Computer vision: models,
learning and inference

Chapter 11

Models for Chains and Trees

Structure

Chain and tree models

MAP inference in chain models

MAP inference in tree models
Maximum marginals in chain models
Maximum marginals in tree models
Models with loops

Applications

Chain and tree models

* Given a set of measurements {x.},—, and world
states {w,})_,, infer the world states from the
measurements.

* Problem: if N is large, then the model relating the
two will have a very large number of parameters.

* Solution: build sparse models where we only
describe subsets of the relations between
variables.

Chain and tree models

Chain model: only model connections between
a world variable and its 1 predeeding and 1
subsequent variables

Tree model: connections between world
variables are organized as a tree (no loops).
Disregard directionality of connections for
directed model

Assumptions

We'll assume that

— World states w),, are discrete
— Observed data variables X,, for each world state

— The nth data variable X, is conditionally
independent of all of other data variables and
world states, given associated world state

Gesture Tracking

Figure 10.1 Interpreting sign language. We observe a sequence of images
of a person using sign language. In each frame we extract a vector x de-
scribing the shape and position of the hands. The goal is to infer the sign
w,, that is present. Unfortunately, the visual data in a single frame may
be ambiguous. We improve matters by describing probabilistic connections
between adjacent states w,, and w,,_1; we impose knowledge about the likely
sequence of signs and this helps disambiguate any individual frame. Frames

from Purdue RVL-SLLL ASL database (Wilbur & Kak 2006).

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

http://www.cc.gatech.edu/~thad

Directed model for chains
(Hidden Markov model)

Pr Xl N, W1.. N H PT Xn|wn H PT wn|wn 1
n 1 / ’n, 2
Compatibility of measurement Compatibility of world state and
and world state previous world state

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 7

Undirected model for chains

PT(XI...Nawl. N H O Xn un] H Q Wp i'if.rz,—l]

”’/ =

Compatibility of measurement Compatibility of world state and
and world state previous world state

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 8

Equivalence of chain models

Directed:

Pr(xi. n,wi. .N) = (H PT(ann)) (H Pr(wy,|wp—1))

n=1 n=>2
Undirected:
1 N N
P'?'(Xl...]\fa’wl...f\f') — Z (H O[Xila’wn]) (H Q[un unl])
n—=1 n—>2
Equivalence:
1
PT(Xn|wn) — Z_Qb[xnawn] . N
T
1 /= (H Zn) (H Z;)
Pr(wp,|w,—1) = Z—,C[wn,wn_l] — ne2
mn

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

Chain model for sign language
application

Observations are normally distributed but depend on sign k

Pr(x,|w, =k) = Normy_ [, 2]

World state is categorically distributed, parameters depend on
previous world state

Pr(wy,|w,—1=k) = Caty, [Ag]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 10

Structure

Chain and tree models

MAP inference in chain models

MAP inference in tree models
Maximum marginals in chain models
Maximum marginals in tree models
Models with loops

Applications

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

11

MAP inference in chain model

Directed model:
N

Pr(xy. . n,wi. . N) = (

N
Pr(xnmn)) (H Pr(wyw, 1))

n=1

MAP inference:

wy.. Ny = argmax[Pr(wi. y|x1..n~)]
W1...N
= argmax |[Pr(xi. . ~, w1 N)]
Wwi...N
— argmin |— log |Pr(x1..n,w1..N)||
wi...N

Substituting in :

wi...N

N N
W1, N = argmin [Z log [Pr(x,|wy,)] — Z log [Pr(wnwnl)]}

n=1 n=2

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 12

MAP inference in chain model

N N
W1, N = argmin [Z log [Pr(x,|wy,)] — Z log [Pr(wnwnl)]}

Takes the general form:

Wy, N = argmin
wi1...N

Unary term: Un(’wn) = —log[P?“(anwn)]

Pairwise term: Pn(wn,wn_1) — —1Og[P7“(wn‘wn—1)]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 13

Dynamic programming

Maximizes functions of the form:
N

quJ1...N —a,rgml Z wn + ZP Wnyy Wn— 1)

w
1...N n=>2

Set up as cost for traversing graph — each path from left to right is one possible
configuration of world states

