
ML Praktikum WS 17/18
Introduction to ML software frameworks

Martin Mundt

FIAS / Goethe Uni Frankfurt

February 2018

1 / 24

Outline

1 Some Deep Learning software requirements

2 TensorFlow

3 PyTorch

4 GPU acceleration

2 / 24

Some Deep Learning software requirements

DL software equirements

N-dimensional matrices/tensors with common operations &
convenient slicing
Ability to group mathematical functions into more abstract building
blocks (like layers, nets)
Definition of complicated execution sequences of more than two
building blocks (think of RNNs)
A set of common training algorithms with parameter choices &
sensible defaults
Access to databases that are common in the machine learning domain

3 / 24

Some Deep Learning software requirements

DL software requirements

Compatibility with fundamental backends such as BLAS or GPU SDKs
Seamless GPU & multi-GPU support (abstract away transfers &
synchronization)
Potential to distribute data & networks to multiple machines (or
cloud)
A ”model-zoo”, i.e. pre-trained models
Target common Operating Systems
Be installable & usable for non-experts
Little computational & memory overhead through interfaces to e.g.
Python

4 / 24

TensorFlow

TensorFlow

5 / 24

TensorFlow

TensorFlow

TensorFlow is an open source software library for numerical computation
using data flow graphs. Nodes in the graph represent mathematical
operations, while the graph edges represent the multidimensional data
arrays (tensors) communicated between them. The flexible architecture
allows you to deploy computation to one or more CPUs or GPUs in a
desktop, server, or mobile device with a single API

6 / 24

TensorFlow

TensorFlow

Numerical computation library
Express in Python
Underlying implementation: C++, CUDA

7 / 24

TensorFlow

TensorFlow

Created by: Google Brain
Initial beta release: November 2015
Latest stable release: TensorFlow 1.5, January 2018
License: Open source - Apache 2.0

Spiritual successor to Theano (2010) (discontinued 11/17)

Website: https://www.tensorflow.org/
Git: https://github.com/tensorflow/tensorflow

8 / 24

TensorFlow

TensorFlow
A summary of core features:

Data Flow Graphs: describe mathematical computation with a
directed graph of nodes & edges
Deep Flexibility: if you can express your computation as a data flow
graph, you can use TensorFlow
True Portability: TensorFlow runs on CPUs or GPUs, and on
desktop, server, or mobile computing platforms
Auto-Differentiation
Maximize Performance: Support for threads, queues &
asynchronous computation. Freely assign compute elements to
different devices
Estimators: Has pre-defined set of commonly used estimators.

9 / 24

TensorFlow

TensorFlow - ”old style example”
import tensorflow as tf
sess = tf.Session()
matrix1 = tf.constant([[3.],[3.]])
matrix2 = tf.constant([[3.],[3.]])
product = tf.matmul(matrix1,matrix2)
result = sess.run(product)
print(result)
sess.close()

Neural Network
import tensorflow as tf
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])
def multilayer_perceptron(_X, _weights, _biases):

layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights[’h1’]), _biases[’b1’]))
layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, _weights[’h2’]),_biases[’b2’]))
return tf.matmul(layer_2, weights[’out’]) + biases[’out’]

...
Initialize variables
Launch the graph

10 / 24

TensorFlow

TensorFlow - Layers API
Neural Network from: https://github.com/tensorflow/models/blob/master/official/mnist/mnist.py

class Model(object):

def __init__(self, data_format):
self._input_shape = [-1, 1, 28, 28]

self.conv1 = tf.layers.Conv2D(
32, 5, padding=’same’, data_format=data_format, activation=tf.nn.relu)
self.conv2 = tf.layers.Conv2D(
64, 5, padding=’same’, data_format=data_format, activation=tf.nn.relu)
self.fc1 = tf.layers.Dense(1024, activation=tf.nn.relu)
self.fc2 = tf.layers.Dense(10)
self.max_pool2d = tf.layers.MaxPooling2D(

(2, 2), (2, 2), padding=’same’, data_format=data_format)

def __call__(self, inputs, training):
y = tf.reshape(inputs, self._input_shape)
y = self.conv1(y)
y = self.max_pool2d(y)
y = self.conv2(y)
y = self.max_pool2d(y)
y = tf.layers.flatten(y)
y = self.fc1(y)
return self.fc2(y)

11 / 24

TensorFlow

TensorFlow

Interactive playground: http://playground.tensorflow.org/
Has been adapted for other frameworks

