ML Praktikum WS 17/18
Introduction to ML software frameworks

Martin Mundt

FIAS / Goethe Uni Frankfurt

February 2018

1/24

Outline

© Some Deep Learning software requirements

© TensorFlow

© PyTorch

@ GPU acceleration

2/24

Some Deep Learning software requirements

DL software equirements

N-dimensional matrices/tensors with common operations &
convenient slicing

Ability to group mathematical functions into more abstract building
blocks (like layers, nets)

Definition of complicated execution sequences of more than two
building blocks (think of RNNs)

@ A set of common training algorithms with parameter choices &
sensible defaults

@ Access to databases that are common in the machine learning domain

3/24

Some Deep Learning software requirements

DL software requirements

Compatibility with fundamental backends such as BLAS or GPU SDKs

Seamless GPU & multi-GPU support (abstract away transfers &
synchronization)

Potential to distribute data & networks to multiple machines (or
cloud)

A "model-zoo", i.e. pre-trained models
Target common Operating Systems

Be installable & usable for non-experts

Little computational & memory overhead through interfaces to e.g.
Python

4/24

TensorFlow

TensorFlow

5/24

TensorFlow

TensorFlow

TensorFlow is an open source software library for numerical computation
using data flow graphs. Nodes in the graph represent mathematical
operations, while the graph edges represent the multidimensional data
arrays (tensors) communicated between them. The flexible architecture
allows you to deploy computation to one or more CPUs or GPUs in a
desktop, server, or mobile device with a single API

hr"‘l

[ensor

6/24

TensorFlow

TensorFlow

Numerical computation library
Express in Python
Underlying implementation: C++, CUDA

=

lensor

7/24

TensorFlow

TensorFlow

Created by: Google Brain

Initial beta release: November 2015

Latest stable release: TensorFlow 1.5, January 2018
License: Open source - Apache 2.0

Spiritual successor to Theano (2010) (discontinued 11/17)

Website: https://www.tensorflow.org/
Git: https://github.com/tensorflow /tensorflow

hI:‘l

lensor

8/24

TensorFlow

TensorFlow

A summary of core features:

o Data Flow Graphs: describe mathematical computation with a
directed graph of nodes & edges

@ Deep Flexibility: if you can express your computation as a data flow
graph, you can use TensorFlow

@ True Portability: TensorFlow runs on CPUs or GPUs, and on
desktop, server, or mobile computing platforms

o Auto-Differentiation

@ Maximize Performance: Support for threads, queues &
asynchronous computation. Freely assign compute elements to
different devices

o Estimators: Has pre-defined set of commonly used estimators.

. [1\%

fensor

9/24

TensorFlow
TensorFlow - "old style example”

import tensorflow as tf

sess = tf.Session()

matrixl = tf.constant([[3.],[3.11)
matrix2 = tf.constant([[3.],[3.11)
product = tf.matmul(matrixl,matrix2)
result = sess.run(product)

print (result)

sess.close()

Neural Network

import tensorflow as tf

x = tf.placeholder("float", [None, n_input])

y = tf.placeholder("float", [None, n_classes])

def multilayer_perceptron(_X, _weights, _biases):
layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights[’h1’]), _biases[’b1’]))
layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, _weights[’h2’]), _biases[’b2’]))
return tf.matmul(layer_2, weights[’out’]) + biases[’out’]

Initialize variables
Launch the graph

hl."‘"

Tensor

10/24

TensorFlow

TensorFlow - Layers API

Neural NetWOrk from: https://github.com/tensorflow/models/blob/master/official /mnist/mnist.py

class Model(object):

def __init__(self, data_format):
self._input_shape = [-1, 1, 28, 28]

self.convl = tf.layers.Conv2D(
32, 5, padding=’same’, data_format=data_format, activation=tf.nn.relu)
self.conv2 = tf.layers.Conv2D(

64,

5, padding=’same’, data_format=data_format, activation=tf.nn.relu)

self.fcl = tf.layers.Dense(1024, activation=tf.nn.relu)
self.fc2 = tf.layers.Dense(10)
self .max_pool2d = tf.layers.MaxPooling2D(

