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INVITED
PAPER

On Cognitive Dynamic Systems:
Cognitive Neuroscience and
Engineering Learning From

Each Other

In this paper, the authors address recent advances and ongoing challenges in reference

to cognitive dynamic systems, embodying cognitive perception, and cognitive control.

By SiMoN HAYKIN, Fellow IEEE AND JoaQuiN M. FUSTER

ABSTRACT | Cognitive dynamic systems provide a broadly
defined platform, whereby engineering learns from cognitive
neuroscience, and by the same token, cognitive neuroscience
learns from engineering. The first part of the paper is of a
tutorial nature, addressing recent advances in cognitive
perception and cognitive control, which are the dual of each
other. The study of cognitive perception, viewed from the
perspective of Bayesian inference, starts with sparse coding,
well known in neuroscience. However, sparse coding could
become ill-posed, particularly when the signal-to-noise ratio is
low. In such situations, stability is a necessary requirement,
which can only be satisfied if there is sufficient information in
the observables. To satisfy this requirement, the sparse-coding
algorithm is augmented by the addition of information filtering
(i.e., a special case of Bayesian filtering). Accordingly, the
performance of sparse coding is improved under the influence
of perceptual attention. This improvement enhances the
cognitive perceptor to separate relevant information from
irrelevant information. Next, moving into cognitive control,
viewed from the perspective of Bellman’s dynamic program-
ming, two ideas are exploited: entropic state of the perceptor,
and the definition of reward as an invertible function of two
entropic states, namely, the current state and its immediate
past value. The net result of building on these two ideas is a
modified form of Bellman’s dynamic programming, and,
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therefore, a new reinforcement learning algorithm, which not
only outperforms traditional reinforcement learning algo-
rithms, but also offers some highly desirable properties.
Among them is a linear law of computational complexity,
which is the best that it could be. The second part of the paper
addresses two challenging problems: first, how to mediate
between cognitive control and cognitive perception and,
second, how to formulate a procedure for risk control. The
first problem is resolved by making use of probabilistic
reasoning, a branch of probability theory, which leads into
the formulation of a probabilistic reasoning machine. With this
mediation in place, the conditions for overall system stability
are derived, thereby confirming the probabilistic reasoning
machine as the overall system stabilizer. The second challenge
is risk control, which is by far the most challenging of them all:
In the presence of an unexpected disturbance in the environ-
ment, risk is brought under control by mimicking the predict
and preadapt function, which is considered to be the
overarching function in the prefrontal cortex of the brain. To
be specific, motor control is expanded by the inclusion of a new
preadaptive control mechanism, which involves two different
sets of actions: One set is made up of possible actions identified
by the policy in the motor control. The other set involves a
window of experiences (i.e., optimal actions) gained in the past.
In a novel way, by exploiting these two sets, we end up with a
preadaptive control mechanism in the form of a closed-loop
feedback structure, which brings with it control (executive)
attention.

KEYWORDS | Attention; cognition; control; entropic state;
intelligence; memory; perception; pre-adaptation; prediction;
risk control; self-organization; system stability
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I. INTRODUCTION

A. Historical Background

Strictly speaking, cognitive neuroscience preceded by
more than a century, the emergence of information theory,
artificial intelligence, and neural engineering. The origin of
cognitive neuroscience can be traced back to the discovery
of two areas of the cerebral cortex, Broca [1] and Wernicke
[2], who specialized in the articulation and understanding
of speech, respectively. The consequent inference of two
separate cortical modules for the processing of language led
to a search for comparable modules dedicated to other
cognitive functions, such as memory, perception, and
intelligence. The trend was fostered in animal and human
neurosychology by the discovery of cortical areas, whose
lesion led to disorders in visual, auditory, or tactile
discrimination. Then, most prominent was the memory
disorder caused by lesions of the hippocampus, a parcel of
ancient cortex.

The modular model for the study of cognitive neuro-
science has continued almost unabated to the present,
reinforced by the electrophysiological analysis of sensory
areas. This analysis reveals apparent cortical hierarchies of
modules, dedicated to progressively more abstract aspects
of perception or memory. Since the middle of the last
century, however, the modular model has shown progres-
sive signs of strain, while the network model of cognition
increasingly displaces it. The latter is also hierarchical, but
in it the self-organized unit of memory or knowledge is not
the module but the network. The pressure for change came
in mid-century from two converging fields.

1) Clinical neurology: Geschwind [3] demonstrated
that certain cognitive disorders resulted not so much
from the damage of specific cortical areas, but from
the connections between them. This observation led
to a proliferation of neuroanatomical studies of
cortical connectivity, providing evidence of widely
distributed cortical networks to serve cognition.

2) Theoretical and computational approaches to
neural networks [4]-[7]: Connectionism is one
such theoretical approach that is most germane to
current views on cortical cognition, as both of
them postulate a complex system of distributed,
overlapping, and hierarchically organized net-
works of knowledge. The connectionism approach
shares many common elements with the cognitive
cortical paradigm postulated in [8] and [9]. Other
contributions to neural networks include novel
ideas described in [10] and [11].

In summary, beginning with the 1950s, there has been

a continuous, though somewhat muted, dialog between the
neuroscientists of cognitive networks and the scientists
dedicated to the study of the dynamics of information
networks in complex adaptive systems. This paper is an
attempt to make that dialog more explicit, with cognitive
dynamic system as a new way of thinking.

The idea of cognitive dynamic systems, from an
engineering perspective, was inspired by the human brain;
its origin is summarized as follows.

1) In a predictive Point-of-View article, published in
the 2006 PROCEEDINGS OF THE IEEE [12], the idea
of cognitive dynamic systems was motivated by
two preceding papers: the classic 2005 paper on
cognitive radio [13], and the seminal paper written
on cognitive radar in 2006 [14].

2) In the context of cognitive dynamic systems, the
first book to be written on the subject, was
published in 2012 [15].

3) Then, there was a second predictive Point-of-View
article on cognitive dynamic systems that was
published in the PrRoceeDpINGS oF THE IEEE in
2012, where the scope was broadened to include
radar, control, and radio [16].

B. Principles of Human Cognition

In the book entitled Cortex and Mind: Unifying Cognition
[17], the basic principles of human cognition' are
identified; they are briefly described in what follows.

1) Perception—action cycle. Environmental observa-
bles (measurements), coming into the perception
part of the brain, are processed to extract relevant
information about the environment. This proces-
sing continues from one cycle to the next, until a
point is reached where any further information
gain about the environment becomes essentially
too small to be of practical value, assuming that
the environment is locally stationary.

2) Multilayered memory. Basically, memory consists
of three parts:

- perceptual memory that builds on the
perception—action cycle for the extraction of
relevant information about the environment;

- executive memory that builds on feedback
information about the environment to pro-
duce actions on the environment;

- perceptual memory and executive memory
are reciprocally coupled via working memory.

