GOETHE @
UNIVERSITAT

RRRRRRRRRRRRRRR

Tobias Weis

ML Praktikum 17/18

Kaggle: San Francisco Crime Challenge



Kagg|e UNIVERSITAT

FEANKFURT AM MAIN
& C | @ Sicher | https://www.kaggle.com/competitions r &+ W ¢ 8 O

Search kaggle Q Competitions Datasets Kernels Discussion Jobs «s-

Welcome to Kaggle Competitions

https //WWW kag_gle Com Challenge yourself with real-world machine learning problems

, , o 1%
achine learning competitions + datasets B= 7 -

. Download a dataset Newto b since? | et Moo i
. Build a model '
. Upload predictions or script

Get ranked against others e

| |
$$$ P rOfIt All Categories ~ | Search competitions Q
17 Active Competitions

2018 Data Science Bowl $100,000

M
1
2
3
4
D

s

sows 1,064 t
— Find the nuclei in divergent images to advance medical discovery . geams
Fm [ [ g :':{-'..-I":-fl
Mercari Price Suggestion Challenge $100,000
Can you automatically suggest product prices to online sellers? 2,108 teams
Featured
Toxic Comment Classification Challenge $35,000
h |dentify and classify toxic online comments 1,480 teams
Featured
IEEE's Signal Processing Society - Camera Model Identification $25,000
|dentify from which camera an image was taken 564 teams
Featured t
Recruit Restaurant Visitor Forecasting $25,000
r‘RECRmT Predict how many future visitors a restaurant will receive 2,136 teams -

10. Februar 2018


https://www.kaggle.com/

San Francisco Crime Challenge UNIVERSITAT

FRANKFURT AM MAIN

The task is to predict the Category of a crime given the time and location. The dataset contains
incidents from the SFPD Crime Incident Reporting system from 2003 to 2015 (878049 datapoints
for training) with the following variables:

- Dates — timestamp of the crime incident

- Category - category of the crime (target variable) — 39 different categories
- Descript — detailed description of the crime incident (only in training set)

- DayOfWeek — the day of the week

- PdDistrict — name of the Police Department District

- Resolution — how the crime incident was solved (only in training set)

- Address — approximate address of the crime incident

- X -Longitude

- Y - Latitude
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- Evaluation by computing Logarithmic Loss (logloss)
- Classifier needs to assign probability to each class (instead of just outputting most likely one)
- Probabilities have to be calculated on test.csv (does not contain labels, descs or resolution)

Over all the N datarows, the mean of the log of the probability that the classifier assigned to the
true label is calculated ( see also: [1,2]):

. N M
logloss = _NZ Z‘yijlog(pij)

i=1j=1

N datarows, M labels,y = binary indicator,p = probability

10. Februar 2018



UNI‘Sr ]:RSITAT

San Francisco Crime Challenge

N

M
1
logloss = _NZ.Z yijlog(p;;)

1=1]J

N datarows, M labels,y = binary indicator,p = probability

Intuition:
- p;j Is near zero for correct label: log(0 + €) becomes very large
- p;jis near 1 for correct label: log(1) becomes close to 0

- Uniform probability to all 39 labels: log (3—19) = 3.66

The mean of these values over all datarows is the final logloss value for our classifer.
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Visualization and Pre-Processing
As a first step, | visualized the variables of the dataset to get an understanding of the involved
variables, and identify which variables could be used to differentiate between crime-categories.
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Visualization and Pre-Processing
As a first step, | visualized the variables of the dataset to get an understanding of the involved
variables, and identify which variables could be used to differentiate between crime-categories.

Number of crimes per category

LARCENY/THEFT |
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The histogram of the categories revealed that there exists a clear ordering in the amounts of
different crimes. The top 6 in descending order:

Larceny/Theft
Other Offenses
Non-Criminal
Assault
Drug/Narcotic
\ehicle Theft

OB~
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Visualization and Pre-Processing
As a first step, | visualized the variables of the dataset to get an understanding of the involved
variables, and identify which variables could be used to differentiate between crime-categories.

Mumber of crimes per PD District
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The timestamp seems to be a good indicator, different crimes seem to have different days and
times at which they tend to happen most often, which might give additional hints to the classifier.
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Here | noticed that 67 of the coordinates were far out (-120.5, 90.), so | removed those outliers.

