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 Recap — Past Lectures (Based on Simon Prince, Chapters 6, 7, 9, 10, 11)
» Regression, Classification, Application examples in Vision
« Graphical Models and Inference
» Graphical Models (directed, undirected)
* Models for Chains and Trees

* Today’s Lecture
« Expectation Maximization Algorithm
«  HMM Model selection with application in Vision
« Variational Bayes
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Supervised learning (where we know world states
w,) - relatively easy.

Unsupervised learning (where we do not know
world states w,) is more challenging. Use the EM
algorithm:

« E-step — compute posterior marginals over
states
« M-step — update model parameters

For the chain model (hidden Markov model) this is
known as the Baum-Welch algorithm.
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EM Algorithm
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e EXxpectation Maximation Algorithm (Background)
e Convexity

e Jensen’s Inequality

e EM Algorithm Formulation

e Short outline of Proofs

e Summary
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Figure 1: f is convexr on [a,b] if f(Azy 4+ (1 — Naa) < Af(xy) + (1 — N)f(as)
Vay,xe € la,b], Ae0,1].
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Definition 1 Let [ be a real valued function defined on an interval I = |a,b|.
f is said to be convex on I if Yo,z € I. X\ € [0, 1],

fz1+ (1= Na2) < Af(x1) + (1= A)f(z2).

f is said to be strictly convex if the inequality is strict. Intuitively, this definition
states that the function falls below (strictly convex) or is never above (convex) the
straight line (the secant) from points (x1, f(x1)) to (za, f(x2)). See Figure (1).

Definition 2 f is concave (strictly concave) if —f is convex (strictly convex).

Theorem 1 If f(x) is twice differentiable on |a,b] and f"(x) > 0 on [a,b] then
f(x) is convex on |a,b].
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Jensen’s Inequality e N ERSTAT

Theorem 2 (Jensen’s inequality) Let f be a convexr function defined on an
interval . If x1,29,..., 20 € T and Ny, Na, ..., N > 0 with >0 A\ =1,

f (Z )\rzﬂi‘z‘) < Z)\zf(ﬂi‘z)

e Proof follows by Induction (Trivial forn =1, n=2 -
follows from convexity, demonstrate for n+1 assuming
theorem true for n).

Since In(x) is concave, we may apply Jensen’s inequality to obtain the useful

result,
=1 1=1

This allows us to lower-bound a logarithm of a sum, a result that is used in the
derivation of the EM algorithm.
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Let X be random vector which results from a parameterized family. We wish
to find € such that P(X|#) is a maximum. This is known as the Maximum
Likelihood (ML) estimate for #. In order to estimate 0, it is typical to introduce
the log likelihood function defined as,

L(0) = In P(X|0). (7)

The likelihood function is considered to be a function of the parameter # given
the data X. Since In(z) is a strictly increasing function, the value of 8 which
maximizes P(X|0) also maximizes L(#).

The EM algorithm is an iterative procedure for maximizing L(€). Assume
that after the nt! iteration the current estimate for  is given by #,,. Since the
objective is to maximize L(#), we wish to compute an updated estimate 6 such

that,
L(®) > L(6,) (8)
Equivalently we want to maximize the difference,
L(#) — L(8,) =InP(X]|f#) — InP(X]b,). (9)
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L(8) — L(#,) = 1n (Z P(X|z. 9)P(z|9)) —InP(X|0,). (11)

L) — L6, = I (ZP(X|Z, B)P(z|9)) —InP(X|6,)

~ In (ZP()QZ, 0)P(z|0) - ig:i g:i) — InP(X]|0,)

— I (Zp(zp(, en)p(;(é;gigg)) — InP(X[6,)

> ZP 2/X.6,) (P(;(Z'QZS'Q)) CP(X|6,) (12)
- P(X|z, 0)P(2]6)

- Z (Z|X’9”)H(P(Z|X,9n)7>(x|9n)> (13)
2 A(0)6,). (14)