Simply put, the function of memory is to predict

the consequences of action taken on the environ-

ment by the executive part of the brain. In other
words, memory builds on the perception-action
cycle.

3) Attention. Whereas the perception-action cycle
and memory occupy distinct physical places in the
brain, attention is algorithmic in nature. Specif-
ically, there is perceptual attention in the
perception part of the brain, and executive
attention in its executive part. Simply put, the
function of attention is the efficient allocation and

1n actual fact, there is a fifth principle, namely, language; for the
present, language has been put aside for another day.

Vol. 102, No. 4, April 2014 | PROCEEDINGS OF THE IEEE 609



Haykin and Fuster: On Cognitive Dynamic Systems: Cognitive Neuroscience and Engineering Learning From Each Other

management of resources in the brain. With this
function in mind, attention builds on memory
and, not only that, but also the perception—action
cycle. It is also important to note that feedback (of
the negative kind) is the facilitator of attention.
4) Intelligence. Building on attention (and, there-
fore, memory as well as the perception-action
cycle), intelligence is the most powerful of all the
principles in human cognition, and, therefore, it is
difficult to define. Nevertheless, the primary
objective of intelligence is optimal control of a
target of interest, and doing so in the most
effective and efficient manner possible, followed
by decision making for action on the environment.

C. Organization

The rest of the paper, consisting of eight sections, is
organized as follows.

Section II describes the diagrammatic structural
composition of a cognitive dynamic system that mimics
the brain, with emphasis on two topics:

e three kinds of perception-action cycles, whose
formulations depend on where they are located
within the system;

e the hierarchical structure of memory, the purpose
of which is to trade off time for space.

Next, recognizing that the Bayesian approach is
necessary to resolve the inherent ambiguity (ill-posed
nature) of perceptual inverse problems, be that from a
cognitive neuroscience or engineering perspective,
Section IIT covers the following topics:

e Bayesian inference;

e  probabilistic modeling;

e  statistical analysis;

e maximum a posteriori (MAP) rule for parameter

estimation.

At this point, the stage is set for how perception in a
cognitive dynamic system is modeled. To this end, Section IV
on cognitive perception builds on sparse coding, which is
well known in cognitive neuroscience. Unfortunately, there
are situations encountered in practice, where sparse coding
violates the three conditions of Hadamard, namely,
existence, uniqueness, and stability. It is the latter condition,
where sparse coding would have to be improved under the
influence of perceptual attention. To satisfy this require-
ment, the use of an information filter is put in place, which is
a special form of the optimal Bayesian filter.

Just as Bayesian inference is basic to cognitive
perception, so it is that Bellman’s dynamic programming
underlies cognitive control. To satisfy this latter need,
Section V is devoted to Bellman’s dynamic programming
for a stochastic environment. The material covered in
Section V includes the following topics:

e  Markov decision processes;

e Bellman’s optimality equation.

610 PROCEEDINGS OF THE IEEE | Vol. 102, No. 4, April 2014

With this material in place, the stage is set for cognitive
control, which is discussed in Section VI. The following
topics are covered therein:

e the imperfect state-information problem;

e the entropic state model for the perceptor that
builds on Shannon’s entropy;

e revisiting Bellman’s optimality equation, with a
special focus on the novel notion of entropic state
that has a profound importance on the optimal
control formulation;

e exploiting another idea, namely, the functional
dependence of reward on states;

e  explore—exploit tradeoft.

Section VII stresses the idea of a probabilistic reasoning
machine that addresses the following topics:

e expansion of entropic states to include the
perceptor as well as the controller;

e  probabilistic reasoning, well known in probability
theory, which acts as the mediator between the
perceptor and the controller, thereby providing the
basis for overall system stability and self-organization.

Risk management is perhaps the most challenging problem
to resolve not just in engineering, but also in cognitive
neuroscience. Section VIII addresses this issue by exploit-
ing an overarching preadaptation function in the prefron-
tal cortex, which builds on the following idea:

“For a prediction in the future to exist, there has
to be a past.”Finally, Section IX concludes the paper.

II. COGNITIVE DYNAMIC SYSTEMS

A. Structural Composition of a Cognitive
Dynamic System

Fig. 1 shows the block diagram of a cognitive dynamic
system, which, from an engineering perspective, is
configured to mimic the brain. In physical terms, the
tigure closely depicts the two principles of cognition:
perception and memory, which are individually discussed
in what follows.

1) Perception—Action Cycles: The immediate impression
we get from the examination of Fig. 1 is the fact that the
cognitive dynamic system is a multiple closed-loop
feedback system, in which feedback, distributed through-
out the system, plays a critical role in how it perceives the
world (environment).

The part of the system to the right of the figure is called
the cognitive perceptor, and the part of the system to the
left of the figure is called the cognitive controller?; these

’In cognitive neuroscience, the cognitive perceptor is referred to as
the sensory system, and the cognitive controller is referred to as the
executive system. The principal functional block that reciprocally couples
them together is called the working memory.
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Probabilistic
Cognitive reasoning Cognitive
controller machine perceptor

T
T

Motor
control

Actions Observables

Fig. 1. Functional block diagram of hierarchical cognitive dynamic
system. CP: cognitive perceptor; CC: cognitive controller; PRM:
probabilistic reasoning machine.

two parts of the cognitive dynamic system are reciprocally
coupled by the probabilistic reasoning machine. The
global perception—action cycle, so called because it
embodies the environment inside its feedback loop,
proceeds as follows.

1) The cognitive perceptor processes the incoming
environmental observables to extract relevant
information about the environment. Moreover, it
computes feedback information, based on percep-
tion errors.

2) The feedback information is passed by the
cognitive perceptor to the cognitive controller,
thereby linking them for the cognitive dynamic
system to operate as a whole.

3) In response to the feedback information as its
input, the cognitive controller acts on the envi-
ronment, thereby closing the global perception—
action cycle.

4) The resulting action produces further changes in
the environment that lead to new perception and,
in this manner, the cycle continues on, until a
prescribed goal is realized.

Indeed, it is through the continuation of the global
perception—action cycle across time that a cognitive
dynamic system acquires a cardinal property, which
enables it to continually adapt to changes in the
environment by making its own successive changes
through experience learned from interactions with the
environment. To reemphasize the importance of this
capability, we say that the coordination of functions
involved in global perception—action cycles across time is a

distinctive characteristic of cognition; hence, the three key
roles attributed to time [17]:

1) time separates the observables from one cycle to
another, so as to guide the overall behavior of the
cognitive dynamic system;

2) time separates the observables for perception of
the environment from action taken on the
environment;

3) time separates feedback information from action.

The implication of these three key roles of time is
profound, prompting us to make the following statement:

“Temporal organization of the overall behavior of
the cognitive dynamic system requires the coordi-
nation of time: percepts with percepts, actions with
actions, and percepts with actions.”