A OUl(wl =1) OUQ(‘LUQ =1) OUS(wS ~1) OU4(w4 ~1)
. OUl(wl = 2) Us(wy = 2) Us(ws = 2) O Q;,@"
-1 O 0L,
k=4 OUl(wl =4) O O pj:@ S O
Uy (w = 5) O

Xz
o 0

n=1 n=2 n=3 n=4 n= n==~06

O

Us (’wz = 3)

O

O0OO0O0

k=5

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 14

Dynamic programming

Algorithm:

1. Work through graph computing minimum possible cost .5,, 1 to reach each node
2. When we get to last column, find minimum
3. Trace back to see how we got there

et OUl(wl Y OUz(’w2 =1) OUS(’WS =1) OU4(’LU4 =1)
i=2 Q27 SN g U Q{Q«\
=0 oL,
k4 OUl(wl = 4) O pj:(:zg)o

Uy (wy = 5) O o\@@ O

n=1 n=2 n=3 n=4 n= n==~06

O

Us (’wz = 3)

O OO
O0OO0O0

k=5

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 15

Worked example

Unary cost Pairwise costs: * Zero cost to stay at same label
e Cost of 2 to change label by 1
* Infinite cost for changing by more
than one (not shown)

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 16

Worked example

5.7

Minimum cost S1,1 ...51,5
to reach first node is just unary cost

Sl,k — Ul(wl — k)

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 17

k=1
k=2
k=3
k=4
k=5

Worked example

5.7

n =2 n=3 n =4

<
>

Minimum cost 52’1 is minimum of two possible routes to get here

Route 1: 2.0+0.0+1.1=3.1
Route 2: 0.8+2.0+1.1=3.9

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

18

Worked example

Minimum cost 52’1 is minimum of two possible routes to get here

Route 1: 2.0+0.0+1.1=3.1 -- this is the minimum — note this down
Route 2: 0.8+2.0+1.1=3.9

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 19

Worked example

7~ 7~~~ /\6.0 3.1
' ') 0.0 \ /] 0.0 \ J 0.0
. 35 >3 >3
L — 9 ' 1.0 50 r\&o 50 r\6.9 50 3.3
) ' . 0.0
<0

General rule:

Sn.k = Up(w, =k)+ mlin Sn—11+ Po(w, =k, w,—1 =1)]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 20

Worked example

Work through the graph, computing the minimum
cost to reach each node

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 21

Worked example

k=1 @ 3.1 @ @ @ 18.7
k=2 (o8 . / @ 19.3
@ O o\o O—¢€
= @ \ =
k=15 G/@ 94 @ 133/23.1

n=1 n=~2 n=23 n=4 n=>5 n==~06

Keep going until we reach the end of the graph
Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 22

k=1

k=2

k=3

k=4

k=5

Worked example

‘2.0 ;
D0

8.7

C‘\O

17.4

183

Find the minimum possible cost to reach the final column

Computer vision

: models, learning

andin

ference

n=4

. ©2011 Simon J.D. Prince

OO0 06 06

n=>5

Worked example

©
O ©
O—
n=1 n=2 n=3 n=4 n=>9

Trace back the route that we arrived here by — this is the
minimum configuration

T =

ONONONONG

D

Structure

Chain and tree models

MAP inference in chain models

MAP inference in tree models
Maximum marginals in chain models
Maximum marginals in tree models
Models with loops

Applications

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

25

MAP inference for trees

Pr(wi. ¢) = Pr(wy)Pr(ws)Pr(ws|wy) Pr(wy|ws) Pr(ws|ws, wy) Pr(wes|ws)

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 26

MAP inference for trees

X @

6
Wy.¢ = argmax [Z log| Pr(x,,|w,)] + log[Pr(w;.)]

wi...6

n=1

w1, ¢ =argmin
Ww1i...6

6
D Un(wn HPo(wa, wy)Py (wy, ws)+Ps (we, ws 75 (ws, wa, w4)]

n=1

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 27

Worked example

Ts(ws = 1, wo,wa) Ts(ws = 2, wa, ws)

