
Computer vision: models, 
learning and inference

Chapter 11 

Models for Chains and Trees
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Chain and tree models

• Given a set of measurements               and world 
states               ,  infer the world states from the 
measurements.

• Problem:  if N is large, then the model relating the 
two will have a very large number of parameters.

• Solution:  build sparse models where we only 
describe subsets of the relations between 
variables.
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Chain and tree models
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Chain model:  only model connections between 
a world variable and its 1 predeeding and 1 
subsequent variables

Tree model:  connections between world 
variables are organized as a tree (no loops).  
Disregard directionality of connections for 
directed model



Assumptions

5Computer vision: models, learning and inference.  ©2011 Simon J.D. Prince

We’ll assume that

– World states        are discrete

– Observed data variables        for each world state

– The nth data variable        is conditionally 
independent of all of other data variables and 
world states, given associated world state 



See also: Thad Starner’s work

Gesture Tracking
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http://www.cc.gatech.edu/~thad


Directed model for chains
(Hidden Markov model)
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Compatibility of measurement 
and world state

Compatibility of world state and 
previous world state



Undirected model for chains
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Compatibility of measurement 
and world state

Compatibility of world state and 
previous world state



Equivalence of chain models
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Directed:

Undirected:

Equivalence:



Chain model for sign language 
application
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Observations are normally distributed but depend on sign k

World state is categorically distributed, parameters depend on 
previous world state
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MAP inference in chain model
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MAP inference:

Substituting in :

Directed model:



MAP inference in chain model
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Takes the general form:

Unary term:

Pairwise term:



Dynamic programming
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Maximizes functions of the form:

Set up as cost for traversing graph – each path from left to right is one possible 
configuration of world states



Dynamic programming
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Algorithm:

1. Work through graph computing minimum possible cost            to reach each node
2. When we get to last column, find minimum 
3. Trace back to see how we got there 



Worked example
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Unary cost Pairwise costs: • Zero cost to stay at same label
• Cost of 2 to change label by 1
• Infinite cost for changing by more 

than one (not shown)



Worked example
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Minimum cost            
to reach first node is just unary cost



Worked example
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Minimum cost           is minimum of two possible routes to get here

Route 1:  2.0+0.0+1.1 = 3.1
Route 2:  0.8+2.0+1.1 = 3.9



Worked example
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Minimum cost           is minimum of two possible routes to get here

Route 1:  2.0+0.0+1.1 = 3.1          -- this is the minimum – note this down
Route 2:  0.8+2.0+1.1 = 3.9



Worked example
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General rule:



Worked example
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Work through the graph, computing the minimum 
cost to reach each node



Worked example
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Keep going until we reach the end of the graph



Worked example
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Find the minimum possible cost to reach the final column



Worked example
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Trace back the route that we arrived here by – this is the 
minimum configuration
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MAP inference for trees
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MAP inference for trees
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Worked example

28Computer vision: models, learning and inference.  ©2011 Simon J.D. Prince



Worked example

29Computer vision: models, learning and inference.  ©2011 Simon J.D. Prince

Variables 1-4 proceed as for 
the chain example.



Worked example
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At variable n=5 must 
consider all pairs of paths 
from into the current node.



Worked example
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Variable 6 proceeds as 
normal.

Then we trace back through 
the variables, splitting at the 
junction.
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Marginal posterior inference
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• Start by computing the marginal distribution                      
over the Nth variable

• Then we`ll consider how to compute the other marginal 
distributions



Computing one marginal distribution
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Compute the posterior using Bayes` rule:

We compute this expression by writing the joint probability :



Computing one marginal distribution
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Problem:  Computing all NK states and marginalizing explicitly is intractable. 

Solution:  Re-order terms and move summations to the right



Computing one marginal distribution
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Define function of variable w1 (two rightmost terms)

Then compute function of variables w2 in terms of previous function 

Leads to the recursive relation 



Computing one marginal distribution
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We work our way through the sequence using this recursion.  

At the end we normalize the result to compute the posterior                                    

Total number of summations is (N-1)K as opposed to KN for 
brute force approach.



Forward-backward algorithm
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• We could compute the other N-1 marginal posterior 
distributions using a similar set of computations

• However,  this is inefficient as much of the computation is 
duplicated

• The forward-backward algorithm computes all of the 
marginal posteriors at once

Solution:

Compute all first term 
using a recursion

Compute all second 
terms using a recursion

... and take 
products



Forward recursion
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Using conditional 
independence relations

Conditional 
probability rule

This is the same recursion as before



Backward recursion
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Using conditional 
independence 

relations

Conditional 
probability rule

This is another recursion of the form



Forward backward algorithm
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Compute the marginal posterior distribution as 
product of two terms

Forward terms:

Backward terms:



Belief propagation
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• Forward backward algorithm is a special case of a more 
general technique called belief propagation

• Intermediate functions in forward and backward 
recursions are considered as messages conveying beliefs 
about the variables.