The discussion thus far has focused on the global
perception—action cycle. To be specific, there is another
kind of cycle called the internally composite perception—
action cycle, which distinguishes itself from its global
counterpart as follows: Internally composite perception—
action cycles embody the cognitive perceptor, the proba-
bilistic reasoning machine, and the cognitive controller
inside their feedback loops, completely eschewing the
environment. It is this particular perception-action cycle
that is responsible for both control attention and
perceptual attention.

Finally, we come to the third kind of cycles, called local
perception—action cycles. The term local is meant to
emphasize the fact that these cycles distinguish themselves
on the following account: They are localized inside the
cognitive perceptor or cognitive controller.

The practical importance of local perception-actions
cycles is summarized as follows [17], [18]:

“The cycles localized in the cognitive perceptor
are responsible for perceptual attention and those
localized in the cognitive controller are responsible
for control (executive) attention.”

Indeed, it is on account of this statement that attention
is said to be algorithmic in nature.

B. Hierarchical Structure of Memory

As the name would imply, perceptual memory is an
integral part of the cognitive perceptor. To be more
specific, perceptual memory provides the cognitive
perceptor with the ability to interpret the observables, so
as to distinguish their characteristic features learned in a
statistical sense. The learning is conducted through an
adaptive matching process, where features in one layer of
the cognitive dynamic system are matched to those
features computed from the lower layer. Speaking of
layers, in a hierarchical perceptual memory in the
cognitive perceptor, the observables are processed, unit
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by unit.’ Accordingly, the perceptual constancy across the
hierarchical structure of the memory increases in abstrac-
tion as we go up from one layer to the next. Just as the
perceptual memory resides in the cognitive perceptor, the
executive memory resides in the cognitive controller.
Contents of the executive memory are continually changed
from one global perception—action cycle to the next, as a
result of actions performed on the environment by the
cognitive controller. In other words, knowledge gained in
the executive memory is of an experiential kind; it is
updated through actions on the environment that are taken
in response to feedback information sent to the cognitive
controller by the cognitive perceptor. In moving down
across the cognitive controller layer by layer, experiential
knowledge becomes increasingly focused on the prescribed
goal of interest. In contrasting the perceptual memory with
the executive memory, we speak of the following [17]:
e perceptual cognits represent knowledge (i.e., fea-
tures) contained in the environmental observables;
e executive cognits represent knowledge gained
from experience through interactions with the
environment.
Quoting from [17]:

“A cognit is an item of knowledge about the
world, the self, or the relations between them. Its
network structure is made up of elementary
representations of perception or action that have
been associated with one another by learning or past
experience.”

ITI. BAYESIAN INFERENCE

Before discussing cognitive perception in the next section,
it is instructive to digress briefly in order to present some
preparatory material on Bayesian inference, which plays a
key role in the study of perception, be that in neuroscience
or engineering.

To begin the discussion of Bayesian inference, the term
inference is said to be a compact way of referring to the
statistical evaluation of a model that is of particular
interest. The underlying philosophy of Bayesian inference
is then summed up in the following statement, taken in
verbatim from [19]:

“A Bayesian approach to a problem starts with the
formulation of a model that we hope is adequate to
describe the situation of interest. We then formulate
a prior distribution over the unknown parameters of
the model, which is meant to capture our beliefs
about the situation before seeing the data. After
observing some data, we apply Bayes rule to obtain a

The term layer applies to the reciprocally coupled perceptor and
controller in the cognitive dynamic system, whereas the term unit applies
to a component of the perceptor or that of the controller viewed by itself.
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posterior distribution for these unknowns, which
takes account of the prior and the data. From the
posterior distribution we can compute the predictive
distribution for future observations.”

To proceed with the discussion of Bayesian inference,

there are two finite-dimensional spaces.

1) A parameter space and an observation space,
where the parameter space is hidden from the
observer that only has access to the observation
space. Therefore, insofar as the observer is
concerned, the model parameters are unknown.
Let 0 denote the parameter vector drawn from the
parameter space.

2) The parameter vector 6 is mapped onto the
observation space by a probabilistic transition
mechanism from the parameter space to produce a
sample observation vector x.

We may now make the following two statements that are
the dual of each other [20]:

1) probabilistic modeling, the aim of which is to
formulate the conditional distribution p(x|#) that
provides an adequate description of the underlying
physical behavior of the observation space;

2) statistical analysis, the aim of which is to produce
the inverse of probabilistic modeling; this inver-
sion is denoted by the posterior distribution
p(O]x).

To proceed form the conditional distribution to the
posterior distribution, we involve Bayes rule, obtaining

_ p(x|0)p(0)

plo) ="

@™

where p(0) is the prior, and p(x) is the evidence.

The MAP Rule: The inversion aspect of the statistical
analysis manifests itself in the notion of the likelihood
function denoted by £(f|x), for which we introduce the
following definition:

£(6]x) = p(|6). 2)

Assuming that the parameter vector 0 is continuous, we
may then compute an estimate of the unknown 6 using the
product £(8]x)p(6), hence the following statement:

“The MAP estimate, denoted by éM AP, is defined
by the maximum value of the product composed of
the likelihood function £(f|x) and the prior p().”

What is important to note here is the fact that, from an
information-theoretic point of view, the MAP estimate is
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absolutely optimum, in that there is no other estimate that
can outperform it. However, this unique capability is
attained at having to have a prior. Note also that in making
this statement, the evidence p(x) acts as a normalizer and,
therefore, has no role to play in the MAP estimate.

If, for some reason, the prior p(f) is not available or
difficult to formulate, the MAP estimate is simplified by
settling for the maximum likelihood (ML) estimate, where
simplicity is gained at the expense of an estimate that is no
longer optimal.

IV. COGNITIVE PERCEPTION

A. Sparse Coding

To explain what we mean by sparse coding, we can do
no better than the following statement, reproduced
verbatim from the paper by Olshausen and Field [21]:

“The principle of sparse coding refers to a neural
code, in which each sensory input of a nervous
system is represented by the strong activation of a
relatively small number of neurons out of a large
population of neurons in the system.”

In practical terms, the advantages of sparse coding are

summarized as follows.

1) Storage capacity of the multilayered perceptual
memory is increased significantly.

2) At the top layer of the perceptual memory, the
observables are represented in a manner that are
easy to recognize on account of two facts. First,
the relevant features of the observables are more
likely to be largely separable from the irrelevant
features. Second, the relevant features are more
stable (robust) in the presence of additive noise.

3) Last, energy is conserved and computational costs
are minimized.

However, to realize these advantages, we are faced with a
sparse-coding problem that is difficult to solve. Thus, setting
the advantages of sparse coding just mentioned versus the
complexity of how to solve the problem, it reminds us of the
no free lunch theorem [22], which, in effect, states that for
every gain made, there is a price to be paid.

B. Ill-Posedness of the Sparse-Coding Problem

From a computational perspective, sparse coding could
be viewed as a linear inverse problem in the following
twofold manner:

e sparse coding is an inverse problem in the sense
that the neural code (i.e., the set of features
representing the observables) is hidden from view
of the perceptual memory;

e linearization of the problem is proposed to make it
mathematically tractable.