Wy Wy
1 2 3 4 1 2 3 4
1/04 1.7 co o0 1/0.0 1.7 3.7
. 2123 00 c© o0 2127 03 1.0 o
3loc © oo oo 3123 14 02
OB.O 4l oo 00 o0 o0 4loo o0 o0 o0
4 T5(w5 = 3,’[1)2,11)4) T5(’U.J5 = 4, wQ,UJ4)
() Wy Wy
1 2 3 4 1 2 3 4
0.8 1Joc oo oo oo 1| oo o0 oo o0
2l o0 03 12 2.3 20 0 oo o
n==6 wo wo
3loc 1.7 04 14 3loc o0 04 1.7
4l o 1.7 54 04 Al oo o0 23 0.0

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 28

Worked example

Variables 1-4 proceed as for
the chain example.

+ mlin [S1.0 4+ Pa(we = k,wy =1)]

+ min [S31 + Py(ws =k, ws =1)]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 29

Worked example

At variable n=5 must
consider all pairs of paths
L8 from into the current node.

<9
<0 3.0
0.0 {)
<20
<o 2.4
0.0
< 8
£ 0.
0.0

n==6

S5 = Us(ws = k) + rgain 1S2.1 + Sam + T5(ws = k,we =1, wy = m)]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 30

Worked example

O,

12.3

® 0

3
Il
o

Variable 6 proceeds as
normal.

Then we trace back through
the variables, splitting at the
junction.

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 31

Structure

Chain and tree models

MAP inference in chain models

MAP inference in tree models
Maximum marginals in chain models
Maximum marginals in tree models
Models with loops

Applications

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

32

Marginal posterior inference

Start by computing the marginal distribution Pr(wx|x1.. ~)
over the Nt variable

Then we'll consider how to compute the other marginal
distributions

Computing one marginal distribution

Compute the posterior using Bayes' rule:

Pr(wn,x1..N)
Pr(xi..n)

P’I"(’LUN|X1“,N) = X Pr(wNaxl...N)

We compute this expression by writing the joint probability :

Pr(wn|x1..n) o ZZ Z Pr(wi..nN,X1..N)

w1 w2 WN -1

<3 3 (Tt) prten (T o)

w1 W9 WN—1 n=1 n=2

Computing one marginal distribution

Pr(wn|x1.. n) o ZZ Z (H Xn|wn)) Pr(wy) (H Pr(wy,|w,— 1))

w1 w2 WN -1 n n=2

Problem: Computing all N states and marginalizing explicitly is intractable.

Solution: Re-order terms and move summations to the right

PT’('I,UN‘XL_.N) X

Prixylwy) Y .Y Pr(wslws) Pr(xalws) >~ Pr(ws|w) Pr(x:[wy) Pr(w:)

wWN —1 wo wH

Computing one marginal distribution

Pr('wN‘Xl...N> o
P?"(XN“U}N) Z ...ZPT(MS‘U}Q)P?“(XQ‘U)Q)ZP?“(wg"wl)P?"(Xl‘wl)PT‘('wl)

wN_—1 wo w1

Define function of variable w, (two rightmost terms)
f1 [wﬂ = P?“(Xl \wl)Pr(wl)
Then compute function of variables w, in terms of previous function

fows] = Pr(xzfws) Y Pr(ws|w:)fi[wi]

w1

Leads to the recursive relation

fn {w?l} — PT(X’n"wn) Z PT('wn"wn—l)fn—l{wn—l]
Wp —1

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 36

Computing one marginal distribution

f-n.. ['w -n..] = Pr (X-n,

W,) Z Pr(w,

Wy —1

Wn—1) fn —1 [w n—1]

We work our way through the sequence using this recursion.

At the end we normalize the result to compute the posterior
Pr(wy|xi..n)

Total number of summations is (N-1)K as opposed to KN for
brute force approach.

