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Deep learning in a nutshell

What is deep learning?

”Deep learning allows computational models that are composed of
multiple processing layers to learn representations of data with multiple
levels of abstraction”

LeCun,Bengio,Hinton,2015
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Deep learning in a nutshell

Ideas behind Deep Learning

Inspiration from brain’s hierarchy (V1,V2,.. etc.)
→ hierarchical networks with different interactions on multiple levels

Learning features instead of engineering

Derive intermediate representations, with increasing level of
abstraction

Generalization ability

Latent/hidden variables

Depending on exact algorithm either super- or unsupervised
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Deep learning in a nutshell

Deep Learning book: Goodfellow, Bengio, Courville; MIT
Press 2016

5 / 34



Deep learning in a nutshell DNN architecture variants

The Neural Network Zoo
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Convolutional Neural Networks (CNN)

Basic concepts of a convolution neural network (CNN)

Basically a neural network using many identical copies of a neuron

Sparse connectivity pattern & replication re-uses parametrization

Large amount of neurons (e.g. 650 k) → large models → ”small”
amount of parameters (e.g. 60 M)

Composable network with each layer detecting more abstract
”higher-level” features

Typically trained with modified versions of (stochastic) gradient
descent

Convolution can work on high-dimensional data

Very good at specific tasks based on: images, videos, audio...
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Convolutional Neural Networks (CNN) CNN building blocks

Convolutions

Identical copies of neurons implies the same weights in more than 1
position → weight-sharing

x `+1
ijf`+1

=
F∑̀
f`

N`+1
A −1∑
a=0

N`+1
B −1∑
b=0

W `+1
abf`f`+1

y `(i+a)(j+b)f` − b`+1
ijf`+1

x `+1 = W `+1 ? y ` − b`+1

[http://deeplearning.net/tutorial/lenet.html]
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Convolutional Neural Networks (CNN) CNN building blocks

Activations (Transfer)

y `+1 = σ
[
x `+1

]
= σ

[
W `+1 ? y ` − b`+1

]
Activation functions σ(x):

Tanh: f (x) = tanh(x) or Sigmoid: f (x) = (1 + e−x )−1

ReLU (Rectified Linear Unit): f (x) = max(0, x)

Rectified sigmoidal functions etc.

Vanishing gradient problem?
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Convolutional Neural Networks (CNN) CNN building blocks

Pooling

Dimensionality reduction

Introduction of invariance (translation, rotation)

Usually no learning involved

y `+1(i ′j ′) = max
ij∈K(i ′j′)

y `(ij)
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Convolutional Neural Networks (CNN) CNN building blocks

Classification

Multi-layer perceptron (MLP) (expressed via convolutions)

Feature maps reduced in size due to previous transformations

Map onto classes → generate probability distribution (e.g. softmax)

”Grandmother cells” in the final layer
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Convolutional Neural Networks (CNN) CNN building blocks

Image segmentation

Other tasks than classification are possible by extending the
”encoder”/ learned feature representation with other functions
For image segmentation we can ”flip” the CNN and add this so called
”Deconvolution NN” on top.

”SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation”
Badrinarayanan, Kendall, Cipolla 2015
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Convolutional Neural Networks (CNN) CNN building blocks

Generation using CNN based Generative Adversarial
Networks (GAN)

Various methods to use deconvolutional NNs to generate data
GANs are 1 option: filters of the DeconvNet are trained to generate
output that resembles some training data to fool a different
”discriminator” (C)NN.

https://deeplearning4j.org/generative-adversarial-network
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Convolutional Neural Networks (CNN) Regularization, Weights & Tricks

Dropout (an example for regularization)

Introduction of noise → reduces complex co-adaptation of neurons

y `ij = α(pd )y `ij with α(pd ) =
{

0 if u ∈ U(0, 1) < pd

1 if u ∈ U(0, 1) ≥ pd

pd = 0.5

G.E. Hinton: ”The brain has about 1014 synapses and we only live for
about 109 seconds. So we have a lot more parameters than data. This
motivates the idea that we must do a lot of unsupervised learning since
the perceptual input (including proprioception) is the only place we can
get 105 dimensions of constraint per second.
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Convolutional Neural Networks (CNN) Regularization, Weights & Tricks

Weight initialization

Especially for very deep NNs initializing weights can be tricky & is an
active research topic (shallow networks are more ”forgiving”).
There is rules of thumb for how weights can be initialized e.g. ”Xavier
initialization” or ”Kaiming initialization”.
Such initialization techniques draw from distributions that are scaled
with different size properties of the NN architecture design

For m inputs, n outputs and the slope of the activation function a (e.g.
a = 0 for ReLUs):

Glorot2010 Wi ,j ∼ U

−
√

6
m + n ,

√
6

m + n

 (1)

Kaiming2015 Wi ,j ∼ N
(

0,
√

2
(1 + a2) ·m

)
(2)
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Convolutional Neural Networks (CNN) Training

Gradient descent

C(θ) = 1
N

N∑
n=1

Ln(θ)

GD:
while ||∇θC(θ)||2 ≥ ε and t ≤ tE
θt+1 ← θt − ηt∇θC(θ)
t ← t + 1
end while

SGD:
while ||∇θLn(θ)||2 ≥ ε and t ≤ tE
θt+1 ← θt − ηt∇θLn(θ)
t ← t + 1
end while
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Convolutional Neural Networks (CNN) Training

Backpropagation

Werbos 1983, Rumelhart 1986
Train deeper networks

Why after 20 years?