Accordingly, the first step in solving the sparse-coding
problem is to introduce the following two definitions.

1) A neural code, denoted by z, which defines the
feature vector that represents the observables;
hence, the neural code is also referred to as the
feature vector.

2) A dictionary, denoted by a rectangular matrix W,
which consists of generating elements (e.g., Gabor
wavelets) that are chosen to be nonorthogonal
with respect to each other; the number of rows in
the dictionary is much larger than the number of
columns.

Using vector x to denote the observables, we may then
write

Wz =x 3)

which represents a system of linear equations. Because the
number of equations is smaller than the number of
observables, the system of equations is underdetermined
and, therefore, nonsolvable. Turning next to the issue of ill-
posedness, a problem is said to be ill-posed if it violates the
three Hadamard conditions of well-posedness, namely [23]:

1) asolution to the problem exists;

2) the solution is unique;

3) moreover, the unique solution is stable (robust).
In its basic form, sparse coding violates condition 1) because
the sparse-coding problem is underdetermined. To satisfy
conditions 1) and 2), the typical approach has been to
invoke Tikhonov’s regularization theory and extensions
thereof [23], [24].

However, regularization by itself may not always be
enough to take care of condition 3), that is, stability.

To elaborate on what we have said thus far: When the
level of noise power in the observables is low (i.e., the
signal-to-noise ratio is high), then the use of regularization
to satisfy conditions 1) and 2) could suffice. On the other
hand, when the level of noise power is high (i.e., the
signal-to-noise ratio is low), condition 3) is vulnerable and
can, therefore, be violated. In such a situation, the
regularized sparse-coding algorithm can be stabilized by
the addition of information filtering that introduces
perceptual attention [25]. In the final analysis, we may
make the following statement:

“For the sparse-coding algorithm to be well-posed,
there would have to be sufficient information in the
observables, subject to the provision that the signal-
to-noise ratio is not too low.”

There is an interesting convergence here between
predictive coding formulations of Bayesian or information
filtering and the adaptive response to fluctuations in
signal-to-noise ratio. It has recently been proposed that
attention can be understood as optimizing the precision
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(inverse variance) associated with noise [26]. Practically,
this involves the use of precision weighted prediction
errors, where precision is encoded by the Kalman gain
matrix.* If we associate signal to noise with precision,
there is a clear link between cognitive attention and
perceptual inferences in which we have greater confidence.
Furthermore, the Fisher information, to be discussed in the
next section, is the conditional precision (inverse variance)
under linear (and Gaussian) assumptions. Again, we return to
the notion of the inverse covariance or precision as an integral
part of information filtering, which can select informative
observations or prediction errors for Bayesian updating.

C. Information filtering: A Special Form of
Bayesian Filtering
Consider an environment, the state—space model of
which is described by the following pair of related equations:
1) process equation, which describes the evolution of
the state of the environment across time, with the
additive process noise acting as the driving force;
2) measurement equation, which describes the depen-
dence of measurements (observables) on the state in
the additive presence of measurement noise.
This state—space model (derived from physical considera-
tions) satisfies the Markov property, which means that
formulation of the model requires the current state and its
immediate past value. This property means that if the
initial condition is known, then the next value of the state
can be computed; given the value of the state just
computed, the second value of the state can be computed,
and so it goes on. With the state of the environment being
hidden, there are two assumptions that are often made to
keep the computational complexity manageable.

1) the state—space model is linear;

2) the process noise and the measurement noise are
statistically independent and they both have (a
potentially) different Gaussian distribution.

It turns out that the Bayesian filter is the optimal solution
for the pair of equations described by the state—space
model. Moreover, the Bayesian filter operates iteratively,
with each iteration consisting of two steps: innovation
followed by prediction.

The Kalman filter and the information filter are two
special cases of the Bayesian filter. They are mathemat-
ically equivalent, but their innovation and prediction steps
are entirely different. To be more specific:

1) the Kalman filter [23] updates the state estimate
by propagating the covariance matrix of the state—
estimation error vector from one iteration to the
next, where this error is defined by the difference
between the pseudoactual value of the state
(computed from the state—space model) and its
estimated value;

*The Kalman gain matrix is a recursion in the Kalman filtering
algorithm [23].
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2) in direct contrast, the information filter [23]
updates the information vector (i.e., the counter-
part of the state vector in the Kalman filter) by
propagating the inverse covariance matrix of the
estimation error vector from one iteration to the
next. What is important to note here is the fact that
the inverse covariance matrix, just defined, is the
Fisher information, hence the name of the filter.

Simply put, the Kalman filter ignores the information vector,
whereas the information filter ignores the state vector. In any
event, the information filter has an advantage over the
Kalman filter: the information filter could be initialized with
a diffuse prior (i.e., zero information), which simplifies
algorithmic formulation of the information filter.

Finally, faced with the need for sufficient information,
which of the two special cases of the Bayesian filter,
namely, the Kalman filter and the information filter, is the
appropriate choice for resolving the ill-posedness of the
sparse-coding problem? Without hesitation, the appropri-
ate choice is the information filter, rooted in Fisher
information. It is important to note, however, that the
information filter does not create new information; rather,
it facilitates the improved extraction of information
contained in observables, hence, the improvement in
sparse coding.

The Divergence Problem: Unfortunately, in their own
respective ways, both the information filter and the
Kalman filter suffer from the divergence problem, which
could arise when the level of measurement noise power is
relatively high. What happens in such a situation is the fact
that the covariance matrix, or its inverse, violates the
positive-definiteness requirement. To resolve the diver-
gence problem, the recommended procedure is to use the
Cholesky factorization to define the covariance matrix as
the product of its square root and its transpose [27].
Moreover, the square root of the covariance matrix is
propagated from one iteration to the next instead of the
covariance matrix itself. Although by doing so, the square
root of the covariance matrix may also violate the positive-
definiteness requirement, the matrix product of the
computed square root covariance matrix with its transpose
recovers the desired positive-definiteness requirement of
the covariance matrix, as it should be.

Regardless of whether the Cholesky factorization is
needed, the information filter is well suited to stabilize the
regularized sparse-coding problem by providing the
needed sufficient information.

D. Perceptual Attention for Improved Sparse Coding
Building on what has been said thus far, strong
arguments can be made for the following statement:

“The performance of sparse coding is improved
under the influence of perceptual attention through
the use of information filtering.”
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This statement is justified on the following grounds in
the paper by Amiri and Haykin [25].
D

“The ultimate objective of sparse coding is
to resolve the source-separation problem,
whereby relevant features extracted from the
observables are favored, while at the same time
the irrelevant features are rejected. Basically,
the process, just described, is the very essence
of decision-making, localized at the top layer of
hierarchical perceptual memory.”

Recalling the principles of cognition discussed
in Section I, decision making (under the
principle of intelligence) builds on attention.
It follows, therefore, that the perceptual
memory must be endowed by attention to
solve the source-separation problem. Here, we
must recall the fact that intelligence is
distributed throughout the entire cognitive
dynamic system.