Forward-backward algorithm

 We could compute the other N-1 marginal posterior
distributions using a similar set of computations

 However, this is inefficient as much of the computation is
duplicated

* The forward-backward algorithm computes all of the
marginal posteriors at once

Pr(w,

xX1.N) X Pr(w,,x1.nN)
— PT?(wn: Xl...n)Pr(Xn—kl...N‘wn: Xl...-n,)
— PT’(U?”? Xl...n)Pr(Xn—b—l...N 'wn)
Solution: ... and take
products
Compute all first term Compute all second
using a recursion terms using a recursion

Forward recursion

Pr(wﬂ,gjil...’il) C lld I
_— E 1 T(wn..’, w?!— | 4 :{'I ,,1],)

/ probability rule
Wn—1

— Z Pr(wn:Xn"wn—l;Xl...n—l)Pr('wn—laXl...n—l)

Wp—1

— Z PT(XH.‘wns'wn—laXl...n—l)PT('wn"wn—lsXl...n—l)PT('wn—laXl...fn.—l)

Wn—1

— Z Pr(Xn‘wn)Pr('wn"wn—l)Pr('wn—laXl...n—l);
Wn—1

\ }
!

This is the same recursion as before

f,[w,| = Pr(x,|w,) Z Pr(wy,|wy,—1)f, 1w, 1]

Wp—1

S~ Using conditional
independence relations

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 39

Backward recursion

PT(X’rL...N|wn—1)

Conditional
p— Z PT(X’ILNﬂ w’rl|w’ﬂ—1) / probab|||ty rule
Wn,
— Z PT(Xn...N|wna wn—l)PT(wn|wn—1) /
W,

— ZPT(XTL+1...N|XTMwnawn—l)PT(Xn|wnawn—l)PT(wn|wn—1)

Wn

= Z Pr(x,41.. n|wn)Pr(x,|w,)Pr(w,|w,_1). Using conditional

o ow, | . independence
\ relations

This is another recursion of the form

bn—l[wn—l] — ZPr(xn|wn)PT(wn|wn—1)bn[wn]

Wn

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 40

Forward backward algorithm

Compute the marginal posterior distribution as
product of two terms

P’I"(?UTL|X1,,,N) X Pr(wnaXl...n)PT(X’TL—l-l-.-N|w’n)
— fn [wn]bn [wn]
Forward terms:

fn[wn] — PT(X7L|wn) Z Pr(wn|wn—1)fn—1[wn—l]

Wn—1

Backward terms:

bn—l[wn—l] — ZP?“(Xn|’LUn)PT(’LUn|’LU7L_1)bn[’lUn]

Belief propagation

Forward backward algorithm is a special case of a more
general technique called belief propagation

Intermediate functions in forward and backward
recursions are considered as messages conveying beliefs
about the variables.

We'll examine the Sum-Product algorithm.

The sum-product algorithm operates on factor graphs.

Sum product algorithm

Forward backward algorithm is a special case of a more
general technique called belief propagation

Intermediate functions in forward and backward
recursions are considered as messages conveying beliefs
about the variables.

We'll examine the Sum-Product algorithm.

The sum-product algorithm operates on factor graphs.

Factor graphs

Pr(ws|w) Pr(ws|ws) Pr(wy|lwy—1)
. wN

 One node for each variable
 One node for each function relating variables

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 44

Sum product algorithm

Forward pass
e Distribute evidence through the graph

Backward pass
e (Collates the evidence

Both phases involve passing messages between nodes:

 The forward phase can proceed in any order as long

as the outgoing messages are not sent until all
incoming ones received

Backward phase proceeds in reverse order to forward

Sum product algorithm

Pr(ws|w) /'\ Pr(ws|ws) /) Pr(wn|wy_1)
w1 i w2 i w3 - wN
(e)——(" O a®

Pr(x1|uw)|li} Pr(xz|w:) |l Pr(xs|ws)l} Pr(xy|wn)ili}

Three kinds of message
* Messages from unobserved variables to functions
 Messages from observed variables to functions
* Messages from functions to variables

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

46

Sum product algorithm

Message type 1:
* Messages from unobserved variables z to function g

Mz, —g, = H Mg, —z,
reNelp]\q

* Take product of incoming messages
* Interpretation: combining beliefs

Message type 2:
* Messages from observed variables z to function g

mzp —7dq — 5[Z;<)]

