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Outline

• Recap – Past Lectures (Based on Simon Prince, Chapters 6, 7, 9, 10, 11)

• Regression, Classification, Application examples in Vision 

• Graphical Models and Inference 

• Graphical Models (directed, undirected)

• Models for Chains and Trees

• Today’s Lecture

• Expectation Maximization Algorithm 

• HMM Model selection with application in Vision

• Variational Bayes
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Brief Recap
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Directed model for chains

(Hidden Markov model)
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Undirected model for chains
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Learning in chains and trees

Supervised learning (where we know world states  

wn) - relatively easy.

Unsupervised learning (where we do not know 

world states  wn) is more challenging.  Use the EM 

algorithm:

• E-step – compute posterior marginals over 

states

• M-step – update model parameters

For the chain model (hidden Markov model) this is 

known as the Baum-Welch algorithm.
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EM Algorithm 
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Outline

 Expectation Maximation Algorithm (Background)

 Convexity

 Jensen’s Inequality

 EM Algorithm Formulation

 Short outline of Proofs

 Summary

7

(VR)
7/19/2017
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Convex Functions

8

(VR)
7/19/2017
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Definitions

7/19/2017
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Jensen’s Inequality

7/19/2017

)

 Proof follows by Induction (Trivial for n = 1, n=2 
follows from convexity, demonstrate for n+1 assuming 
theorem true for n).
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EM Algorithm Overview

(VR)
7/19/2017
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EM Algorithm (Derivation)

7/19/2017

(VR)12
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EM Algorithm (Continued)

(VR)
7/19/2017
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EM Algorithm (Derivation)
14

7/19/2017
(VR)
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EM Algorithm - Summary
15

7/19/2017(VR)

Key Points:

• Iteratively converges to a local maximum

• Detailed Proof done later demonstrates convergence may not be only to

Maxima (e.g. saddle points)

• Method  is a unified principle for a number of estimation problems with

Hidden variables and/or missing data.

• Several methods followed addressing computational speedups of algorithm
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Adaptive Background 

Modeling

Using a Hidden Markov 

Model
Slide Sources: Thesis by Bjoern Stenger (2000)  

SCR Supervisor: Dr. Ramesh Visvanathan

Academic:  Prof. J. Buhmann (Uni-Bonn)
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Overview

Problem of Background adaptation in Video 

Sequences

Literature Review

An “offline” HMM State-Splitting Algorithm 

An “online” version for adapting HMM parameters

Example Background adaptation using HMMs

Demonstration

Summary
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Module in Video Monitoring –

Background Adaption
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26 Background Adaption – Related 

Literature

Statistics Estimation

• Mean and variances per pixel

Dynamic adaptation 

• Linear Prediction

• Kalman-Filter

• “Exponential Forgetting”

Problem: A single global model is not necessarily 

representative of the statistics. Need a mechanism to 

handle multiple states and to adapt the model online 
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Idea: Multi-State model for Global 

Changes 
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State Learning from 

Video Sequences

Example Subway Sequence Observations & HMM Learned
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14. August 200029

Relevance 

to Segmentation
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30Hidden Markov Model: 

Overview

Set of States S with Cardinality N, State at time index t 

denoted by st

Probability of being in a given state “i” at time t=1:

(i) = P(st = i )   i  S.

Transition Probability Matrix 

aij = P( st+1 = j | st = i ) i,j  S.

Given a hidden state s_t, the observations are assumed to be 

sampled 

from the Alphabet O

bi(k) = P( o t = k | st = i ) k  O,  i  S

or from a continuous density:

bi(x) = f  (i) (x) i  S.
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Algorithms for HMMs

Generation of Sequence

Forward/Backward Algorithms

Useful to evaluate the probability  P( O |  ) 

Viterbi Algorithm

Used to find the optimal state sequence 
given the observations and parameters  
(I.e.) argmax S P( S | O,  )

Baum-Welch Algorithm

To determine the maximum likelihood  
estimate (I.e) the theta that maximizes: P ( 
O |  )
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State Learning from 

Video Sequences (offline)

• Data: Subway monitoring sequence

Number of hidden states assumed to be given apriori: Train in 

station/ not in station

Correct Classification:

EM:     97.2%

HMM: 99.8%
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33
State Splitting and 

Learning of Topology
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State-Splitting with 
the 2-goodness of fit test

1.Initialize an HMM with N=1 State

2.Train the HMM using the Baum-Welch Algorithm

3.Generate State histograms using the Viterbi Algorithm.