(2, 2, (2,

def __call__

y =

y =

y =

y =

y =

y =

r
hr"‘"
Tensor

2), padding=’same’, data_format=data_format)

(self, inputs, training):
tf.reshape(inputs, self._input_shape)
self.convi(y)

self.max_pool2d(y)

self.conv2(y)

self.max_pool2d(y)
tf.layers.flatten(y)

self.fcl(y)

eturn self.fc2(y)

11/24

TensorFlow

Reshape[1-3]

TensorBoard EVENTS IMAGES GRAPH HISTOGRAMS

input new regex ® - xentropy @

Split On Underscores:) Xentropy_mean

XType:

m RELATIVE WALL e
140

Selected Runs: 1.00

data 0.600

+ +
0.000 4000 800.0 1200k 1.600k

o Interactive playground: http://playground.tensorflow.org/

@ Has been adapted for other frameworks

12/24

PyTorch

PyTorch

PYTORCH

13/24

PyTorch

PyTorch

PYTORCH

PyTorch is a python package that provides two high-level features

o Tensor computation (like numpy) with strong GPU acceleration

* Deep Neural Networks built on a tape-based autograd system
You can reuse your favorite python packages such as numpy, scipy and Cython to extend PyTorch when needed.

At a granular level, PyTorch is a library that consists of the following components:

ckage Description

torch a Tensor library like NumPy, with strong GPU support

torch.autograd atape based automatic differentiation library that supports all differentiable Tensor operations in torch

torch.nn aneural networks library deeply integrated with autograd designed for maximurn flexibility

torch.optim an optimization package to be used with torch.nn with standard optimization methods such as SGD, RMSProp, LBFGS, Adam etc.

torch python , but with magical memory sharing of torch Tensors across processes. Useful for data loading and hogwild training.
torch.utils DataLoader, Trainer and other utility functions for convenience

torchlegacy(.nn/.optim) legacy code that has been ported over from torch for backward compatibility reasons

Usually one uses PyTorch either as:

o Areplacement for numpy to use the power of GPUS. IS

o adeep learning research platform that provides maximum flexibility and speed

14/24

PyTorch

PyTorch

Tensor computation library
Express in Python (or LUA)
Underlying implementation: C, CUDA

PYTORCH

15/24

PyTorch

PyTorch

Created by: Facebook Al
Initial beta release: January 2017

Latest stable release: PyTorch 0.3, Dezember 2017
License: Open source - BSD-3

Addition to Torch version 7 (2012: same C backend + LUA, still
maintained)

Website: https://www.tensorflow.org/
Git: https://github.com/tensorflow /tensorflow

PYTORCH

16 /24

PyTorch

PyTorch

A summary of core features:

PYTORCH

GPU-ready Tensor library: if you use numpy, you have used Tensors.
Dynamic Neural Networks: Tape based Autograd unique way of
building neural networks: using and replaying a tape recorder.
Python first

Auto-Differentiation

Fast and Lean At the core, CPU and GPU Tensor and Neural
Network backends (TH, THC, THNN, THCUNN) are written as
independent libraries with a C99 API. They are mature and have been
tested for years.

Extensions without pain You can write new neural network layers in
Python using the torch API.

Torchvision datasets and utility for computer vision.

17/24

PyTorch

PyTorch - "old style example’

import torch

matrixl = torch.Tensor(3,3)

matrix2 = torch.Tensor(3,3)

product = torch.matmul (matrixl,matrix2)
print (product)

Neural Network

from torch import nn as nn
class Model(nn.Module) :
def __init__(self):
super (Model, self).__init__()
net = nn.Sequential(nn.Linear(2,2), nn.Linear(2,2))
def forward(self, x):
x = net(x)
return x

model = Model()
result = model(torch.autograd.Variable(torch.rand(2)))
print (result)