* Interpretation: conveys certain belief that observed
values are true

Sum product algorithm

Message type 3:
* Messages from a function g to variable z

My, —z, = Z gpNe[p]] H Mz, — g,
Ne[p]\q reNe[p]\q

* Takes beliefs from all incoming variables except recipient
and uses function g to a belief about recipient

Computing marginal distributions:
» After forward and backward passes, we compute the
marginal dists as the product of all incoming messages

Pr(z,) H my
’r'ENe [p]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 48

Sum product: forward pass

g1,2 /\ 92 gN—1,N
w1 L] w2 w3
() () ()

AMwi—g12 Mgy o—ws A Mws—ga3 Mgy 5—ws mQN 1,N—=WN
m91 —w1 m92 —wa m93—>w3 mgN —WN
gy 9: M 9 1 vl
A A A A
M, — g1 Mx, —3g2 mx3 —g3 Mx N —gN

Message from X; to g;:

By rule 2:
e My, g, = 0[X]]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 49

Sum product: forward pass

g1,2 /\ 92 gN—1,N
w1 L] w2 w3
() () ()

AMwi—g12 Mgy o—ws A Mws—ga3 Mgy 5—ws mQN 1,N—=WN
m91 —w1 m92 —wa m93—>w3 mgN —WN
gy 9: M 9 1 vl
A A A A
M, — g1 Mx, —3g2 mx3 —g3 Mx N —gN

Message from g, to wy:

By rule 3:
My, sy = /P?"(Xl\wl)d[x’f]dxl = Pr(x;=x7|w)

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 50

Sum product: forward pass

g1,2 /\ 92 IN-1,N
w1 L] w2 w3
() () ()

AMwi—g12 Mgy o—ws A Mws—ga3 Mgy 5—ws mQN 1,N—=WN
m91 —w1 m92 —wa m93—>w3 mgN —WN
gy 9: M 9 1 vl
A A A A
M, — g1 Mx, —3g2 mx3 —g3 Mx N —gN

Message from w, to g, ,:
*
syrulel: My, gy, = Prixi=xi|w)

(product of all incoming messages)

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 51

Sum product: forward pass

g1,2 /\ 92 IN-1,N
w1 L] w2 w3
() () ()

AMwi—g12 Mgy o—ws A Mws—ga3 Mgy 5—ws mQN 1,N—=WN
m91 —w1 m92 —wa m93—>w3 mgN —WN
gy 9: M 9 1 vl
A A A A
M, — g1 Mx, —3g2 mx3 —g3 Mx N —gN

Message from g, , from w,:

By rule 3:
Mg,y = Y Pr(ws|wi)Pr(xy = xj|w)

w1

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 52

Sum product: forward pass

g1,2 /\ 92 IN-1,N
w1 L] w2 w3
() () ()

AMwi—g12 Mgy o—ws A Mws—ga3 Mgy 5—ws mQN 1,N—=WN
m91 —w1 m92 —wa m93—>w3 mgN —WN
gy 9: M 9 1 vl
A A A A
M, — g1 Mx, —3g2 mx3 —g3 Mx N —gN

Messages from X, to g, and g, to W,:
. N 3k
mxz — g2 = 0 [XQ}

*
Mg, 5w, = Pr(xs=x5|

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 53

Sum product: forward pass

gi1,2 g2.3 gN—-1,N
w g ()= w3 }---

N\

AMwi—g12 Mgy o—ws A Mws—ga3 Mgy 5—ws A Mgn_1 N—wn A
m91—>’w1 m92—>w2 m93—>w3 mgN—HUN
nil 28 2] sl
M, — g1 Mx, —3g2 mx3 —g3 Mx N —gN
X1 X2 X3 XN

Message from w, to g, ;:

My, gy = P7(Xo = X5|ws) Z Pr(ws|wy)Pr(x; = xj|wy)
\ ”LY‘“)

The same recursion as in the forward backward algorithm

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 54

Sum product: forward pass

g1,2 /\ 92 IN-1,N
w1 L] w2 w3
() () ()

