
ML Praktikum WS 17/18 Introduction to Deep Learning

Martin Mundt

FIAS / Goethe Uni Frankfurt

February 2018

1 / 34

Outline

1 Deep learning in a nutshell
DNN architecture variants

2 Convolutional Neural Networks (CNN)
CNN building blocks
Regularization, Weights & Tricks
Training
Some Computer Vision datasets & examples
Modern architecture twists

3 Recurrent Neural Networks (RNN)
A simple RNN
Vanishing gradients & long-term dependencies

2 / 34

Deep learning in a nutshell

What is deep learning?

”Deep learning allows computational models that are composed of
multiple processing layers to learn representations of data with multiple
levels of abstraction”

LeCun,Bengio,Hinton,2015

3 / 34

Deep learning in a nutshell

Ideas behind Deep Learning

Inspiration from brain’s hierarchy (V1,V2,.. etc.)
→ hierarchical networks with different interactions on multiple levels

Learning features instead of engineering

Derive intermediate representations, with increasing level of
abstraction

Generalization ability

Latent/hidden variables

Depending on exact algorithm either super- or unsupervised

4 / 34

Deep learning in a nutshell

Deep Learning book: Goodfellow, Bengio, Courville; MIT
Press 2016

5 / 34

Deep learning in a nutshell DNN architecture variants

The Neural Network Zoo

6 / 34

Convolutional Neural Networks (CNN)

Basic concepts of a convolution neural network (CNN)

Basically a neural network using many identical copies of a neuron

Sparse connectivity pattern & replication re-uses parametrization

Large amount of neurons (e.g. 650 k) → large models → ”small”
amount of parameters (e.g. 60 M)

Composable network with each layer detecting more abstract
”higher-level” features

Typically trained with modified versions of (stochastic) gradient
descent

Convolution can work on high-dimensional data

Very good at specific tasks based on: images, videos, audio...

7 / 34

Convolutional Neural Networks (CNN) CNN building blocks

Convolutions

Identical copies of neurons implies the same weights in more than 1
position → weight-sharing

x `+1
ijf`+1

=
F∑̀
f`

N`+1
A −1∑
a=0

N`+1
B −1∑
b=0

W `+1
abf`f`+1

y `(i+a)(j+b)f` − b`+1
ijf`+1

x `+1 = W `+1 ? y ` − b`+1

[http://deeplearning.net/tutorial/lenet.html]
8 / 34

Convolutional Neural Networks (CNN) CNN building blocks

Activations (Transfer)

y `+1 = σ
[
x `+1

]
= σ

[
W `+1 ? y ` − b`+1

]
Activation functions σ(x):

Tanh: f (x) = tanh(x) or Sigmoid: f (x) = (1 + e−x)−1

ReLU (Rectified Linear Unit): f (x) = max(0, x)

Rectified sigmoidal functions etc.

Vanishing gradient problem?

9 / 34

Convolutional Neural Networks (CNN) CNN building blocks

Pooling

Dimensionality reduction

Introduction of invariance (translation, rotation)

Usually no learning involved

y `+1(i ′j ′) = max
ij∈K(i ′j′)

y `(ij)

y2
22 y2

33y2
12

y2
11 y2

31y2
21

y3
1 y3

2

10 / 34

Convolutional Neural Networks (CNN) CNN building blocks

Classification

Multi-layer perceptron (MLP) (expressed via convolutions)

Feature maps reduced in size due to previous transformations

Map onto classes → generate probability distribution (e.g. softmax)

”Grandmother cells” in the final layer

y2
22 y2

33 y2
42 y2

52 y2
62

y1
11 y1

21 y1
31 y1

41 y1
51 y1

61 y1
71

y1
12 y1

22 y1
32 y1

42 y1
52 y1

62 y1
72

y1
13 y1

23 y1
33 y1

43 y1
53 y1

63 y1
73

y2
12

y2
11 y2

31 y2
41 y2

51 y2
61y2

21

y3
1 y3

2 y3
3 y3

4 y3
5

y4

Input

Convolution

Pooling

Multilayer Perceptron

11 / 34

Convolutional Neural Networks (CNN) CNN building blocks

Image segmentation

Other tasks than classification are possible by extending the
”encoder”/ learned feature representation with other functions
For image segmentation we can ”flip” the CNN and add this so called
”Deconvolution NN” on top.

”SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation”
Badrinarayanan, Kendall, Cipolla 2015

12 / 34

Convolutional Neural Networks (CNN) CNN building blocks

Generation using CNN based Generative Adversarial
Networks (GAN)

Various methods to use deconvolutional NNs to generate data
GANs are 1 option: filters of the DeconvNet are trained to generate
output that resembles some training data to fool a different
”discriminator” (C)NN.

https://deeplearning4j.org/generative-adversarial-network

13 / 34

Convolutional Neural Networks (CNN) Regularization, Weights & Tricks

Dropout (an example for regularization)

Introduction of noise → reduces complex co-adaptation of neurons

y `ij = α(pd)y `ij with α(pd) =
{

0 if u ∈ U(0, 1) < pd

1 if u ∈ U(0, 1) ≥ pd

pd = 0.5

G.E. Hinton: ”The brain has about 1014 synapses and we only live for
about 109 seconds. So we have a lot more parameters than data. This
motivates the idea that we must do a lot of unsupervised learning since
the perceptual input (including proprioception) is the only place we can
get 105 dimensions of constraint per second.

14 / 34

Convolutional Neural Networks (CNN) Regularization, Weights & Tricks

Weight initialization

Especially for very deep NNs initializing weights can be tricky & is an
active research topic (shallow networks are more ”forgiving”).
There is rules of thumb for how weights can be initialized e.g. ”Xavier
initialization” or ”Kaiming initialization”.
Such initialization techniques draw from distributions that are scaled
with different size properties of the NN architecture design

For m inputs, n outputs and the slope of the activation function a (e.g.
a = 0 for ReLUs):

Glorot2010 Wi ,j ∼ U

−
√

6
m + n ,

√
6

m + n

 (1)

Kaiming2015 Wi ,j ∼ N
(

0,
√

2
(1 + a2) ·m

)
(2)

15 / 34

Convolutional Neural Networks (CNN) Training

Gradient descent

C(θ) = 1
N

N∑
n=1

Ln(θ)

GD:
while ||∇θC(θ)||2 ≥ ε and t ≤ tE
θt+1 ← θt − ηt∇θC(θ)
t ← t + 1
end while

SGD:
while ||∇θLn(θ)||2 ≥ ε and t ≤ tE
θt+1 ← θt − ηt∇θLn(θ)
t ← t + 1
end while

16 / 34

Convolutional Neural Networks (CNN) Training

Backpropagation

Werbos 1983, Rumelhart 1986
Train deeper networks

Why after 20 years?

Data
Computational power
Initialization
Subtleties: ReLU, dropout . . .

17 / 34

Convolutional Neural Networks (CNN) Training

Backpropagation

Find an expression for the rate of change of the cost/loss function with
respect to any weight in the network to minimize the cost by optimizing
weights:

∂Ln(W , b, x , ylabel)
∂W `

ab
=

N`
I −N`

A∑
i=0

N`
J−N`

B∑
j=0

∂Ln
∂x `ij

∂x `ij
∂W `

ab

=
N`

I −N`
A∑

i=0

N`
J−N`

B∑
j=0

∂Ln
∂x `ij

y `−1
(i+a)(j+b)

the sums correspond to weight sharing and the latter derivative is known
from forward propagation

18 / 34

Convolutional Neural Networks (CNN) Training

Backpropagation

∂Ln

∂x `ij
= ∂Ln
∂y `ij

∂y `ij
∂x `ij

= ∂Ln
∂y `ij

∂

∂x `ij

[
σ
(
x `ij
)]

= ∂Ln
∂y `ij

σ′
(
x `ij
)

∂L
∂x has large value → cost can be lowered in σ (x + ∆x)
∂L
∂x ≈ 0 insignificant improvement
Heuristic definition of error as system must be near minimum if the
derivative has a small value ∂L

∂x ≡ δ
`
ij

Now calculate ∂L
∂x`−1

ij
≡ δ`−1

ij etc.

19 / 34

Convolutional Neural Networks (CNN) Training

Backpropagation

4 equations for CNN backpropagation:

δL = ∇xL(W , b, x , ylabel) ◦ σ′
(
xL
)

∂Ln (fW , xy)
∂x ` = δ` =

(
W `+1,> ? δ`+1

)
◦ σ′

(
x `
)

∂Ln (fW , xy)
∂W `

= δ` ? y `−1

∂Ln (fW , xy)
∂b`

= δ`

20 / 34

Convolutional Neural Networks (CNN) Training

Backpropagation Algorithm

Backprop with mini-batch SGD:
1 Input: for n training examples set y0

n

2 Forward: y `+1
n
← σ

[
W `+1 ? y `

n
− b`+1

]
3 Calculate error: δL

n ← ∇xLn(W , b, x , ylabel) ◦ σ′
(
xL

n

)
4 Backprop error: δ`n ←

(
W `+1,> ? δ`+1

n

)
◦ σ′

(
x `n
)

5 Update: W ` ←W ` − η
N
∑

n δ
`
n ? y `−1

n(
b` ← b` − η

N
∑

n δ
`
n

)