By plotting the X/Y variables on the map of SF, | could see that the majority of crimes are
concentrated on the north-east area, and that different crimes have slightly different spatial
distributions.
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Preprocessing

| decided to encode all features into numerical variables.

The order of the weekdays was random, so | transformed them to range from 0 (Monday) to 6
(Sunday).

For the PdDistricts | used the pandas functions to first transform them to categoricals and then get
their index.

For the dates I also had pandas preprocess those for me, so | could directly access
Day,Month,Year,Hour, etc. instead of coding this by hand.
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Baseline

In order to get an understanding of the loss-function used, | first calculated the loss of two baseline
ideas:

Uniform probabilities for all classes: 3.66

Always choose the most common category (LARCENY/THEFT, 174900 vs. Rest 703149), setting 0
proba as 1e-15 as log(0) is not defined: 27.66

This also tells that wrong choices with high probabilities get penalized pretty hard.
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Classifier training

First | split the training data into train- and test-set (.9/.1), making sure to set the random state to a

fixed value to ensure reproducability.

But the standard parameter-values of all classifiers performed poor on average, so | ran a random
parameter search instead (sklearn.RandomizedSearchCV) over a wide range of parameters on
each classifier/feature set before reporting scores. | did not split the data anymore, as the
RandomizedSearchCV is using cross-validation internally. Furthermore, | replaced the scoring-
function of the RandomizedSearch by the log-loss function to directly search for best options for

this specific problem).

As we have been talking about them in the lecture, | first used a single Decision Tree on the

features DayOfWeek, PdDistrict, Hour, which resulted in a score of 2.62. | cr

ose this feat

because it already captured some aspects of time and space and was comp
(basically only some categorical integer variables).
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Results
Evaluation against kaggle leaderboard

| wrote a small script that would parse the kaggle leaderboard for me, so | could build some
statistics with it and see how well | did in comparison
(https://qgithub. com/Tob|asWe|s/kaggIeLeaderboardStats
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Results

For the sake of completeness, here are the feature-sets | tried and the scores they achieved with
different classifiers (| wrote a script that iterates through the feature-sets, performs a random
search for each classifier and saves the result to a logfile):

Feature-Sets

F1 : DayOfWeek, PdDistrict_num, Hour

F2 : X, Y, DayOfWeek, Hour

F3: X, Y, DayOfWeek, PdDistrict_num, Hour
F4 . X, Y, DayOfWeek, PdDistrict_num, Hour, Month, Year, Day, DayOfYear

F5: X, Y, DayOfWeek, PdDistrict_num, Hour, Month, Year, Day, DayOfYear, Streetcorner

Explanation: | chose to use DayOfYear, Month and Year to capture seasonal dependencies, and
thought that, even if | do not exploit the adresses to full extent, at least checking if the crime
happened at a street corner instead of a regular adress could improve my results.
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Results

tree forest
DayOfWeek, PdDistrict_num, Hour 2.62 2.99 2.877
X,Y,DayOfWeek, Hour 2.578 2.415 3.12
X,Y,DayOfWeek,PdDistrict_num, Hour 2.574 2.415 3.196
X,Y,DayOfWeek,PdDistrict_num, Hour, Month, Year, Day, DayOf Year 2.567 2.363 2.869
X,Y,DayOfWeek,PdDistrict_num, Hour, Month, Year, Day, DayOf Year, Streetcorner 2.9535 2.344 2.990

Coordinates perform better than PdDistrict, and both combined give a slight improvement to the
DecisionTree, have no effect on the RandomForest, but make the Adaboost-Classification worse.

Including more variables regarding the time of the crimes (set F4) improves all classifiers.

Creating the own variable StreetCorner further improved the result by a small margin.
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To conclude, | visualized and cleaned the input data, was able to successively identify features that
each improved the classification results, used hyperparameter-search to find a good set of

hyperparameters for the chosen classifiers, and finally built a classifier that would score in the top
19% of the kaggle leaderboard of my chosen problem.
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San Francisco Crime Challenge - Practice session

Now it's your part!

- Create an account on kaggle.com

- Goto , download the datasets

- Implement your own dataloader, classifier(s)

- Submit your result as ,Late submission® and see how you score

- Prepare a short presentation (2-5 min.) of the work you have done
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