Data
Computational power
Initialization
Subtleties: ReLU, dropout . . .
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Convolutional Neural Networks (CNN) Training

Backpropagation

Find an expression for the rate of change of the cost/loss function with
respect to any weight in the network to minimize the cost by optimizing
weights:

∂Ln(W , b, x , ylabel )
∂W `

ab
=

N`
I −N`

A∑
i=0

N`
J−N`

B∑
j=0

∂Ln
∂x `ij

∂x `ij
∂W `

ab

=
N`

I −N`
A∑

i=0

N`
J−N`

B∑
j=0

∂Ln
∂x `ij

y `−1
(i+a)(j+b)

the sums correspond to weight sharing and the latter derivative is known
from forward propagation
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Convolutional Neural Networks (CNN) Training

Backpropagation

∂Ln

∂x `ij
= ∂Ln
∂y `ij

∂y `ij
∂x `ij

= ∂Ln
∂y `ij

∂

∂x `ij

[
σ
(
x `ij
)]

= ∂Ln
∂y `ij

σ′
(
x `ij
)

∂L
∂x has large value → cost can be lowered in σ (x + ∆x)
∂L
∂x ≈ 0 insignificant improvement
Heuristic definition of error as system must be near minimum if the
derivative has a small value ∂L

∂x ≡ δ
`
ij

Now calculate ∂L
∂x`−1

ij
≡ δ`−1

ij etc.
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Convolutional Neural Networks (CNN) Training

Backpropagation

4 equations for CNN backpropagation:

δL = ∇xL(W , b, x , ylabel ) ◦ σ′
(
xL
)

∂Ln (fW , xy)
∂x ` = δ` =

(
W `+1,> ? δ`+1

)
◦ σ′

(
x `
)

∂Ln (fW , xy)
∂W `

= δ` ? y `−1

∂Ln (fW , xy)
∂b`

= δ`
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Convolutional Neural Networks (CNN) Training

Backpropagation Algorithm

Backprop with mini-batch SGD:
1 Input: for n training examples set y0

n

2 Forward: y `+1
n
← σ

[
W `+1 ? y `

n
− b`+1

]
3 Calculate error: δL

n ← ∇xLn(W , b, x , ylabel ) ◦ σ′
(
xL

n

)
4 Backprop error: δ`n ←

(
W `+1,> ? δ`+1

n

)
◦ σ′

(
x `n
)

5 Update: W ` ←W ` − η
N
∑

n δ
`
n ? y `−1

n(
b` ← b` − η

N
∑

n δ
`
n

)
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Convolutional Neural Networks (CNN) Some Computer Vision datasets & examples

CIFAR-10

labeled subset of 80 million tiny images dataset

50k training, 10k test 32x32 color images

10 classes (mutually exclusive) with 6000 images per class

6 randomly-selected batches of 10k images

airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck
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Convolutional Neural Networks (CNN) Some Computer Vision datasets & examples

a DCNN example
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≈ 1-2 hours depending on GPU
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Convolutional Neural Networks (CNN) Some Computer Vision datasets & examples

ImageNet ILSVRC-12

held in conjunction with PASCAL VOC, results ”open” or ”closed”

subset of ImageNet dataset (10M images, 10k classes)

1000 classes, 1.2M training images and 150k testing images

up to 5 classes per image

classification, detection (& fine-grained classification)
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Convolutional Neural Networks (CNN) Some Computer Vision datasets & examples

AlexNet-OWT [Krizshevsky 2014]
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Trained on 2 GPUs
43.4% top-1 error
≈ a day including cross-validation and testing
data-parallelism in convolutional layers
model-parallelism in fully-connected layers
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Convolutional Neural Networks (CNN) Some Computer Vision datasets & examples

AlexNet-OWT

Layer 1 filters

Some layer 2 filters
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Convolutional Neural Networks (CNN) Modern architecture twists

Residual Neural Networks

Re-use information & combat vanishing gradients

”Deep Residual Learning for Image Recognition”; He, Zhang, Ren, Sun; 2015
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Convolutional Neural Networks (CNN) Modern architecture twists

DenseNet

Extension to ResNets

”Densely Connected Convolutional Networks”; Huang, Liu, van der Maaten, Weinberger; CVPR best paper 2017
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Recurrent Neural Networks (RNN)

Sequence models

Example: Natural Language Processing (NLP)
examples loosely as presented in https://www.coursera.org/learn/nlp-sequence-models

”Harry Potter discovered a beautiful spell.”

x<1> = ”Harry”, x<2> = ”Potter” . . . x<6> = ”spell”

Many potential tasks that have different mappings:
many-to-one: e.g. sentiment analysis
one-to-many: e.g. music generation
many-to-many e.g. entity finding, translation
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Recurrent Neural Networks (RNN) A simple RNN

(Simple) RNNs

Activations of previous time-step influence next time-step
Weights operating on x<t> shared across t
In addition now also weights operating between A<t> (s in right
figure)

(left) http://colah.github.io/posts/2015-08-Understanding-LSTMs/
(right) http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
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Recurrent Neural Networks (RNN) A simple RNN

Backpropagation through time

Very similar to standard backpropagation in feedforward NNs.
Key difference: Sum gradients for W at each time step.

http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-
gradients/
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Recurrent Neural Networks (RNN) Vanishing gradients & long-term dependencies

Vanishing gradients & long-term dependencies

”The cat just had plenty of delicious food and is now full”.
”The cats just had plenty of delicious food and are now full.”

⇒ Gated Recurrent Units (GRU) and Long short-term memory (LSTM)
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Recurrent Neural Networks (RNN) Vanishing gradients & long-term dependencies

Vanishing gradients & long-term dependencies

He said: ”Teddy Roosevelt was a great president”
He said: ”Teddy bears are on sale!”

http://colah.github.io/posts/2015-09-NN-Types-FP/
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