[(0]6,) 2 L(6,) + A(0]6,,)
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L(6n+1)
[(0n+1|0n)
L(0)
1(66y)

L(#) 1010, )

gn 6n+1 =0

Figure 2: Graphical interpretation of a single iteration of the EM algorithm:
The function [(0|6,,) is bounded above by the likelihood function L(#). The
functions are equal at # = 6,,. The EM algorithm chooses #,,.1 as the value of ¢
for which [(6]6,,) is a maximum. Since L(0) > [(6|6,,) increasing [(8|6,,) ensures
that the value of the likelihood function L(#) is increased at each step.
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o = argmax {1(6)6,)}

P(X0,)P(z| X, 0,)

Now drop terms which are constant w.r.t. 6

= afgmgmx{l}(ﬁn)—|—ZP(Z|X,9n)ln P(X|z,0)P(z]6) }

0

= argmax < Z P(z|X.0,)InP(X]|z, Q)P(zé’)}

f P(X.z,0) Pz, 0
= argmax ZP(Z|X’9’”’)ID 7(3(239)) 7§(9))}

= argmax: Zz: P(z|X.0,)InP(X, z|9)}

= argmax {Ezx., {InP(X,z|0)}} (17)
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1. E-step: Determine the conditional expectation Ezx ¢, {InP(X, z[0)}

2. M-step: Maximize this expression with respect to 6.

Key Points:

« lteratively converges to a local maximum

» Detailed Proof done later demonstrates convergence may not be only to
Maxima (e.g. saddle points)

* Method is a unified principle for a number of estimation problems with
Hidden variables and/or missing data.

» Several methods followed addressing computational speedups of algorithm

(VR)

19.07.2017 15
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Adaptive Background
Modeling
Using a Hidden Markov
Model

Slide Sources: Thesis by Bjoern Stenger (2000)
SCR Supervisor: Dr. Ramesh Visvanathan

Academic: Prof.J. Buhmann (Uni-Bonn)
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Overview P sionan e 0

Problem of Background adaptation in Video
Sequences

Literature Review

An “offline” HMM State-Splitting Algorithm

An “online” version for adapting HMM parameters
Example Background adaptation using HMMs
Demonstration

Summary

19.07.2017 14. August 2000 24
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“Module in Video Monitoring —
Background Adaption @

Input Image

|

Difference Adaptive Background
Image Model

! i

Labeler @ |-------"----------

l

Higher Level
Processing
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Statistics Estimation

* Mean and variances per pixel

Dynamic adaptation
 Linear Prediction

« Kalman-Filter

« “Exponential Forgetting”

Problem: A single global model is not necessarily
representative of the statistics. Need a mechanism to
handle multiple states and to adapt the model online

19.07.2017 14. August 2000 26
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Example Subway Sequence Observations & HMM Learned

rrrrrrrrrrr

No Train in Station Train in Station
0.025

0.991 0.975
0.009

19.07.2017



29. August 2000

Relevance
to Segmentatlon
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Set of States S with Cardinality N, State at time index t
denoted by s,

Probability of being in a given state “i” at time t=1:
(i) = P(s;=1) | € S.
Transition Probability Matrix
a; =P(suy =] [s;=1) 1) €S,

Given a hidden state s_t, the observations are assumed to be

sampled
from the Alphabet O

bi(k)=P(o, =k |s;=1) keO,ieS
or from a continuous density:

bi(X) =f ¢ (X) | € S.

19.07.2017 14. August 2000 30
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Generation of Sequence
Forward/Backward Algorithms

Useful to evaluate the probability P(O|6)
Viterbi Algorithm

Used to find the optimal state sequence
given the observations and parameters
(l.e.)argmax c P(S|0,0)

Baum-Welch Algorithm

To determine the maximum likelihood

estimate (l.e) the theta that maximizes: P (
O]6)

19.07.2017 14. August 2000 31
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Video Sequences (offline)

« Data: Subway monitoring sequence

Number of hidden states assumed to be given apriori: Train in
station/ not in station
: Soeef T T T e =T correct Classification:
= o
8 . R | EM: 97.2%
—+ c R HMM: 99.8%
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l.Initialize an HMM with N=1 State
2.Train the HMM using the Baum-Welch Algorithm

3.Generate State histograms using the Viterbi Algorithm.
4.Compute the Y?-statistic between the state distributions and
the state histogram.

