
conditional probability distributions

N
Pr(erx) = T] Priealepan)
n=1

where pa[n] denotes the parents of node n



Directed graphical models

* To visualize graphical model from factorization

— add one node per random variable and draw arrow to each
variable from each of its parents.

e To extract factorization from graphical model
— Add one term per node in the graph Pr(x, | X,.i,)
— If no parents then just add Pr(x,)



Example 1

Pr(xy...x15) = Pr(xzy)Pr(xs
Pr(x7)Pr

Pr(xzs)Pr(xs|xy, v2)Pr(zs|ze) Pr(xze)

rs|ty, x5)Pr(xo|lrs, x6) Pr(xio|rs)Pr(ziy|rr, 28)
(

)
(

P?“(ﬂflg‘LEg)P?“(ZClg‘ZCQ)P?“(ZElLl‘iEM)P?“ L15 ‘5512)
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Example 1

= Markov Blanket of variable xg— Parents, children
and parents of children
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Example 1

If there is no route between two variables and
they share no ancestors, they are independent.



Example 1

A variable is conditionally independent of all others,
given its Markov Blanket



General rule:
The variables in set A are conditionally independent of those in set B given set C
if all routes from A to B are blocked. A route is blocked at a node if (i) this node
is in C and the arrows meet head to tail or tail to tail or (i) neither this node nor
any of its descendants are in C and the arrows meet head to head.
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Example 2

The joint pdf of this graphical model factorizes as:

Pr(xy,r9,23) = Pr(zy)Pr(xzs|z,)Pr(xs|zs)
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Example 2

The joint pdf of this graphical model factorizes as:

Pr(xq,xe,x3) = Pr(xy)Pr(zala,)Pr(zs|as)

P!‘(-l' 1, Lo, J':%)

It describes the original example:




Example 2

Here the arrows meet head to tail at x,, and so x, is
conditionally independent of x; given x,.

General rule:

The variables in set A are conditionally independent of those in set B given set C
if all routes from A to B are blocked. A route is blocked at a node if (i) this node
is in C and the arrows meet head to tail or tail to tail or (i) neither this node nor
any of its descendants are in C and the arrows meet head to head.
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Example 2

Algebraic proof:

Pr(xy,x2, x3)

Pr(zylre. x3) = Pr(ra,x3)

Pr(xzy)Pr(za|zy)Pr(zs|zs)

| Pr(xzq)Pr(xs

v1)Pr(xs|re)dry

Pr(xy)Pr(xa|zy)

| Pr(zq)Pr(xs

Ifl)dﬂfl ?

No dependence on x; implies that x, is conditionally

independent of x; given x,.



Redundancy

P7'(ﬂ71¢ Lo, Ig)

Conditional independence can be
thought of as redundancy in the full
distribution

Pr(x1,x0,x3) = Pr(zy)Pr(xs|z,)Pr(xs|rs)

o /\ I A

4 + 3x4 + 2x3
= 22 entries

4 x 3 x2 =24 entries

Redundancy here only very small, but with larger models
can be very significant.



Example 3

r ) r A r )

p, 3 B, 3, v p, P, 3

K AN ~

- U . IJ ~ -
|\/||xtur-e of t-distribution Factor analyzer
Gaussians

Blue boxes = Plates. Interpretation: repeat contents of box
number of times in bottom right corner.
Bullet = variables which are not treated as uncertain
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Undirected graphical models

Probability distribution factorizes as:

Pr(zi.. . N) H GclT1.. N]
/ -
Partition Product over  Potential function
function C functions (returns non-
(normalization negative number)

constant)
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Undirected graphical models

Probability distribution factorizes as:
'

1 ,.
Pr(zi.n) = — H Pcl1...N]

Partition 7 = ZZ ZH Gclr1.. N

function TN c=1
(normalization For Iarge systems, intractable to compute

constant)
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Alternative form

Pr(xzi.n) H Gc|1...N]
Can be written as Gibbs Distribution:

| )
= — — U
Pr(z1..5) = — exp Z LJ}SCL..N}
Cost function
Velrr..v] = —loglc[r1..v] (positive or negative)

where
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Cliques

Better to write undirected model as
@

PT‘(.CE1___N) — % H

Oc|Se]
VAR

Product over Clique
cliques Subset of variables
N
Sc C {m’fl n—1
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Undirected graphical models

