
Computer vision: models, 
learning and inference

Chapter 10 

Graphical Models



Independence
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• Two variables x1 and x2 are independent if their 
joint probability distribution factorizes as 

Pr(x1, x2)=Pr(x1) Pr(x2)



Conditional independence
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• The variable x1 is said to be conditionally 
independent of x3 given x2 when x1 and x3 are 
independent for fixed x2.

• When this is true the joint density factorizes in a 
certain way and is hence redundant.



Conditional independence
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• Consider joint pdf of three discrete variables x1, x2, x3



Conditional independence
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• Consider joint pdf of three discrete variables x1, x2, x3

• The three marginal distributions show that no pair of variables is independent



Conditional independence
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• Consider joint pdf of three discrete variables x1, x2, x3

• The three marginal distributions show that no pair of variables is independent
• But x1 is independent of x2 given x3



Graphical models

• A graphical model is a graph based 
representation that makes both factorization 
and conditional independence relations easy 
to establish

• Two important types:

– Directed graphical model or Bayesian network

– Undirected graphical model or Markov network
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Directed graphical models

• Directed graphical model represents probability 
distribution that factorizes as a product of 
conditional probability distributions

where pa[n] denotes the parents of node n
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Directed graphical models
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• To visualize graphical model from factorization

– add one node per random variable and draw arrow to each 
variable from each of its parents.

• To extract factorization from graphical model

– Add one term per node in the graph Pr(xn| xpa[n])

– If no parents then just add Pr(xn)



Example 1
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Example 1
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= Markov Blanket of variable x8 – Parents, children 
and parents of children  



Example 1
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If there is no route between two variables and 
they share no ancestors, they are independent.



Example 1
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A variable is conditionally independent of all others, 
given its Markov Blanket 



Example 1
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General rule: 



Example 2
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The joint pdf of this graphical model factorizes as:



Example 2
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The joint pdf of this graphical model factorizes as:

It describes the original example:



Example 2
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General rule: 

Here the arrows meet head to tail at x2, and so x1 is 
conditionally independent of x3 given x2.



Example 2
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Algebraic proof:

No dependence on x3 implies that x1 is conditionally 
independent of x3 given x2.



Redundancy 
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4 x 3 x 2 = 24 entries

4 +            3 x 4          +       2 x 3
= 22 entries

Conditional independence can be 
thought of as redundancy in the full 
distribution

Redundancy here only very small, but with larger models 
can be very significant.



Example 3
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Mixture of 
Gaussians

t-distribution Factor analyzer

Blue boxes = Plates.  Interpretation:  repeat contents of box 
number of times in bottom right corner.
Bullet = variables which are not treated as uncertain



Undirected graphical models
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Probability distribution factorizes as:

Partition 
function 

(normalization 
constant)

Product over 
C functions

Potential function
(returns non-

negative number)



Undirected graphical models
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Probability distribution factorizes as:

Partition 
function 

(normalization 
constant)

For large systems, intractable to compute



Alternative form
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Can be written as Gibbs Distribution:

Cost function 
(positive or negative)

where



Cliques
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Better to write undirected model as

Product over 
cliques

Clique 
Subset of variables



Undirected graphical models
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• To visualize graphical model from factorization

– Sketch one node per random variable

– For every clique, sketch connection from every node to 

every other

• To extract factorization from graphical model

– Add one term to factorization per maximal clique (fully 
connected subset of nodes where it is not possible to add 
another node and remain fully connected)



Conditional independence
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• Much simpler than for directed models:

One set of nodes is conditionally independent of another 

given a third if the third set separates them (i.e. 

Blocks any path from the first node to the second)



Example 1
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Represents factorization:



Example 1
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By inspection of graphical model:

x1 is conditionally independent of x3 given x2, as the 
route from x1 to x3 is blocked by x2.



Example 1
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Algebraically:

No dependence on x3 implies that x1 is conditionally 
independent of x3 given x2.



Example 2
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• Variables x1 and x2 form a clique (both connected to 
each other)

• But not a maximal clique, as we can add x3 and it is 
connected to both



Example 2
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Graphical model implies factorization:



Example 2
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Or could be....