5.If at least one difference is statistically significant,
split the state with the highest significance.

6.Go to step 2.

19.07.2017
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Limitations of the y?-test state«spf
method

Unless the distributions are indeed Gaussian, the
chi-squared test is not robust!

Merging may be needed to deal with false splits
Generalization to higher dimensions is an issue.

Main problem: robustness to false splits.

19.07.2017 14. August 2000 36
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output
in state s,

output
in state s,

marginal
histogram

state output
densities after
the split
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1. Initialize an HMM with N=1 states.

2.Train the model on the training set using the Baum-Welch
Algorithm.

3.Compute the data likelihood of the test set, given this
model.

4.If the likelihood on the test set decreases with the
split, stop.

5.Select a split candidate with a goodness-of-fit test and
split this state.

6. Go to step 2.

19.07.2017
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Given several models My, ..., M,
And data x=xg,...,X,,
Cost function for Model Selection:

Q(8cIx) = -logL (8, |x) + C(n,n(K)),
n(k): Number of free model parameters
8(k): Model parameters (estimated during MLE).

Penalty for model complexity: C(n,n(k)):

An Information Criterion (AIC): n(k)
Minimum Description Length (MDL): # n(k) log n

19.07.2017 14. August 2000
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« Split the state which maximally increases the likelihood.
» Compute the likelihood increase only on a constrained subset of the model parameters

state split
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l.Initialize a model with N=1 states and Train the HMM with
the Baum Welch Algorithm.

2.5elect the split which maximally increases the likelihood
on a constrained subset of parameters.

3. Determine the likelihood increase for the complete model
by training a model after state-splitting with Baum-Welch.

4. If the increased likelihood 1s greater than the MDL
penalty difference, stop.

5.Go to step 2.
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Online Version

Need an online version to handle drifts in data over
time. Devised an algorithm based on the online
version of the Baum-Welch algorithm.

For each data sample x; the model parameters are
updated.

Algorithm Motivated by ‘Incremental EM-Versions’ of
Baum-Welch (Nowlan, 1991)(Neal, Hinton).

Converges for stationary processes
Further Advantage: Little memory requirement

19.07.2017 14. August 2000 45
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Demo
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Static Background

HMM State Model
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Stauffer-Grimson (no state information)
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HMM State-Splitting Algorithms to select HMM
topology and parameter estimation.

Online-Algorithm for Adapting model parameters.

Application for Global state changes in video
analysis.

19.07.2017 14. August 2000 55
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Variational Inference
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p(z|x)

/KL(g(z:v™) || plz| )

= VI turns inference into optimization.

= Posit a variational family of distributions over the latent variables,

q(z; »)

= Fit the variational parameters v to be close (in KL) to the exact posterior.
(There are alternative divergences, which connect to algorithms like EP. BE and others.)
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Setup

e As usual, we will assume that r = x,, are observations and z = z., are hidden
variables. We assume additional parameters o that are fixed.

?

e Note we are general—the hidden variables might include the “parameters.” e.g.. in a
traditional inference setting. (In that case, a are the hyperparameters.)
e We are interested in the posterior distribution,
p(z.z|)
p(z]z,a) = 7 (1)

Loz a)

e As we saw earlier, the posterior links the data and a model. It is used in all downstream
analyses, such as for the predictive distribution.

e (Note: The problem of computing the posterior is an instance of a more general problem
that variational inference solves.)
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« Cannot compute exact posterior distribution for many models

e Consider the Bayesian mixture of Gaussians,

1. Draw py, ~ N(0,72) for k=1... K.
2. Fore=1...n
(a) Draw z; ~ Mult(r);

(b) Draw z; ~ N (p.,,0?).