4.Compute the 2-statistic between the state distributions and 

the state histogram.

5.If at least one difference is statistically significant, 

split the state with the highest significance.

6.Go to step 2.
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Simulation
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Limitations of the 2-test state-splitting 

method

Unless the distributions are indeed Gaussian, the 

chi-squared test is not robust! 

Merging may be needed to deal with false splits

Generalization to higher dimensions is an issue.

Main problem: robustness to false splits.
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State Splitting  (temporal split)
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Overfitting Effect
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State-Splitting with Cross-Validation

1. Initialize an HMM with N=1 states.

2.Train the model on the training set using the Baum-Welch 

Algorithm.

3.Compute the data likelihood of the test set, given this 

model.

4.If the likelihood on the test set decreases with the 

split, stop.

5.Select a split candidate with a goodness-of-fit test and 

split this state.

6. Go to step 2.
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Given several models M1, ..., Mk

And data  x=x1,...,xn

Cost function for Model Selection:

Q( k | x )  =  -log L (  k | x )  +  C( n , (k) ) , 

(k): Number of free model parameters

(k): Model parameters (estimated during MLE).

Penalty for model complexity:  C( n , (k) ) :

An Information Criterion (AIC): (k) 

Minimum Description Length (MDL):  (k)  log n

Model Selection

ˆ

ˆ
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State Splitting 

• Split the state which maximally increases the likelihood.

• Compute the likelihood increase only on a constrained subset of the model parameters
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State-Splitting with MDL

1.Initialize a model with N=1 states and Train the HMM with 

the Baum Welch Algorithm.

2.Select the split which maximally increases the likelihood 

on a constrained subset of parameters.

3. Determine the likelihood increase for the complete model 

by training a model after state-splitting with Baum-Welch. 

4. If the increased likelihood is greater than the MDL 

penalty difference,  stop.

5.Go to step 2.



19.07.2017

14. August 200043

Simulation
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Cost function for Model Selection
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Online Version

Need an online version to handle drifts in data over 

time. Devised an algorithm based on the online 

version of the Baum-Welch algorithm. 

For each data sample xi the model parameters are 

updated.

Algorithm Motivated by ‘Incremental EM-Versions’ of  

Baum-Welch (Nowlan, 1991)(Neal, Hinton).

Converges for stationary processes 

Further Advantage: Little memory requirement
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Example
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Demo
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HMM State Model

Static Background Stauffer-Grimson (no state information)
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Conclusions

HMM State-Splitting Algorithms to select HMM 

topology and parameter estimation. 

Online-Algorithm for Adapting model parameters. 

Application for Global state changes in video 

analysis.
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Variational Inference

Source: David Blei’s Tutorial Article 
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Variational Inference
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Setup
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Motivation

• Cannot compute exact posterior distribution for many models
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Main Idea
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KL Divergence
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Evidence Lower Bound (ELBO)
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ELBO (continued)
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ELBO – KL Divergence to Posterior

(Relationship)
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ELBO (continued)
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Mean Field Variational Inference
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Coordinate Ascent Inference

for Optimization of ELBO
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Coordinate Ascent Inference –

Derivation
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Coordinate Ascent Inference –

Derivation
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Coordinate Ascent Inference –

Derivation
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Coordinate Ascent Inference –

Derivation
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Exponential Family Conditionals
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Examples of Exponential Family
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Natural Parameter Form
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Exponential Family Case
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Exponential Family Case - Continued
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Bayesian Mixtures of Gaussians



7819.07.2017

Bayesian Mixtures of Gaussians

- Variational Updates



7919.07.2017

Bayesian Mixtures of Gaussians
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Mixtures of Gaussians - Example



8119.07.2017

Example Applications 
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Applications (Continued)
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Open Issues

• alternatives to the optimization of KL as the variational objective

function (tighter lower bounds)

• Strong independence assumptions of the mean-field family

• Better understanding of statistical properties of variational inference

• Not Covered in this lecture:

• Stochastic Gradient Descent combined with Variational Methods

• Black-box Methods

• Other methods – e.g. Variational Auto-encoders 
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Backup