12 / 24

PyTorch

PyTorch

13 / 24

PyTorch

PyTorch

14 / 24

PyTorch

PyTorch

Tensor computation library
Express in Python (or LUA)
Underlying implementation: C, CUDA

15 / 24

PyTorch

PyTorch

Created by: Facebook AI
Initial beta release: January 2017
Latest stable release: PyTorch 0.3, Dezember 2017
License: Open source - BSD-3

Addition to Torch version 7 (2012: same C backend + LUA, still
maintained)

Website: https://www.tensorflow.org/
Git: https://github.com/tensorflow/tensorflow

16 / 24

PyTorch

PyTorch
A summary of core features:

GPU-ready Tensor library: if you use numpy, you have used Tensors.
Dynamic Neural Networks: Tape based Autograd unique way of
building neural networks: using and replaying a tape recorder.
Python first
Auto-Differentiation
Fast and Lean At the core, CPU and GPU Tensor and Neural
Network backends (TH, THC, THNN, THCUNN) are written as
independent libraries with a C99 API. They are mature and have been
tested for years.
Extensions without pain You can write new neural network layers in
Python using the torch API.
Torchvision datasets and utility for computer vision.

17 / 24

PyTorch

PyTorch - ”old style example”

import torch
matrix1 = torch.Tensor(3,3)
matrix2 = torch.Tensor(3,3)
product = torch.matmul(matrix1,matrix2)
print(product)

Neural Network
from torch import nn as nn
class Model(nn.Module):

def __init__(self):
super(Model, self).__init__()
net = nn.Sequential(nn.Linear(2,2), nn.Linear(2,2))

def forward(self, x):
x = net(x)
return x

model = Model()
result = model(torch.autograd.Variable(torch.rand(2)))
print(result)

18 / 24

PyTorch

PyTorch - (dynamically) defining forward
from torch import nn as nn
import torch.nn.functional as F

class Model(object):

class Model(nn.Module):
def __init__(self):

super(Model, self).__init__()
self.input_size = 28*28
self.conv1 = nn.Conv2d(1, 32, 5)
self.conv2 = nn.Conv2d(32, 64, 5)
self.pool = nn.MaxPool2d(2,2)
self.fc1 = nn.Linear(10*10, 1024)
self.fc2 = nn.Linear(1024, 10)

def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = self.pool(x)
x = x.view(1, -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x

model = Model()
result = model(torch.autograd.Variable(torch.rand(1,1,28,28)))
print(result)

19 / 24

PyTorch

Training the network

epochs = 5
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01)

for e in range(epochs):
for i, (input, target) in enumerate(train_loader):

input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)

output = model(input_var)
loss = criterion(output, target_var)

optimizer.zero_grad()
loss.backward()
optimizer.step()

cross-validation, testing etc.

20 / 24

GPU acceleration

(GP)GPU computation in Machine Learning

In principle multiple GPU vendors & software.
In practice in ML almost exclusive application of Nvidia GPUs with
CUDA.
Is very useful because a large amount of operations in e.g. NNs are
elementwise. Elementwise operations imply that the individual
elements can be computed fully in parallel. E.g. convolutions,
Hadamard products etc.
Is particularly useful because one update in algorithms like SGD is
typically based on a population of inputs. For these inputs (e.g.
different images) the application of the complete pipeline can be
calculated independently in parallel.
Does not help with temporally correlated data or the necessary
sequentiality of updates itself (relying on information of previous
steps).
Application typically limited by specific hardware constraints like
memory limits.

21 / 24

GPU acceleration

GPU acceleration

nvidia.com; http://hitechgazette.com/nvidia-titan-xp-new-graphics-card-by-nvidia-to-beat-the-gtx-1080-ti/

22 / 24

GPU acceleration

A non-trivial example

https://www.slideshare.net/kaigai/gpgpu-accelerates-postgresql-unlock-the-power-of-multithousand-cores
23 / 24

GPU acceleration

GPU acceleration in PyTorch

A Nvidia GPU with corresponding CUDA version needs to be installed
CUDNN can be further used for even better acceleration

is_gpu = torch.cuda.is_available()

if is_gpu:
criterion = criterion.cuda()

model = model.cuda()

for e in range(epochs):
for i, (input, target) in enumerate(train_loader):

input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)

if is_gpu:
input_var = input_var.cuda()
target_var = target_var.cuda()

output = model(input_var)
loss = criterion(output, target_var)

optimizer.zero_grad()
loss.backward()
optimizer.step()

24 / 24

	Some Deep Learning software requirements
	TensorFlow
	PyTorch
	GPU acceleration