2) The second justification for supporting the
influence of perceptual attention to improved
sparse coding is on probabilistic grounds. To be
specific, in the course of estimating a sparse
representation, there is competition among dif-
ferent features contained in the noisy observables.
It would be, therefore, logical to say that the
higher the probability of occurrence of certain
features in the observables, the greater will be the
dynamic bias intended to select those particular
features. On the other hand, the lower the
probability of occurrence of other features in the
observables, the more likely it is they will be
ignored. Invoking the fact that dynamic bias in
cognition is nothing but the basis of focused
attention, we may, therefore, say that perceptual
attention involves the ability to improve sparse
coding.

3) Last, from the discussion presented in Section II,
we recall that local perception—action cycles lead
to attention. The information-filtering algorithm
described in Section IV-B embodies a cyclic
behavior within this algorithm, whereby the
information vector is continually reinforced (i.e.,
improved in behavioral quality) in response to the
incoming observables from one local cycle to the
next. Here then is another plausible justification
for the improved sparse coding under the
influence of perceptual attention.

To sum up this discussion, through perceptual proces-
sing, the observables experience excitatory and inhibitory
effects, which result in the selection of relevant features
and the suppression of irrelevant features [25].

Improved
sparse codes

Sparse
COdmg Regularization
(Laplacian)
posterior
distribution

Information perceptugl

_— attention :
filtering : :

Observables

Fig. 2. Perceptual cognit: Sparse coding augmented by information
filtering.

E. Perceptual Cognit

Turning next to implementation of the improved
sparse-coding algorithm with sufficient information pro-
vided for the sake of stability under varying environmental
conditions, the information filter is inserted between the
incoming observables and the traditional sparse coding, as
depicted in Fig. 2. The bottom part of the figure shows the
information-filtering block, and the top part of the figure
depicts the essence of how sparse representation of the
observables are inferred at the output regularized by a
Laplacian distribution needed for sparseness. The end
result of the whole process is an improved sparse-coding
algorithm, as desired.

The entire scheme of Fig. 2, constitutes a perceptual
cognit,5 following the definition of a cognit described in
Section II-B.

V. DYNAMIC PROGRAMMING

Just as Section III was intended to set the stage for cognitive
perception in Section IV, so it is with this section on Bellman’s
dynamic programming [28], which provides the mathematical

°In [25], experimental results are presented to test the information
processing power of perceptual attention, using real-life data recorded
using the McMaster IPIX radar. Therein, it was demonstrated that the
improved version of sparse coding under the influence of perceptual
attention outperformed the traditional sparse-coding algorithm by
learning better dictionary of features and generating better sparse codes.

Moreover, it is also of interest to note that radar data were complex
valued, in that sample of the data was composed of amplitude and phase
components. To have the design of a sparse-coding algorithm under the
influence of perceptual attention, the so-called Wirtinger calculus was
used to simplify the complex-valued computation.

Vol. 102, No. 4, April 2014 | PROCEEDINGS OF THE IEEE 615



Haykin and Fuster: On Cognitive Dynamic Systems: Cognitive Neuroscience and Engineering Learning From Each Other

state

action
Environment

Fig. 3. Perception-action cycle, involving an agent (e.g., a robot).

basis for cognitive control to be discussed in Section VI.
Bellman’s dynamic programming has been chosen here
because it is a natural way of defining value functions from
discounted rewards and then calculating optimal values; it is,
therefore, widely used for optimal control in engineering
applications. Most importantly, through a cognitive-inspired
modification of dynamic programming, a new reinforcement
learning algorithm emerges, which is described in this
section; this new algorithm is endowed with some highly
desirable properties, hence the practical relevance of the
material presented in this section [29].

A. State Decision Processes

Consider the block diagram of Fig. 3, as in the book by
Sutton and Barto [30]. An agent (e.g., robot), responsible
for decision making, operates in accordance with a Markov
decision process that has the following characteristics:

1) in Markov decision processes, observations are
commonly called the states of the environment,
and the states are said to occupy a finite set;

2) for each state of the environment, there is a finite
set of possible actions, out of which one particular
action is selected by the agent;

3) every time the agent acts on the environment, a
certain reward is given to the agent by the
environment;

4) collectively speaking, states are observed, actions
are taken, and rewards are delivered, all of which
are performed at discrete times. Insofar as actions
and states are concerned, Fig. 3 describes a
“perception—action cycle.”

Recognizing that the notion of state is of practical

importance in the study of dynamic programming, the
following definition is offered:

“The state of the environment is a summary of the
entire past experience gained by the agent as a result
of its continued interactions with the environment,
such that the information necessary for the agent to
predict future behavior of the environment is
contained in that summary.”
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B. Probabilistic Considerations

Let s;, denote the state of the environment, a;, denote the
action taken by the agent on the environment, and r,
denote the reward provided by the environment in
response to the action, where k denotes discrete time. To
be realistic from a practical perspective, the environment is
assumed to be stochastic (i.e., random). Hence, we may say
that s;, is the sample value of some random variable.

With the environment being typically stochastic,
transitions from one state to the next are naturally
probabilistic. According to the crucially important Markov
property discussed in Section III, the current state of the
environment provides the necessary information for action
to be taken by the agent on the environment. In other
words, all future states and rewards are conditionally
independent from past states.

Let a denote an action, which is also the sample value
of a random variable of its own. Correspondingly, let Pg,
denote the transition probability from the current state
s = s; to the new state s’ = s, due to the action a taken
by the agent at time k. Then, involving the Markov
property for state dynamics, the transition probability is
formally defined by the conditional probability:

P, = P[s|s, d] 4)

ss’

where P is the operator for denoting probability. In
accordance with probability theory, the transition proba-
bility satisfies the following two conditions:

Py >0,

> P =1,
7

for s and s',a (5)
forall s, a (6)

where both s and s’ lie in the state space. For a given
number of states and given transition probabilities, the
sequence of environmental states, resulting from action
taken by the agent on the environment, forms a Markov
chain in the course of time.

In the final analysis, the basic issue of interest in dynamic
programming is summed up in the following statement:

“States of the environment are mapped into
actions.”This mapping is called the agent’s policy
and is denoted by (s, a), which is the probability
that action a at time k occurs if, and only if, the state
sp = s at time k. The policy can be stationary or
nonstationary; that is:

e if the policy is stationary, then the policy remains
as 7 for all time k;

e if, on the other hand, the policy is nonstationary,
then the policy changes from one time step to the
next, as in 7.
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C. Bellman’s Optimality Equation

In its most basic form, dynamic programming deals
with finite-horizon problems, which means that the
rewards are considered over a finite number of time steps.
However, from the analytic perspectives, the preferred
approach is to deal with infinite-horizon problems, where
the rewards are considered over an infinite number of time
steps. To simplify matters herein, we will merely highlight
the essence of Bellman’s optimality equation for infinite
horizon problems in words, rather than equations. To this
end, let Q(s,a) denote the action-value function for state
s = s, and action a = ay, hence the statement:

“Function Q(s,a) testifies to the fact that it is
‘good’ as a result of interactions of the agent with its
environment for a long time.”