e Suppressing the fixed parameters, the posterior distribution is

_ [Ty 2o TEy o | 2 ) )
Lo S T o) TTy p(z)p(a | 20 prrie)

p(Ml:K, 1 | xl:n)

e The numerator is easy to compute for any configuration of the hidden variables. The
problem is the denominator.
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Main Idea

e We return to the general {z, z} notation.

e The main idea behind variational methods is to pick a family of distributions over the
latent variables with its own variational parameters,

q(z1m | V). (5)

e Then, find the setting of the parameters that makes ¢ close to the posterior of interest.

e Use ¢ with the fitted parameters as a proxy for the posterior, e.g., to form predictions
about future data or to investigate the posterior distribution of the hidden variables.

e Typically, the true posterior is not in the variational family. (Draw the picture from
Wainwright and Jordan, 2008.)
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KL Divergence

e We measure the closeness of the two distributions with Kullback-Leibler (KL) divergence.

e This comes from information theory. a field that has deep links to statistics and
machine learning. (See the books “Information Theory and Statistics” by Kullback and
“Information Theory, Inference, and Learning Algorithms” by MacKay.)

e The KL divergence for variational inference is

KL(gllp) = E, [1og %} . (6)

e Intuitively, there are three cases

— If ¢ is high and p is high then we are happy.
— If ¢ is high and p is low then we pay a price.

— If ¢ is low then we don’t care (because of the expectation).
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e We actually can’t minimize the KL divergence exactly, but we can minimize a function
that is equal to it up to a constant. This is the evidence lower bound (ELBO).

e We use Jensen’s inequality on the log probability of the observations,
logp(e) = log [ pla.2) ()
2
— log [ )23 )

= log (Eq [p(;z’z)z)}) (10)
> Egllogp(z, Z)] — Egllog ¢(Z)]. (11)

This is the ELBO. (Note: This is the same bound used in deriving the expectation-
maximization algorithm.)
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ELBO (continued)

e We choose a family of variational distributions (i.e., a parameterization of a distribution
of the latent variables) such that the expectations are computable.

e Then, we maximize the ELBO to find the parameters that gives as tight a bound as
possible on the marginal probability of x.

e Note that the second term is the entropy, another quantity from information theory.
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e What does this have to do with the KL divergence to the posterior?

— First, note that
p(z]z) = - (12)

— Now use this in the KL divergence,

KL(g(:)llp(z|x) = E, [log i(Z) ] (13)
p(Z|x)

= Ey[logq(2)] - E,logp(Z | x)] (14)

= Euloea(2)] - EogpZ ) o) (19

= —(Eqllogp(Z, )] — Egllogq(Z)]) +logp(z)  (16)

This is the negative ELBO plus the log marginal probability of .
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e Notice that log p(z) does not depend on ¢. So, as a function of the variational distribu-
tion, minimizing the KL divergence is the same as maximizing the ELBO.

e And, the difference between the ELBO and the KL divergence is the log normalizer—
which is what the ELBO bounds.
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e In mean field variational inference, we assume that the variational family factorizes,

m

a1 ozn) = [ ). (17)

j=1

Each variable is independent. (We are suppressing the parameters v;.)

e This is more general that it initially appears—the hidden variables can be grouped and
the distribution of each group factorizes.

e Typically, this family does not contain the true posterior because the hidden variables
are dependent.

— E.g.. in the Gaussian mixture model all of the cluster assignments z; are dependent
on each other and the cluster locations pq.5 given the data xy.,.