• We’ll examine the Sum-Product algorithm.  

• The sum-product algorithm operates on factor graphs.



Sum product algorithm
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• Forward backward algorithm is a special case of a more 
general technique called belief propagation

• Intermediate functions in forward and backward 
recursions are considered as messages conveying beliefs 
about the variables.

• We’ll examine the Sum-Product algorithm.  

• The sum-product algorithm operates on factor graphs.



Factor graphs
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• One node for each variable
• One node for each function relating variables



Sum product algorithm
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Forward pass
• Distribute evidence through the graph

Backward pass
• Collates the evidence

Both phases involve passing messages between nodes:
• The forward phase can proceed in any order as long 

as the outgoing messages are not sent until all 
incoming ones received

• Backward phase proceeds in reverse order to forward



Sum product algorithm
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Three kinds of message
• Messages from unobserved variables to functions
• Messages from observed variables to functions
• Messages from functions to variables



Sum product algorithm
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Message type 1:
• Messages from unobserved variables z to function g

• Take product of incoming messages
• Interpretation:  combining beliefs

Message type 2:
• Messages from observed variables z to function g

• Interpretation:  conveys certain belief that observed 
values are true



Sum product algorithm
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Message type 3:
• Messages from a function g to variable z

• Takes beliefs from all incoming variables except recipient 
and uses function g to a belief about recipient

Computing marginal distributions:
• After forward and backward passes, we compute the 

marginal dists as the product of all incoming messages



Sum product: forward pass
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Message from x1 to g1:

By rule 2:



Sum product: forward pass
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Message from g1 to w1:

By rule 3:



Sum product: forward pass
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Message from w1 to g1,2:

By rule 1:

(product of all incoming messages)



Sum product: forward pass
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Message from g1,2 from w2:

By rule 3:



Sum product: forward pass
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Messages from x2 to g2 and g2 to w2:



Sum product: forward pass
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Message from w2 to g2,3:

The same recursion as in the forward backward algorithm



Sum product: forward pass
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Message from w2 to g2,3:



Sum product: backward pass
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Message from wN to gN,N-1:



Sum product: backward pass
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Message from gN,N-1 to wN-1:



Sum product: backward pass
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Message from gn,n-1 to wn-1:

The same recursion as in the forward backward algorithm



Sum product: collating evidence
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• Marginal distribution is products of all messages 
at node

• Proof:
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Marginal posterior inference for trees
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Apply sum-product algorithm to the tree-structured 
graph.



Structure

• Chain and tree models

• MAP inference in chain models

• MAP inference in tree models

• Maximum marginals in chain models

• Maximum marginals in tree models

• Models with loops

• Applications

6262Computer vision: models, learning and inference.  ©2011 Simon J.D. Prince



Tree structured graphs
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This graph contains loops But the associated factor graph 
has structure of a tree

Can still use Belief Propagation



Learning in chains and trees
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Supervised learning (where we know world states  wn) is 
relatively easy.

Unsupervised learning (where we do not know world 
states  wn) is more challenging.  Use the EM algorithm:

• E-step – compute posterior marginals over 
states

• M-step – update model parameters

For the chain model (hidden Markov model) this is 
known as the Baum-Welch algorithm.



Grid-based graphs
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Often in vision, we have one observation associated with each 
pixel in the image grid.



Why not dynamic programming?
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When we trace back from the final node, the paths are not 
guaranteed to converge.



Why not dynamic programming?
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Why not dynamic programming?
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But:



Approaches to inference for 
grid-based models
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1. Prune the graph.

Remove edges until an edge remains
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2.  Combine variables.

Merge variables to form compound variable with more states until what remains is a tree.  
Not practical for large grids

Approaches to inference for 
grid-based models
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Approaches to inference for 
grid-based models

3.  Loopy belief propagation.

Just apply belief propagation.  It is not guaranteed to converge, but in practice 
it works well.

4. Sampling approaches

Draw samples from the posterior (easier for directed models)

5. Other approaches

• Tree-reweighted message passing
• Graph cuts 
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Gesture Tracking



Stereo vision
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• Two image taken from slightly different positions
• Matching point in image 2 is on same scanline as image 1
• Horizontal offset is called disparity
• Disparity is inversely related to depth
• Goal – infer disparities wm,n at pixel m,n from images x(1) and x(2)

Use likelihood:



Stereo vision

75Computer vision: models, learning and inference.  ©2011 Simon J.D. Prince



Stereo vision
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1. Independent pixels



Stereo vision
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2. Scanlines as chain model (hidden Markov model)



Stereo vision
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3. Pixels organized as tree (from Veksler 2005)



Pictorial Structures
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Pictorial Structures
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Segmentation
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Conclusion
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• For the special case of chains and trees we can perform 
MAP inference and compute marginal posteriors 
efficiently.

• Unfortunately, many vision problems are defined on pixel 
grid – this requires special methods 