* To visualize graphical model from factorization
— Sketch one node per random variable

— For every clique, sketch connection from every node to
every other

* To extract factorization from graphical model

— Add one term to factorization per maximal clique (fully
connected subset of nodes where it is not possible to add
another node and remain fully connected)



Conditional independence

* Much simpler than for directed models:

One set of nodes Is conditionally independent of another
given a third if the third set separates them (i.e.
Blocks any path from the first node to the second)



Example 1

Represents factorization:

P?“(ﬂ?lj L2, mg) —
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1

/
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Example 1

By inspection of graphical model:

X, is conditionally independent of x; given x,, as the
route from x, to x; is blocked by x,.



Example 1

Algebraically:
Pr(xzi,x2,x3)
Pr(xo, x3)

%(91 [5(‘1 5(‘2}(92 [TQ 'T‘ﬂ

L1 [w1, 22] P2 w0, 23] dr

Pr(xyi|ze, v3)

(“)1 [mlﬁ :I:Q}

J 1lar, woldey
No dependence on x, implies that x, is conditionally
independent of x; given x,.



Example 2

* Variables x; and x, form a clique (both connected to
each other)

* But not a maximal clique, as we can add x; and it is
connected to both



Example 2

Graphical model implies factorization:
1

Pr(z1..5) = — ¢1[21, T2, T3]@2(22, T4, P3|3, 5]04[24, 2]
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Example 2

I , | ,
Pr(zy.5) = E@l[ﬂ?hﬂ?%iﬁs}@ T2, 4], O3|X3, T5]04[14, W5

Or could be....

I , , , , ,
P?“(ZE1,__5) — =~ ((P [331,5172}@2[11327333}@3 {$1$3D ¢ [£C23$4L@5[3733[1?5}@6[164?175}

Z
... but this is less general
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Comparing directed and undirected models

Executive summary:

 Some conditional independence patterns can be
represented as both directed and undirected

 Some can be represented only by directed

 Some can be represented only by undirected

e Some can be represented by neither



Comparing directed and undirected models

xo AL 21|23 xro Il 21|23 xo 1l x4
\ / |
These models represent same independence / There is no undirected model that
conditional independence relations can describe these relations
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Comparing directed and undirected models

Oé@ Qé@

1 AL x4|xe, x3 x1 1L x4|T0, 23

zo AL x3|x1, 24 xo 1L x3|71

f

There is no directed model that Closest example,
can describe these relations but not the same
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Graphical models in computer vision

Chain model Interpreting sigh
(hidden Markov model) language sequences
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Graphical models in computer vision

Tree model Parsing the human body

Note direction of links, indicating that we’re
building a probability distribution over the data, i.e.
generative models: Pr(x|w)
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Graphical models in computer vision

Grid model Semantic
Markov random field segmentation
(blue nodes)
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Graphical models in computer vision

Chain model Tracking contours
Kalman filter
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Inference in models with many
unknowns

* |deally we would compute full posterior
distribution Pr(w, %, )

e But for most models this is a very large
discrete distribution — intractable to compute

e Other solutions:
— Find MAP solution
— Find marginal posterior distributions
— Maximum marginals
— Sampling posterior



Finding MAP solution

wr..ny = argmax |[Pr(wi. n|xi..n)
Wwi1...N

argmax |Pr(xy. n|wi. . n)Pr(wi..N)]
Wwi...N

e Still difficult to compute — must search
through very large number of states to find
the best one.



Marginal posterior distributions

Pr(w,|x1..n) = / /PT’(wl...NXL...N)dwl...n1dwn+1...N

* Compute one distribution for each variable w..

* Obviously cannot be computed by computing
full distribution and explicitly marginalizing.

* Must use algorithms that exploit conditional
independence!



Maximum marginals

W, = argmax [Pr(w,|x; )]

270
Wn,

 Maximum of marginal posterior distribution for
each variable w,..