... but this is less general



Comparing directed and undirected models
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Executive summary:

• Some conditional independence patterns can be 
represented as both directed and undirected

• Some can be represented only by directed
• Some can be represented only by undirected
• Some can be represented by neither



Comparing directed and undirected models
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These models represent same independence / 
conditional independence relations

There is no undirected model that 
can describe these relations



Comparing directed and undirected models
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There is no directed model that 
can describe these relations

Closest example, 
but not the same
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Graphical models in computer vision

Chain model 
(hidden Markov model)

Interpreting sign 
language sequences
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Graphical models in computer vision

Tree model Parsing the human body
Note direction of links, indicating that we’re 
building a probability distribution over the data, i.e. 
generative models:
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Graphical models in computer vision

Grid model
Markov random field

(blue nodes)

Semantic 
segmentation
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Graphical models in computer vision

Chain model
Kalman filter

Tracking contours



Inference in models with many 
unknowns

• Ideally we would compute full posterior 
distribution Pr(w1...N|x1...N).

• But for most models this is a very large 
discrete distribution – intractable to compute

• Other solutions:
– Find MAP solution

– Find marginal posterior distributions

– Maximum marginals

– Sampling posterior
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Finding MAP solution
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• Still difficult to compute – must search 
through very large number of states to find 
the best one.



Marginal posterior distributions
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• Compute one distribution for each variable wn.  

• Obviously cannot be computed by computing 
full distribution and explicitly marginalizing.

• Must use algorithms that exploit conditional 
independence!



Maximum marginals
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• Maximum of marginal posterior distribution for 
each variable wn.

• May have probability zero;  the states can be 
individually probable, but never co-occur.



Maximum marginals
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Sampling the posterior
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• Draw samples from posterior Pr(w1...N|x1...N). 
– use samples as representation of distribution

– select sample with highest prob. as point sample

– compute empirical max-marginals
• Look at marginal statistics of samples



Drawing samples - directed
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To sample from directed model, use ancestral sampling

• work through graphical model, sampling one variable at 
a time.

• Always sample parents before sampling variable
• Condition on previously sampled values



Ancestral sampling example
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Ancestral sampling example
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1. Sample x1
* from Pr(x1)

2. Sample x2
* from Pr(x2| x1

*)
3. Sample x4

* from Pr(x4| x1
*, x2

*)

4. Sample x3
* from Pr(x3| x2

*,x4
*)

5. Sample x5
* from Pr(x5| x3

*)

To generate one sample:



Drawing samples - undirected

• Can’t use ancestral sampling as no sense of 
parents / children and don’t have conditional 
probability distributions

• Instead us Markov chain Monte Carlo method

– Generate series of samples (chain)

– Each depends on previous sample (Markov)

– Generation stochastic (Monte Carlo)

• Example MCMC method = Gibbs sampling
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Gibbs sampling

To generate new sample x in the chain

– Sample each dimension in any order

– To update nth dimension xn

• Fix other N-1 dimensions 

• Draw from conditional distribution Pr(xn| x1...N\n)

Get samples by selecting from chain

– Needs burn-in period

– Choose samples spaced apart, so not correlated



Gibbs sampling example: bi-variate
normal distribution
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Gibbs sampling example: bi-variate
normal distribution
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Learning in directed models

Use standard ML formulation

where xi,n is the nth dimension of the ith training example.
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Learning in undirected models
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Write in form of Gibbs distribution

Maximum likelihood formulation



Learning in undirected models
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PROBLEM:  To compute first term, we must sum over 
all possible states.  This is intractable



Contrastive divergence
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Some algebraic manipulation



Contrastive divergence
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Now approximate:

Where xj
* is one of J samples from the distribution.  

Can be computed using Gibbs sampling. In practice, it is 
possible to run MCMC for just 1 iteration and still OK.



Contrastive divergence
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Conclusions

Can characterize joint distributions as
– Graphical models

– Sets of conditional independence relations

– Factorizations 

Two types of graphical model, represent 
different but overlapping subsets of possible 
conditional independence relations
– Directed (learning easy, sampling easy)

– Undirected (learning hard, sampling hard)
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