21 / 34

Convolutional Neural Networks (CNN) Some Computer Vision datasets & examples

CIFAR-10

labeled subset of 80 million tiny images dataset

50k training, 10k test 32x32 color images

10 classes (mutually exclusive) with 6000 images per class

6 randomly-selected batches of 10k images

airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck

22 / 34

Convolutional Neural Networks (CNN) Some Computer Vision datasets & examples

a DCNN example

32

32

3

5
30

64

5

Preprocessed Input Image Convolutional - Feature Extractor Fully Connected - Classifier

30

128

26

26

28

64

5

28

128

24

24

5
2

128

12
12

5

128

10
10

5

128

8
8

5

6
6

2

256

3

3

256

3

1024 1024

10

1
1

1
1

1
1

Layer 1 filters

≈ 1-2 hours depending on GPU

23 / 34

Convolutional Neural Networks (CNN) Some Computer Vision datasets & examples

ImageNet ILSVRC-12

held in conjunction with PASCAL VOC, results ”open” or ”closed”

subset of ImageNet dataset (10M images, 10k classes)

1000 classes, 1.2M training images and 150k testing images

up to 5 classes per image

classification, detection (& fine-grained classification)

24 / 34

Convolutional Neural Networks (CNN) Some Computer Vision datasets & examples

AlexNet-OWT [Krizshevsky 2014]

224

224

3

11 55

55

64

55

55

64
27

27

64

27

27

192

13

13

3

3

3

3

3

3

5

527

27

64 192

27
27 13

13

3 3 3

3 3 3

13 13 13

13 13 13

13 13 13

13 13 13

384

384 256

256192

192 256

256

256

256

6
6

6
6

2048 2048

2048 2048 1000
Stride of 4

Preprocessed Input Image Convolutional - Feature Extractor

GPU 1

GPU 2

Fully Connected - Classifier

Trained on 2 GPUs
43.4% top-1 error
≈ a day including cross-validation and testing
data-parallelism in convolutional layers
model-parallelism in fully-connected layers

25 / 34

Convolutional Neural Networks (CNN) Some Computer Vision datasets & examples

AlexNet-OWT

Layer 1 filters

Some layer 2 filters

26 / 34

Convolutional Neural Networks (CNN) Modern architecture twists

Residual Neural Networks

Re-use information & combat vanishing gradients

”Deep Residual Learning for Image Recognition”; He, Zhang, Ren, Sun; 2015

27 / 34

Convolutional Neural Networks (CNN) Modern architecture twists

DenseNet

Extension to ResNets

”Densely Connected Convolutional Networks”; Huang, Liu, van der Maaten, Weinberger; CVPR best paper 2017

28 / 34

Recurrent Neural Networks (RNN)

Sequence models

Example: Natural Language Processing (NLP)
examples loosely as presented in https://www.coursera.org/learn/nlp-sequence-models

”Harry Potter discovered a beautiful spell.”

x<1> = ”Harry”, x<2> = ”Potter” . . . x<6> = ”spell”

Many potential tasks that have different mappings:
many-to-one: e.g. sentiment analysis
one-to-many: e.g. music generation
many-to-many e.g. entity finding, translation

29 / 34

Recurrent Neural Networks (RNN) A simple RNN

(Simple) RNNs

Activations of previous time-step influence next time-step
Weights operating on x<t> shared across t
In addition now also weights operating between A<t> (s in right
figure)

(left) http://colah.github.io/posts/2015-08-Understanding-LSTMs/
(right) http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

30 / 34

Recurrent Neural Networks (RNN) A simple RNN

Backpropagation through time

Very similar to standard backpropagation in feedforward NNs.
Key difference: Sum gradients for W at each time step.

http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-time-and-vanishing-
gradients/

31 / 34

Recurrent Neural Networks (RNN) Vanishing gradients & long-term dependencies

Vanishing gradients & long-term dependencies

”The cat just had plenty of delicious food and is now full”.
”The cats just had plenty of delicious food and are now full.”

⇒ Gated Recurrent Units (GRU) and Long short-term memory (LSTM)

32 / 34

Recurrent Neural Networks (RNN) Vanishing gradients & long-term dependencies

Vanishing gradients & long-term dependencies

He said: ”Teddy Roosevelt was a great president”
He said: ”Teddy bears are on sale!”

http://colah.github.io/posts/2015-09-NN-Types-FP/

33 / 34

	Deep learning in a nutshell
	DNN architecture variants

	Convolutional Neural Networks (CNN)
	CNN building blocks
	Regularization, Weights & Tricks
	Training
	Some Computer Vision datasets & examples
	Modern architecture twists

	Recurrent Neural Networks (RNN)
	A simple RNN
	Vanishing gradients & long-term dependencies