AMwi—g12 Mgy o—ws A Mws—ga3 Mgy 5—ws mQN 1,N—=WN
m91 —w1 m92 —wa m93—>w3 mgN —WN
gy 9: M 9 1 vl
A A A A
M, — g1 Mx, —3g2 mx3 —g3 Mx N —gN

Message from w, to g, ;:

mwn—>gn’,n_|_1 — fn[wn] — P’I"(’UJ%|X1MR)

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 55

Sum product: backward pass

g1,2 /\ 92 gN—1,N
w1 L] w2 w3
() () ()

AMwi—g12 Mgy o—ws A Mws—ga3 Mgy 5—ws mQN 1,N—=WN
m91 —w1 m92 —wa m93—>w3 mgN —WN
gy 9: M 9 1 vl
A A A A
M, — g1 Mx, —3g2 mx3 —g3 Mx N —gN

Message from Wy to gy n.1:

Myny—gN,N_1 = PT(XN — X?VhUN)

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 56

Sum product: backward pass

g1,2 /\ 92 IN-1,N
w1 L] w2 w3
() () ()

AMwi—g12 Mgy o—ws A Mws—ga3 Mgy 5—ws mQN 1,N—=WN
m91 —w1 m92 —wa m93—>w3 mgN —WN
gy 9: M 9 1 vl
A A A A
M, — g1 Mx, —3g2 mx3 —g3 Mx N —gN

Message from gy n.1 t0 Wy

Mgy No1—=wNn—1 = ZPT(wN|wN—1)PT(XN = Xy|wn)

wN

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 57

Sum product: backward pass

gi1,2 g2.3 gN—-1,N
un B m B ws }---

o\

——
AMwi—g12 Mgy o—ws A Mws—ga3 Mgy 5—ws A Mgn_1 N—wn A
m91—>’w1 m92—>w2 m93—>w3 mgN—HUN
nil 28 2] sl
M, — g1 Mx, —3g2 mx3 —g3 Mx N —gN
X1 X2 X3 XN

Message from g, ,; tow, ;:

mgn,n—lﬁwn—l — Z Pr(wn|wn_]-)mg7l,—|-l,n_>w'n — bTL_l[wTL_l]

\ wn)

The same recursion as in the forward backward algorithm

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 58

Sum product: collating evidence

 Marginal distribution is products of all messages
at node

Priwyxi.n) o« || my, ow,
melNe[n]

e Proof:

P?“(’LUn|X1mN) X mgn_ljn—>wn mgy —w, mgmn+1—>wn
— Pr(w’n|X1...’n—1)Pr(w’n|X’”J)P/r(wn|X’”+1“'N)

— Pr(w’n,|xl...N)

Structure

Chain and tree models

MAP inference in chain models

MAP inference in tree models
Maximum marginals in chain models
Maximum marginals in tree models
Models with loops

Applications

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

60

Marginal posterior inference for trees

Apply sum-product algorithm to the tree-structured
graph.

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 61

Structure

Chain and tree models

MAP inference in chain models

MAP inference in tree models
Maximum marginals in chain models
Maximum marginals in tree models
Models with loops

Applications

Tree structured graphs

This graph contains loops But the associated factor graph
has structure of a tree

Can still use Belief Propagation

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 63

Learning in chains and trees

Supervised learning (where we know world states w,) is
relatively easy.

Unsupervised learning (where we do not know world
states w,) is more challenging. Use the EM algorithm:

 E-step — compute posterior marginals over
states
e M-step —update model parameters

For the chain model (hidden Markov model) this is
known as the Baum-Welch algorithm.

Grid-based graphs

Often in vision, we have one observation associated with each
pixel in the image grid.

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 65

Why not dynamic programming?
O

O
O

n=2

3
Il
e

O
O
2

When we trace back from the final node, the paths are not
guaranteed to converge.

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 66

Why not dynamic programming?