In [30], it is shown that the formula for Q(s, a) depends
on the following points®:

1) expected immediate rewards

- underlying dynamics of the interactions
described in terms of probabilities;
- the related Q-function in terms of s’ = sp4q
and d/, that is, Q(s',d’);
2) then, we have the following two summations in
accordance with (7):
- the first summation is over all possible
actions;
- the second summation is over all possible
states.
The optimal Q-function, denoted by Q*(s, a), is obtained by
maximizing the sum of all terms with respect to action a.
Unfortunately, the end result of this maximization is an
exponential growth in computational complexity, which is
referred to as the curse of dimensionality [31].

What is truly remarkable is the following: The idea of
dynamic programming was pioneered by Bellman in a
book published under that same title in 1957; yet, almost
60 years later, that very idea is still occupying the attention
of engineers and scientists on account of its mathematical
foundation, particularly when optimal control is the issue
of interest. In Section VI, we describe a new reinforcement
learning algorithm that is derived by modifying Bellman’s

%In [30], Bellman’s optimality equation is defined for the state-value
function on page 70. The corresponding version of this equation for the
action-value function (i.e., the Q-function) is left as an exercise on page
72; the equation for the Q-function, so derived, is described as follows:

Qs,a)=3_ PY|RY +7 > mls,a,d)Q( ) @)

where R, is the expected reward for the transition from state s to state s’
caused by action a. In the procedure described in [29], the modified
version of Bellman’s equation is correspondingly defined as follows:

Q(a) = 11 + ¥ Zame(a,a’)Q(a’) (8)

where + is a discount factor, and P, is (4). Linearity of the modified

S
version of Bellman’s equation, with respect to action a, follows directly

from (8).

optimality equation without any approximation whatsoev-
er, yet the algorithm retains optimality.

VI. COGNITIVE CONTROL

In Section I, we described the principles of human
cognition, namely, perception, memory, attention, and
intelligence, which adequately covered the material
presented on cognitive perception in Section IV. Continu-
ing on, Section V on dynamic programming, culminating
in the celebrated Bellman’s optimality equation, prepares
us for this section on cognitive control. In a loose sense, we
may, therefore, view Section V as a “transition point” in
mathematical terms from cognitive perception to cognitive
control.

To reinforce this transition in a complimentary
manner, we propose to look to some relevant aspects of
the prefrontal cortex, which, in one form or another,
influences the discussion presented not just in this section,
but the follow-up two sections on the probabilistic
reasoning machine and risk control.

A. The Prefrontal Cortex

From the point of view of contemporary neuroscience,
cognitive control is clearly within the physiological
purview of the prefrontal cortex [32], [33]. The principal
functions of cognitive control are the following: working
memory, attentional set, error monitoring, and decision
making. All four of them have a future perspective, as they
serve the overarching role of that cortex, which is the
organization of new and complex goal-directed actions,
hence serving the preadaptation function, on which more
will be said in Section VIII. Of course, the prefrontal
cortex cannot perform any of these top-down functions
without other cortical and subcortical structures, but none
of those functions can be performed correctly and
efficiently without the functional integrity of the prefron-
tal cortex at the summit of the global perception—action
cycle. The execution of any given sequence of behavior
takes place by a processing cascade down the executive
hierarchy of cortical areas and the executive cognits they
harbor individually [34]-[36].

We summarize brief descriptions of the principal
functions of prefrontal cortex [33].

1) Working memory. By definition, this principal
function is a prospective function. In effect,
working memory is the temporary retention of
critical information for the pursuit of a goal or the
solution of a problem [37]. More specifically, it
serves as the temporal integrator—to bridge
any discontinuities—at the top of the global
perception—action cycle. Reentry and feedback
between areas, at the highest cortical level, are
essential to the good functioning of working
memory. Reverberation in reentrant circuits is
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probably at the foundation of the neurophysiology

of working memory [33].

2) Attentional set. This is the priming of sensory and
motor control for the action in preparation and its
expected adaptive consequences. Attentional set,
consisting of perceptual attention and executive
attention, is guided by feedback from previous
actions. It includes the two reciprocal aspects of
attention:

a) the focus on present cognitive demands
(with limited neural resources);

b) the exclusionary aspect of inhibition of
irrelevant (distracting) information.

3) Error monitoring. Also by reentrant feedback
from executive structures and the result of every
action in a sequence, the medial prefrontal cortex
will receive the relevant information to correct
prediction errors and to guide subsequent actions
to their goal. There is evidence that the same
prefrontal structure (anterior cingulate cortex)
involved in monitoring errors is in charge of their
prevention [38], [39].

4) Decision making. Finally, decision making is the
choice of intended action, by the prefrontal
cortex, often in the presence of uncertainty or
ambiguity. The prefrontal cortex decides on the
basis of several factors:

a) influences that arise from the current
environment, from the internal milieu, and
limbic system (affect and motivation);

b) from cortical cognits of past memory, be it
perceptual or executive.

The decision may be simple and straightforward, or else
the result of complex computation of winner-takes-all. In
any case, it has to be preadaptive, after probabilistic
appraisal of risks, benefits, and past history. More will be
said on these four functions in Sections VII and VIII.

B. The Imperfect State Information Problems

For now, with cognitive control in mind, we refer back
to Bellman’s dynamic programming discussed in Section V,
the applicability of which rests on the following
requirement:

“The agent (e.g., robot) has access to exact values
of the state of the environment at all times.”

This statement applies equally well to reinforcement
learning. However, it would be unrealistic in practice to
expect that every controller in the world, acting on its
environment, would satisfy this highly stringent require-
ment. We say so, because it is feasible for some state
variables of the environment to be inaccessible to the
cognitive controller; examples of such situations, to name
just a few, include:

e the human brain;
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e  cognitive radar;

cognitive sonar;
the power grid.

In volume I of his classic book entitled Dynamic
Programming and Optimal Control, Bertsekas [40] referred
to problems, where the controller does not have access to
some or all of the state variables of the environment, as
“imperfect state information problems.”7 To overcome this
practical difficulty, in a clever way, Bertsekas [40]
developed appropriate “transformations,” whereby new
dynamic programming algorithms were formulated for
solving imperfect state information problems. Unfortu-
nately, those new algorithms were computationally far
more demanding than their counterparts that involve
perfect state information; we thus have another example of
the no-free lunch theorem. Summarizing this discussion:

“Unless a dynamic programming or reinforcement
learning algorithm has access to exact values of all
the state variables of the environment, the algorithm
is confronted with the imperfect state information
problem.”