— These dependencies are often what makes the posterior difficult to work with.
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e We now turn to optimizing the ELBO for this factorized distribution.

e We will use coordinate ascent inference, interatively optimizing each variational
distribution holding the others fixed.
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e First, recall the chain rule and use it to decompose the joint,

m

p(zlzm: le:n) - p(xl:n) Hp(zj | Zl:(j—l)-; $1:n) (18)

i=1

Notice that the z variables can occur in any order in this chain. The indexing from 1
to m is arbitrary. (This will be important later.)

e Second, decompose the entropy of the variational distribution,
Ellog ¢(z1.m)] ZE log q(z;)] (19)

where E; denotes an expectation with respect to ¢(z;).

e Third, with these two facts, decompose the the ELBO,

m

L =logp(x1) + > Ellogp(z; | 1. 1), 71:)] — Ejllog g(=))]. (20)

i=1
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e Consider the ELBO as a function of ¢(z).
— Employ the chain rule with the variable z. as the last variable in the list.
— This leads to the objective function
L = Ellogp(z | z—r, x)] — E;[log q(z)] + const. (21)
— Write this objective as a function of ¢(z),
Ly = /Q(Zk)E—k[logp(Zk |z ) ]dzi — /Q(Zk) log q(z1.)dz.. (22)
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— Take the derivative with respect to g(z)

% = E_y[log p(zk | 21, 2)] = logg(z,) =1 =0 (23)

— This (and Lagrange multipliers) leads to the coordinate ascent update for ¢(zy)
¢ (zi) oc exp{E_x[log p(zi | Z_p, )]} (24)
— But the denominator of the posterior does not depend on z;. so

q"(z1) o< exp{E_[log p(zp, Z_, x)]} (25)

— Either of these perspectives might be helpful in deriving variational inference
algorithms.
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e There is a strong relationship between this algorithm and Gibbs sampling.

— In Gibbs sampling we sample from the conditional.

— In coordinate ascent variational inference, we iteratively set each factor to

distribution of z, o exp{E[log(conditional)]}. (26)

e Easy example: Multinomial conditionals

— Suppose the conditional is multinomial
P(zj | 7=y w1m) =7 (7=, T1m) (27)
— Then the optimal ¢(z;) is also a multinomial,

q"(z;) o< exp{E[log 7(z_;, )]} (28)
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e Suppose each conditional is in the exponential family

p(zj | zog,w) = hizg) exp{n(z_j, ) " 1(z;) — aly(z—;, 2))} (29)

e This describes a lot of complicated models

— Bayesian mixtures of exponential families with conjugate priors
— Switching Kalman filters

— Hierarchical HMMs

— Mixed-membership models of exponential families

— Factorial mixtures/HMMs of exponential families

— Bayesian linear regression

e Notice that any model containing conjugate pairs and multinomials has this property.
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Gaussian  p(r) = —5— ¢~ 7# IP/20%)  zeR

Bernoulli  p(z) =a® (1 —a)' ™" re{0,1}

Binomial pz)y=(")a*(1—a)"" ref0,1,2,....n}

Multinomial p(z) = ml,m’”!f -~ Il o r;€{0,1.2,....n}, > . xi=n
Exponential p(z) = Ae™ A" reRT

Poisson p(x) = e; AT rei{0,1,2,...}

Dirichlet p(r) P(Z‘&f) [ z®! r;e[0,1], > . 2 =1
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p(z) = W/
V2mo?
1 2
— 1 _ _
V2 EXP( 087 T 952 * o2 202)
1
= exp (0 T(z) —logo — u?/(20°
Tz (07 T(x) ~logo —p”/(207))
v A(0)
h(z)
where
T o2 A() = £ + log o
T(x) = 2 0= o 2 ( )[E']?gﬁr2 1 °
’ —1/(207%) = —1p1; — 2108 (—2[0]2)
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Exponential Family Case

e Mean field variational inference is straightforward

— Compute the log of the conditional
log p(z; | z—j, ) = log h(z;) + (2, ) "t(2) — a(n(z—j, x)) (30)
— Compute the expectation with respect to ¢(z_;)
Ellog p(z; | z—j. @)] = log h(z)) + E[n(z—j, @)] ' 1(z) = Ela(n(z—j,2))]  (31)
— Noting that the last term does not depend on ¢;, this means that

q"(2;) o h(z) exp{E[n(z—;, 2)] "t(z)} (32)

and the normalizing constant is a(E[n(z_;, z)]).