PYTORCH

18/24

PyTorch - (dynamically) defining forward

from torch import nn as nn
import torch.nn.functional as F

class Model(object):

class Model(nn.Module) :
def __init__(self):

super (Model, self).__init__()
self.input_size = 2828
self.convl = nn.Conv2d(1, 32, 5)
self.conv2 = nn.Conv2d(32, 64, 5)
self.pool = nn.MaxPool2d(2,2)
self.fcl = nn.Linear(10%10, 1024)
self.fc2 = nn.Linear (1024, 10)

def forward(self, x):
x = F.relu(self.convi(x))
x = F.relu(self.conv2(x))

x = self.pool(x)

x = x.view(1, -1)

x = F.relu(self.fcl(x))
x = self.fc2(x)

return x

model = Model()
result = model(torch.autograd.Variable(torch.rand(1,1,28,28)))
print(result)

PYTORCH

19/24

PyTorch

Training the network

epochs = 5
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), 1r = 0.01)

for e in range(epochs) :
for i, (input, target) in enumerate(train_loader):
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)

output = model(input_var)
loss = criterion(output, target_var)

optimizer.zero_grad()
loss.backward()

optimizer.step()

cross-validation, testing etc.

PYTORCH

20/24

GPU acceleration

(GP)GPU computation in Machine Learning

@ In principle multiple GPU vendors & software.

@ In practice in ML almost exclusive application of Nvidia GPUs with
CUDA.

@ |s very useful because a large amount of operations in e.g. NNs are
elementwise. Elementwise operations imply that the individual
elements can be computed fully in parallel. E.g. convolutions,
Hadamard products etc.

@ Is particularly useful because one update in algorithms like SGD is
typically based on a population of inputs. For these inputs (e.g.
different images) the application of the complete pipeline can be
calculated independently in parallel.

@ Does not help with temporally correlated data or the necessary
sequentiality of updates itself (relying on information of previous
steps).

@ Application typically limited by specific hardware constraints like

memory limits.
21/24

GPU acceleration

GPU acceleration

VideoCardz.com
GPU
CUDA Cores
TMUs
Boost Clock
Computing Power
Memory Clock
Memory Capacity
Memory Bus & Type
Memory Bandwidth
MSRP

nvidia.com; http://hitechgazette.com/nvidia-titan-xp-new-graphics-card-by-nvidia-to-beat-the-gtx-1080-ti/

i o fles

NVIDIA GP102-based Graphics Cards

TITAN X “Pascal” GeForce GTX 1080 Ti NVIDIATITAN Xp
GP102-400 GP102-350 GPI02
3584 3584 3840
2 2% 240
1531 MHz 1584MHz 1582 MHz
1097 TFLOPS 1134 TRLOPS R215TFLOPs
10.0 Gbps TOGbps 114 Cbps
1268 nee 1268
384-bit/ CDDRSX 352-bit / GDDRSX 384-bit / CDDRSX
4B0GBJs 484 GBJs S477CBfs
1200USD 700USD 1200 USD

22/24

GPU acceleration

A non-trivial example

How GPU cores works

step.1 step.2 step.3 step.4

. item[0]
Calculation of item[1]

y . item[2]

Z item[i] yemps;
i=0.N-1 itermf4]
with GPU cores ftem[5]
item([6]
item[7]
item[8]
item[9]
itemf10]
item[11]
ftemf12]
itemf13]
item[14]
ftem[15]

y

y

ARECERECERECEREC
=TT

Sum of items([]
by log,N steps

1 e e e o s |

HL L[[o[[o[[o [o o] [s] I+]

Xe T
Inter-core synchronization by HW functionality

https://www.slideshare.net/kaigai/gpgpu-accelerates-postgresql-unlock-the-power-of-multithousand-cores
23/24

GPU acceleration

GPU acceleration in PyTorch

@ A Nvidia GPU with corresponding CUDA version needs to be installed
@ CUDNN can be further used for even better acceleration

is_gpu = torch.cuda.is_available()

if is_gpu:
criterion = criterion.cuda()
model = model.cuda()

for e in range(epochs):
for i, (input, target) in enumerate(train_loader):
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)

if is_gpu:
input_var = input_var.cuda()
target_var = target_var.cuda()

output = model(input_var)
loss = criterion(output, target_var)

optimizer.zero_grad()

loss.backward()
optimizer.step()

PYTORC

24 /24

	Some Deep Learning software requirements
	TensorFlow
	PyTorch
	GPU acceleration

