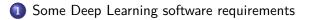
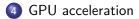
ML Praktikum WS 17/18 Introduction to ML software frameworks

Martin Mundt

FIAS / Goethe Uni Frankfurt

February 2018





DL software equirements

- N-dimensional matrices/tensors with common operations & convenient slicing
- Ability to group mathematical functions into more abstract building blocks (like layers, nets)
- Definition of complicated execution sequences of more than two building blocks (think of RNNs)
- A set of common training algorithms with parameter choices & sensible defaults
- Access to databases that are common in the machine learning domain

DL software requirements

- Compatibility with fundamental backends such as BLAS or GPU SDKs
- Seamless GPU & multi-GPU support (abstract away transfers & synchronization)
- Potential to distribute data & networks to multiple machines (or cloud)
- A "model-zoo", i.e. pre-trained models
- Target common Operating Systems
- Be installable & usable for non-experts
- Little computational & memory overhead through interfaces to e.g. Python

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API

Numerical computation library Express in Python Underlying implementation: C++, CUDA

Created by: Google Brain Initial beta release: November 2015 Latest stable release: TensorFlow 1.5, January 2018 License: Open source - Apache 2.0

Spiritual successor to Theano (2010) (discontinued 11/17)

Website: https://www.tensorflow.org/ Git: https://github.com/tensorflow/tensorflow

A summary of core features:

- Data Flow Graphs: describe mathematical computation with a directed graph of nodes & edges
- **Deep Flexibility:** if you can express your computation as a data flow graph, you can use TensorFlow
- **True Portability:** TensorFlow runs on CPUs or GPUs, and on desktop, server, or mobile computing platforms
- Auto-Differentiation
- Maximize Performance: Support for threads, queues & asynchronous computation. Freely assign compute elements to different devices
- Estimators: Has pre-defined set of commonly used estimators.

TensorFlow - "old style example"

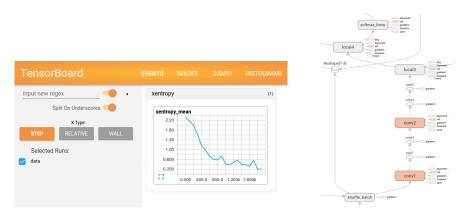
```
import tensorflow as tf
sess = tf.Session()
matrix1 = tf.constant([[3.],[3.]])
matrix2 = tf.constant([[3.],[3.]])
product = tf.matmul(matrix1,matrix2)
result = sess.run(product)
print(result)
sess.close()
```

Neural Network

TensorFlow - Layers API

Neural Network from: https://github.com/tensorflow/models/blob/master/official/mnist/mnist.py

```
class Model(object):
          def __init__(self, data_format):
                self. input shape = [-1, 1, 28, 28]
                self.conv1 = tf.layers.Conv2D(
                32, 5, padding='same', data format=data format, activation=tf.nn.relu)
                self.conv2 = tf.lavers.Conv2D(
                64, 5, padding='same', data_format=data_format, activation=tf.nn.relu)
                self.fc1 = tf.layers.Dense(1024, activation=tf.nn.relu)
                self.fc2 = tf.lavers.Dense(10)
                self.max_pool2d = tf.layers.MaxPooling2D(
        (2, 2), (2, 2), padding='same', data_format=data_format)
        def call (self, inputs, training):
                y = tf.reshape(inputs, self._input_shape)
                v = self.conv1(v)
                y = self.max_pool2d(y)
                y = self.conv2(y)
                y = self.max_pool2d(y)
                v = tf.lavers.flatten(v)
                v = self.fc1(v)
                return self.fc2(y)
```

- Interactive playground: http://playground.tensorflow.org/
- Has been adapted for other frameworks

PyTorch

PyTorch

PyTorch

PYTÖRCH		Get Started	About	Blog	Support	Tutorials	Discuss	Docs
D.Torch is a puthon	package that provides two h	and lovel feature						
Pyroren is a python	package that provides two r	lign-level leature	rs.					
Tensor computatio	n (like numpy) with strong GPU	acceleration						
Deep Neural Netwo	orks built on a tape-based auto	grad system						
You can reuse your	favorite python packages su	ch as numpy, sc	ipy and Cyth	on to exten	d PyTorch wh	ien needed.		
At a granular level, P	yTorch is a library that cons	ists of the follow	ing compon	ents:				
Package	Description							
torch	a Tensor library like NumPy, with	strong GPU support						
torch.autograd	a tape based automatic differentia	ation library that supp	oorts all differen	tiable Tensor o	perations in torch			
torch.nn	a neural networks library deeply in	ntegrated with autogr	ad designed for	maximum flex	ibility			
torch.optim	an optimization package to be use	ed with torch.nn with	standard optimi	zation method	s such as SGD, RN	ISProp, LBFGS, Ada	n etc.	
torch.multiprocessing	python multiprocessing, but with	magical memory shar	ing of torch Ten	sors across pro	cesses. Useful for	data loading and h	ogwild training.	
torch.utils	DataLoader, Trainer and other uti	lity functions for conv	enience					
torch.legacy(.nn/.optim)	legacy code that has been ported	over from torch for b	ackward compa	tibility reasons				
Usually one uses Py	Forch either as:							
A replacement for r	numpy to use the power of GPU	Js.					h:	
a deep learning res	earch platform that provides m	aximum flexibility	and speed					