e So, the optimal ¢(z;) is in the same exponential family as the conditional.
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e Coordinate ascent algorithm
— Give each hidden variable a variational parameter v;, and put each one in the

same exponential family as its model conditional,

m

q(zrm | v) = [ T az109) (33)

j=1

— The coordinate ascent algorithm iteratively sets each natural variational parameter
v; equal to the expectation of the natural conditional parameter for variable z;
eiven all the other variables and the observations,

vt = Eln(= ;. 2)] (34)

J
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e Let’s go back to the Bayesian mixture of Gaussians. For simplicity, assume that the
data generating variance is one.

e The latent variables are cluster assignments z; and cluster means juy.

e The mean field family is

K n
Q(,UlzK, len) = H Q(,Uk: | [k, 52) H Q(Zi | ¢Z)> (35)
k=1 =1

where (i, 01.) are Gaussian parameters and ¢; are multinomial parameters (i.e., positive
K-vectors that sum to one.)
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the coordinate update for g(z;) is

q"(z = k) o< exp{log mi + ;B[] — E[pz] /2}. (40)

— For the Gaussian conjugate prior, we map
n=(u/c*.1/c%). (49)
— This gives the variational update in mean parameter form,

E[ ] /“LU/JEQ) +Z?:1 E[Zﬂx%
. /o3 + >, E[F]

Var(u) = 1/(1/o3 + Y0 E[=). (51)

These are the usual Bayesian updates with the data weighted by its variational
probability of being assigned to cluster k.

(50)
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— We are given data x1.,, hyperparameters 1o and o3, and a number of groups K.

— The variational distributions are

* n variational multinomials g(z;)
+ K variational Gaussians (. | fi. 7).

— Repeat until the ELBO converges:

1. For each data point x;

* Update the variational multinomial ¢(z;) from Equation 40.
2. For each cluster k. =1... K
x Update the mean and variance from Equation 50 and Equation 51.
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| Evidence Lower Bound \Average Log Predictive
—3,200
1+ B =
—-3,500 —— —1.1
3,800 | 14
-1.3
—~10 :I | ! | | | —1.4 = | | | |
0 10 20 30 40 50 6 0 10 20 30 40 50 6
Iterations Iterations

[images by Alp Kucukelbir]
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Communities discovered in a 3.7M node network of U.S. Patents

[Gopalan and Blei, PNAS 2013]
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Applications (Continued)

Game Life Film Book Wine
Season Know Movie Life Street
Team School Show Books Hotel
Coach Street Life Novel House
Play Man Television Story Room
Points Family Films Man Night
Games Says Director Author Place
Giants House Man House Restaurant
Second Children Stary War Park
Players Night Says Children Garden
(6 (7] o o (10
Bush Building Won Yankees Government
Campaign Street Team Game War
Clinton Square Second Mets Military
Republican Housing Race Season Officials
House House Round Run Iragq
Party Buildings Cup League Forces
Democratic Development Open Baseball Iraqi
Palitical Space Game Team Army
Democrats Percent Play Games Troops
Senator Real Win Hit Soldiers
1) 12 ® (14 1)
Children Stock Church Art Police
School Percent War Museum Yesterday
Women Companies Women Show Man
Family Fund Life Gallery Officer
Parents Market Black Works Officers
Child Bank Political Artists Case
Life Investors Catholic Street Found
Says Funds Government Artist Charged
Help Financial Jewish Paintings Street
Mother Business Pope Exhibition Shot

Topics found in 1.8M articles from the New York Times

[Hoffman, Blei, Wang, Paisley, JMLR 2013]
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« alternatives to the optimization of KL as the variational objective
function (tighter lower bounds)

« Strong independence assumptions of the mean-field family

« Better understanding of statistical properties of variational inference

 Not Covered in this lecture:
« Stochastic Gradient Descent combined with Variational Methods
* Black-box Methods
* Other methods — e.g. Variational Auto-encoders
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