Sie = Ui(w =k

So . = UQ(’LUQ :k)—l—l’Illll’l[Sl(’wl _l)—i—PQ(’LUQ =k, un _l)}

Sgyk = Us(ws = k) + mm [Sl(wl = l) + PQ(’LUg =k, wq = lﬂ
Computer vision: models, learning and infer . ©2011 Simon J.D. Pri 67

Why not dynamic programming?
O

O
O

n=2

10O0 00

O
O
2

But:
Sak # Us(wy = 4) +Ilﬂin [S2(w2 = 1) + S3(ws =m) +T(wy = k,we =, w3 = m)]

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 68

Approaches to inference for
grid-based models

1. Prune the graph.

Remove edges until an edge remains

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 69

Approaches to inference for
grid-based models

pate
D@

2. Combine variables.

Merge variables to form compound variable with more states until what remains is a tree.

Not practical for large grids

Approaches to inference for
grid-based models

3. Loopy belief propagation.

Just apply belief propagation. It is not guaranteed to converge, but in practice
it works well.

4. Sampling approaches
Draw samples from the posterior (easier for directed models)
5. Other approaches

* Tree-reweighted message passing
* Graph cuts

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 71

Structure

Chain and tree models

MAP inference in chain models

MAP inference in tree models
Maximum marginals in chain models
Maximum marginals in tree models
Models with loops

Applications

Gesture Tracking

Figure 10.16 Gesture tracking from

Starner et al. (1998). A camera was
mounted on a baseball cap looking
down at the users hands (inset). The
camera image (main figure) was used
to track the hands in a HMM based
system that could accurately classify
a 40 word lexicon and worked in real
time. Each word was associated with
four states in the HMM. The sys-
tem was based on a compact descrip-
tion of the hand position and orienta-
tion within each frame. Adapted from
Starner et al. (1998) (©1998 Springer.

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 73

Stereo vision

image 1 -< — image 2 ground truth disparity

 Two image taken from slightly different positions

* Matching point in image 2 is on same scanline as image 1

* Horizontal offset is called disparity

* Disparity is inversely related to depth

* Goal —infer disparities w,, at pixel m,n from images x*) and x(?)

Use likelihood:

PT(X%?n|wm,n = k) = Norm_) {X$3n+kn 021}

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 74

zoomed image 2
Computer vision:

Stereo vision

rgb value, x

Pr(x|w)

ground truth disparity

rgb value, x

h)

disparity, w

disparity, w

Pr(x|w)

disparity, w

disparity, w

models, learning and inference. ©2011 Simon J.D. Prince

75

Stereo vision

1. Independent pixels

Pr(w) = H Pr(w,,)

m=1

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

76

Stereo vision

2. Scanlines as chain model (hidden Markov model)

N
PT(WTTI) — Pr(wm,l) H Pr(wﬂm,n‘wm,n—l)

n=1

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

77

Stereo vision

3. Pixels organized as tree (from Veksler 2005)

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 78

Pictorial Structures

Figure 10.19 Pictorial structure. This

face model consists of seven parts (red
dots) which are connected together in
a tree-like structure (red lines). The
possible positions of each part are
indicated by the yellow boxes. Al-
though each part can take several hun-
dred pixel positions, the MAP po-
sitions can be inferred efficiently by
exploiting the tree-structure of the
graph using a dynamic programming
approach. Localizing facial features is
a common element of many face recog-
nition pipelines.

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince 79

Pictorial Structures

Figure 10.20 Pictorial structure for human body. a) Original image. b) After
background subtraction. c-f) Four samples from the posterior distribution
over part positions. Each part position is represented by a rectangle of fixed
aspect ration and characterized by its position, size and angle. Adapted
from Felzenszwalb & Huttenlocher (2005). (©2005 Springer.

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

80

Segmentation

Figure 10.21 Segmentation using snakes. a) T'wo points are fixed, but the
remaining points can take any position within their respective boxes. The
posterior distribution favours positions that are on image contours (due to
the likelihood term) and positions that are close to other points (due to
the pairwise connections). b) Results of inference. ¢) Two other points are
considered fixed. d) Result of inference. In this way, a closed contour in
the image is identified. Adapted from Felzenszwalb & Zabih (2011). (©2011
IEEE.

Computer vision: models, learning and inference. ©2011 Simon J.D. Prince

81

Conclusion

* For the special case of chains and trees we can perform
MAP inference and compute marginal posteriors
efficiently.

e Unfortunately, many vision problems are defined on pixel
grid — this requires special methods