PyTorch

Tensor computation library Express in Python (or LUA) Underlying implementation: C, CUDA

PyTorch

Created by: Facebook Al Initial beta release: January 2017 Latest stable release: PyTorch 0.3, Dezember 2017 License: Open source - BSD-3

Addition to Torch version 7 (2012: same C backend + LUA, still maintained)

Website: https://www.tensorflow.org/ Git: https://github.com/tensorflow/tensorflow

PyTorch

A summary of core features:

- GPU-ready Tensor library: if you use numpy, you have used Tensors.
- **Dynamic Neural Networks: Tape based Autograd** unique way of building neural networks: using and replaying a tape recorder.
- Python first
- Auto-Differentiation
- Fast and Lean At the core, CPU and GPU Tensor and Neural Network backends (TH, THC, THNN, THCUNN) are written as independent libraries with a C99 API. They are mature and have been tested for years.
- **Extensions without pain** You can write new neural network layers in Python using the torch API.
- Torchvision datasets and utility for computer vision.

PyTorch - "old style example"

```
import torch
matrix1 = torch.Tensor(3,3)
matrix2 = torch.Tensor(3,3)
product = torch.matmul(matrix1,matrix2)
print(product)
```

Neural Network

```
from torch import nn as nn
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
            net = nn.Sequential(nn.Linear(2,2), nn.Linear(2,2))
    def forward(self, x):
            x = net(x)
            return x
model = Model()
result = model(torch.autograd.Variable(torch.rand(2)))
print(result)
```


PyTorch - (dynamically) defining forward

```
from torch import nn as nn
import torch.nn.functional as F
class Model(object):
        class Model(nn.Module):
                def __init__(self):
                        super(Model, self).__init__()
                        self.input size = 28*28
                        self.conv1 = nn.Conv2d(1, 32, 5)
                        self.conv2 = nn.Conv2d(32, 64, 5)
                        self.pool = nn.MaxPool2d(2,2)
                        self.fc1 = nn.Linear(10*10, 1024)
                        self.fc2 = nn.Linear(1024, 10)
        def forward(self. x):
                x = F.relu(self.conv1(x))
                x = F.relu(self.conv2(x))
                x = self.pool(x)
                x = x.view(1, -1)
                x = F.relu(self.fc1(x))
                x = self.fc2(x)
                return v
       model = Model()
        result = model(torch.autograd.Variable(torch.rand(1,1,28,28)))
       print(result)
```


Training the network

(GP)GPU computation in Machine Learning

- In principle multiple GPU vendors & software.
- In practice in ML almost exclusive application of Nvidia GPUs with CUDA.
- Is very useful because a large amount of operations in e.g. NNs are elementwise. Elementwise operations imply that the individual elements can be computed fully in parallel. E.g. convolutions, Hadamard products etc.
- Is particularly useful because one update in algorithms like SGD is typically based on a population of inputs. For these inputs (e.g. different images) the application of the complete pipeline can be calculated independently in parallel.
- Does not help with temporally correlated data or the necessary sequentiality of updates itself (relying on information of previous steps).
- Application typically limited by specific hardware constraints like memory limits.

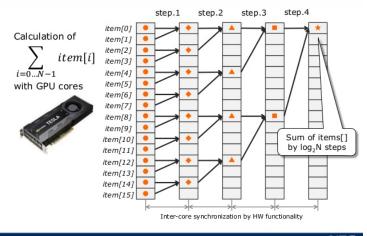
GPU acceleration

NVIDIA GP102-based Graphics Cards									
VideoCardz.com	TITAN X "Pascal"	GeForce GTX 1080 Ti	NVIDIA TITAN Xp						
GPU	GP102-400	GP102-350	GP102						
CUDA Cores	3584	3584	3840						
TMUs	224	224	240						
Boost Clock	1531 MHz	1584MHz	1582 MHz						
Computing Power	10.97 TFLOPs	11.34 TFLOPs	12.15 TFLOPs						
Memory Clock	10.0 Gbps	11.0 Gbps	11.4 Gbps						
Memory Capacity	12 GB	11 GB	12 GB						
Memory Bus & Type	384-bit / GDDR5X	352-bit / GDDR5X	384-bit / GDDR5X						
Memory Bandwidth	480 GB/s	484 GB/s	547.7 GB/s						
MSRP	1200 USD	700 USD	1200 USD						

nvidia.com; http://hitechgazette.com/nvidia-titan-xp-new-graphics-card-by-nvidia-to-beat-the-gtx-1080-ti/

A non-trivial example

How GPU cores works



PGconf.EU 2015 - GPGPU Accelerates PostgreSQL

\Orchestrating a brighter world NEC

https://www.slideshare.net/kaigai/gpgpu-accelerates-postgresql-unlock-the-power-of-multithousand-cores

GPU acceleration in PyTorch

A Nvidia GPU with corresponding CUDA version needs to be installed
CUDNN can be further used for even better acceleration

```
is_gpu = torch.cuda.is_available()
if is_gpu:
criterion = criterion.cuda()
        model = model.cuda()
for e in range(epochs):
        for i, (input, target) in enumerate(train_loader):
                input var = torch.autograd.Variable(input)
                target_var = torch.autograd.Variable(target)
                if is_gpu:
                        input_var = input_var.cuda()
                        target_var = target_var.cuda()
                output = model(input var)
                loss = criterion(output, target_var)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
```