C. Entropic State of the Perceptor

To find a solution for the imperfect state information
problem in a cognitive dynamic system, we look to the
perception errors produced in a particular layer of the
system. As the information content of the perception
errors is reduced, the accuracy of the perceptor in the
pertinent layer is correspondingly improved. In other
words, the information content of the perception errors
provides a measure of how perfect the state of the
perceptor is. Intuitively, it is appealing that we look to
Shannon’s entropy8 [43], [44] as the measure for

7An illustrative example addressing the imperfect state information
problem is presented in [41]. Therein, a tracking radar with perception—
action cycle only was used to track a falling object in space. Confronted
with the imperfect state information problem, and using the transforma-
tion described in [40], computational complexity of the resulting
algorithm was so high that the study was limited to the use of “dynamic
optimization” with practically “no predictive capability.”

8Consider a continuous random variable X, with x denoting a sample
value of X. According to Shannon’s information theory, the entropy of X is

defined by

1
HX) = / p(x) log— dx
E p(x)
where p(x) is the probability density function of the random variable X,
and log is the symbol for logarithm. For a discrete modem variable, the
entropy is defined by

H(X) = i p(x) logﬁ

k=—o00

where x;, is the sample value of X, defined at discrete time k.

The idea of perception entropic state was first described in [16].
Most importantly, the first demonstration confirming the role of
perception entropic state as the legitimate input state for the cognitive
controller was presented in [42].
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quantifying the information content of the perception
errors. We may thus make the following statement:

“For a layer in a cognitive dynamic system, an
entropic state of the perceptor in that layer provides
the desired measure of the perception errors.”

Furthermore, the perception entropic state provides
the feedback information from the perceptor to the
controller, thereby linking them together in each layer of
the cognitive dynamic system.

Thus, just as the cognitive perceptor in a layer of the
system has direct access to the environmental observables,
the cognitive controller in that layer has direct access to
the perception entropic state. Accordingly, the imperfect
state information in a cognitive dynamic system is no
longer a problem.

D. Multiple-State Model of Cognitive
Dynamic Systems

Moreover, the cognitive controller is also the subject to
unavoidable errors of its own. To be more specific, using
arguments similar to those used for the perception
entropic state, we may go on to make the dual statement:

“The entropic state, pertaining to the control
errors in a particular layer of the cognitive dynamic
system, is a state of the cognitive controller.”

The role of perception entropic state (i.e., feedback
information) is to provide the input to the cognitive
controller for action on the environment. In light of the
entropic material presented thus far, we may now
postulate the multiple-state model of cognitive dynamic
systems, composed of three parts, as follows:

1) state-space model of the environment, which

consists of two equations as described in Section III;
2) vector of perception entropic states, each element
of which pertains to a perceptor in a particular
layer of the hierarchical cognitive dynamic system;

3) vector of control entropic states, each element of

which pertains to a controller in the corresponding

layer of the hierarchical cognitive dynamic system.
Insofar, as the cognitive dynamic system is concerned, the
vectors of perception and control entropic states may well
be distributed over their respective manifolds in a
multidimensional entropic state space.

E. Revisiting Bellman’s Optimality Equation
Continuing the discussion presented in Section VI-C,
the stage is set for us to revisit Bellman’s optimality in
Section V, and build on the following two ideas:
1) the entropic state of the perceptor;
2) the fact that reward is a function of two states,
namely, the current entropic state and its
immediate past value.

Let r, denote the reward at time k; and let s, and s,_;
denote the perception entropic state at time k and k — 1,
respectively. We may then introduce the following
relationship between the reward and states:

1 = g(Sks Se-1) 9)
where g is an invertible function (e.g., logarithmic function).
Hence, we may make the following statement [29]:

“Knowing only the initial state sy and the first
reward ry, a cognitive version of Bellman’s optimality
equation can be derived from its classic regular form,
as shown in (8).”

Accordingly, following the underlying mathematics
presented in [29], relevant points of which were summa-
rized in footnote 6, we end up with the derivation of a new
reinforcement learning algorithm, which has some highly
desirable properties.’

- Property 1. Computational complexity of the new
reinforcement learning algorithm follows a linear
law, which is the best that it could be; theoretical
verification of this property follows directly from (8).

- Property 2. Unlike traditional reinforcement learning
algorithms, there is no approximation whatsoever in
deriving the new reinforcement learning algorithm.

- Property 3. With the imperfect state information
problem no longer being relevant, the new
reinforcement learning algorithm is no longer
restricted to having access to all the state variables
of the environment.

- Property 4. Recognizing that the classical Bellman
dynamic programming algorithm is convergent to
an optimal policy [28], and the new reinforcement
learning algorithm is a special case of it, it follows
that the new reinforcement learning algorithm is
also convergent.

The properties of the new reinforcement algorithm,

just described, are profound from a practical perspective,
prompting us to make the statement:

“Since the new reinforcement learning algorithm
has been developed within a cognitive dynamic system,
and in cognitive neuroscience we do speak of cognitive
functions, henceforth, we refer to the new algorithm as
the cognitive reinforcement learning algorithm.”10

°In [29], two different illustrative examples are presented: a
stochastic network and a cognitive radar; both examples support the
statements described under Properties 1-4.

The information processing capacity of the cognitive reinforcement
learning algorithm has been demonstrated using Monte Carlo simulations
for two entirely different experiments [29]: 1) observability of a stochastic
network, where only a small number of network’s nodes were accessible
to the cognitive controller; and 2) demonstration of the superior
performance of the cognitive reinforcement learning algorithm over
traditional reinforcement learning algorithm, namely, Q-learning [30],
with the experiment being performed on a cognitive radar.
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F. Practical Utilities of the Cognitive Controller

in the
formulation of reinforcement learning. In light of (8),
the reward for the cognitive reinforcement learning
algorithm is defined as follows:

Rewards: Reward is an essential element

1. = g (Hi; AH) (10)

where Hj, is the perception entropic state of the cognitive
perception at time k, and A; H is the incremental difference,

defined by

AH = H,_; — Hy (11)

where it is noted that, usually, the perception entropic
state decreases with time k. But, it is feasible for the
entropic reward to be negative, which means punishment.
Note also that the use of subscript k in the invertible
function g, simply means that this function is updated
from one global perception-action cycle to the next.
Moreover, the use of planning plays a key role in defining
the control policy (i.e., mapping steps into actions) from
one global perception—action cycle to the next. Naturally,
planning requires the formulation of a probabilistic model
of the controller and/or the environment, which is needed
for the prediction of future rewards.

Explore—Exploit Tradeoff: When planning is the primary
issue of interest, then we have a pure exploration strategy
in the following sense:

“The cognitive controller visits every action in the
action space, so that the controller makes better
action selections in the future.”

In direct contrast, when optimality is the primary issue
of interest, then we have a pure exploitation strategy in the
alternative sense:

“In this case, the cognitive controller focuses
attention only on those actions in the action space,
which are likely to be the actions of special interest
to the controller.”