 May have probability zero; the states can be
individually probable, but never co-occur.



(ex ‘Ix[em)ud

Maximum marginals

PT(wla w?lxla XZ)




Sampling the posterior

* Draw samples from posterior Pr(w, \|X; y)-
— use samples as representation of distribution
— select sample with highest prob. as point sample

— compute empirical max-marginals
* Look at marginal statistics of samples



Drawing samples - directed

I

Pr(er ) = [T Preealepan)
n=1

To sample from directed model, use ancestral sampling

 work through graphical model, sampling one variable at
a time.

 Always sample parents before sampling variable

 Condition on previously sampled values



Ancestral sampling example

Pr(x1,xo, 13,24, 25) =

Pr(x1)Pr(xo|x,)Pr(rs|ry, x0) Pr(xy|rs, ml)Pr(m5\$3)
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Ancestral sampling example

To generate one sample:

1. Sample x,* from Pr(x,) 4. Sample x;* from Pr(x;| x,*,%,*)
2. Sample x,* from Pr(x,| x,*) 5. Sample x;* from Pr(x| x5*)
3. Sample x,* from Pr(x,| x,*, X,*)



Drawing samples - undirected

e Can’t use ancestral sampling as no sense of
narents / children and don’t have conditional

orobability distributions
e |nstead us Markov chain Monte Carlo method

— Generate series of samples (chain)
— Each depends on previous sample (Markov)
— Generation stochastic (Monte Carlo)

* Example MCMC method = Gibbs sampling




Gibbs sampling

To generate new sample x in the chain
— Sample each dimension in any order

— To update nt" dimension x.
* Fix other N-1 dimensions
*  Draw from conditional distribution Pr(x,| X; )

Get samples by selecting from chain
— Needs burn-in period
— Choose samples spaced apart, so not correlated



Gibbs sampling example: bi-variate
normal distribution




Gibbs sampling example: bi-variate
normal distribution




Learning in directed models

1

Pr(er..x) = [ Priealpag)
n=1

Use standard ML formulation

C T
0 = argmax Pr(x;n|v; papm. 0
gg _?le i )
C T
— argmax log[Pr(xin|T;pe nl 0
e | 323 nlPr s 0

where x. . is the nt" dimension of the it" training example.



Learning in undirected models

Write in form of Gibbs distribution

Maximum likelihood formulation

é — El.I‘gIHng eXp|: ZZU X, :|

1=1 c=

I C
= argmax —I'log|Z(0)] — Ve(%x4,0)
1=1 c=1



Learning in undirected models

Y AW

oL dlog LS .(x;,0)
00 -2, 06

1=1 c=1

dlog {in exp {— S te(x.0)

-

_ ' o be(Xi,
06 H P S; -

1=1 e=1

PROBLEM: To compute first term, we must sum over
all possible states. This is intractable



Contrastive divergence

Some algebraic manipulation

OloglZ(8)] 1 0Z(6)
00 ~ Z(6) o8
1 d)  flx 0
Z(0) 08

B 1 0fx, 0]
= Z0) 2 o

X

o 9 log[f[x. 0]
— —Zf[XjQ} o0

B dlog| f|x, 6]
= ZP? 90 .



Contrastive divergence

Now approximate:

0 log Z Pr(x () log Oféx 0]

. Olog[f[x;, 0]

J}1 00

Where x;* is one of J samples from the distribution.
Can be computed using Gibbs sampling. In practice, it is
possible to run MCMC for just 1 iteration and still OK.



Contrastive divergence

from model

sk skek sk sicHeltedi sk samples

Pr(x)

-|—|‘- -!—|—-H— -l——l— ++ Training data
L
Olog|Pr(x)] _ 0log|Z(0)] & Olog|f[x,6]

00 00 00
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Conclusions

Can characterize joint distributions as
— Graphical models
— Sets of conditional independence relations
— Factorizations

Two types of graphical model, represent

different but overlapping subsets of possible
conditional independence relations

— Directed (learning easy, sampling easy)
— Undirected (learning hard, sampling hard)