Clearly, these two pure strategies are in conflict with each
other, hence the terminology “explore—exploit tradeoff.”
As a compromise between the two pure strategies, a
commonly recommended procedure in practice is a mixed
strategy, which involves both exploration and exploitation
in the following twofold sense:
1) an explore rate, denoted by ¢, is specified ahead of
time, where € is the fraction of global perception—
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action cycles for which the cognitive controller
makes decisions at random, meaning explorationn;

2)  for the remainder of global perception—-action cycles,

the cognitive controller works on exploitation.

The intuitive appeal of this mixed strategy is that the
cognitive controller maintains a certain degree of forced
exploration, while during the global perception—action cycles
allocated for exploitation, the cognitive controller focuses
attention on those actions that are likely to be of most practical
value. This heuristic strategy is called the e-greedy strategy [45].

From the discussion just presented, we see that the
explore—exploit strategy could be a facilitator of control

attention.'?

G. Management of Resources

The management of resources is naturally application
dependent. Nevertheless, the one resource that is common
to all practical applications of cognitive dynamic systems is
computational complexity. For the most efficient use of
computational resources, the optimal solution is to adopt
algorithms that follow a linear law. With this important
point in mind, we may summarize the practical utility of
the main algorithms discussed thus far, as follows:

1) for cognitive perception discussed in Section IV,
we say that the algorithm we focused on was the
improved sparse-coding algorithm that operated
under the influence of perceptual attention;

2) as for cognitive control discussed in this section,
we say that the algorithm that featured most
prominently in the discussion is the cognitive
reinforcement learning algorithm.

Although, indeed, these two algorithms address perception
and control that are the dual of each other, they both share
a common characteristic: linear law for computation.

H. Cognitive Reinforcement Learning From
Engineering and Neuroscience Perspectives
Referring back to the four properties of cognitive rein-
forcement learning described in Section VI-E, we may readily
say that this new reinforcement learning algorithm is superior
to traditional reinforcement learning algorithms [30].
However, when we examine the new reinforcement
learning algorithm from the neuroscience perspective, we

"'The problem with exploration is the fact that the random selection
of an action may lead to a poor decision. We may mitigate this problem by
using the Boltzmann exploration, where an action is selected with a
probability proportional to the estimated value of an action [45]. This
alternative approach to exploration derives its name from the Boltzmann
distribution, well known in thermodynamics.

®In [46], a rather simple exploit-explore strategy was used for
control in a cognitive radar with memory, and dynamic optimization was
used for the controller. Therein, it was demonstrated that the explore—
exploit strategy can improve behavior of the transmitted waveform
significantly. Unlike the restricted use of explore strategy by itself, the
explore—exploit strategy resulted in a smooth transition in the transmitted
waveform from one global perception—action cycle to the next, at the
price of small degradation in the learning rate.
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have to be aware of precautionary realities [47], summarized
as follows:

1) after almost 100 years of intense experimental and
theoretical investigations, at the level of neurons
and synapses, we are not that much further ahead;

2) the failure of traditional reinforcement learning
stems from the fact that learning behavior, at the
level of neurons and synapses, is rather complex,
which should not be surprising.

It is, therefore, difficult to know where the new
reinforcement learning algorithm fits into the scheme of
things, viewed from a neuroscience perspective.

VII. PROBABILISTIC REASONING
MACHINE

In this section, we discuss the probabilistic reasoning
machine, which, in a reciprocal manner, couples cognitive
perception and cognitive control together, as depicted in
Fig. 1. The machine is so called, because its function within
the cognitive dynamic system is based on probabilistic
reasoning, a branch of probability theory.

In operational terms, particularly in a typically
stochastic (i.e., random) environment that is nearly always
nonstationary, the probabilistic reasoning machine med-
iates between the cognitive controller and the cognitive
perceptor, realizing the following objective:

“When the cognitive dynamic system operates in a
nonstationary stochastic environment, self-organized
and stable behavior are assured on a continuing time
basis.”

With the environment being stochastic, it is compelling
that we bring probability theory into play. As for the issue
of nonstationarity, the way to tackle it is for the mediating
machine to exploit probabilistic reasoning, which is how
the rest of this section will proceed.

Moreover, recognizing that both the cognitive per-
ceptor and the cognitive controller make errors, the
discussion will, therefore, focus on the roles of perception
entropic state and control entropic state as the respective
measures for those errors. Indeed, when we speak of
overall system stability, this pair of entropic states feature
prominently in the discussion. Mentioning entropic states
of the probabilistic errors, perception as well as control,
reminds us of the error monitoring function, which was
considered to be one of the principal functions in the
prefrontal cortex discussed in Section VI. Not only that,
the remaining three functions, attentional set, working
memory, and decision making, also play key roles of their
own in the operation of the probabilistic reasoning
machine. It may, therefore, be said that from an
engineering perspective, the probabilistic reasoning ma-
chine is inspired by the prefrontal cortex.

A. Probabilistic Reasoning
As mentioned previously, probabilistic reasoning is a
branch of probability theory, the purpose of which is
twofold [48], [49]:
1) tackling the unavoidable presence of external
uncertainties in a satisfactory manner;
2) providing the cognitive dynamic system an infor-
mation processing capacity of deductive logic.
Consider a sample layer of the cognitive dynamic system,
depicted in Fig. 4. Three respective units of the system
feature in the figure. The components pertaining to the
controller and perceptor are reciprocally coupled via the
corresponding unit of the probability reasoning machine.

Before proceeding forth, it is instructive that we refer
back to the internally composite perception—action cycle,
discussed in Section I. Most importantly, this cycle embodies
the cognitive perception, probabilistic reasoning, and cog-
nitive control, eschewing the environment. In effect, this
particular cycle is indeed responsible for the attentional set,
made up of both perceptual attention and control attention,
hence its practical importance in the material to follow.

In an overall sense, the primary function of the
probabilistic reasoning machine is highly profound on
account of two essential requirements, recalling what was
said earlier on in this section:

1) overall stability of the cognitive dynamic system is

maintained on a layer-by-layer basis;

2) self-organized behavior of the system is assured

throughout the system.
To realize these two functions continuously, we look to
deductive logic, which operates on the basis of the Ir—
THEN rule.

B. Decision Making for System Stability

To justify how stability is maintained at the layer level,
let H,(Qp) denote the entropic state of the perceptor at time k,
and let H,(:> denote the corresponding entropic state of the
controller. For overall stability of the cognitive dynamic
system, the following pair of constraints would have to be
imposed on these two entropic states, as shown by

(12)
(13)

a) 0<HP <e,
b) 0<H <e

where €, and €, are prescribed upper bounds. This pair of
constraints would have to be satisfied on a layer-by-layer
basis, if we are to realize the two primary functions
described previously.

It is important to note that neither one of the two
entropic states would ever assume the value zero, because
of two reasons:

1) there would then be no feedback information from

the perceptor to the controller;
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Fig. 4. Functional block diagram of probabilistic reasoning unit for a layer in the cognitive dynamic system; the block z ' represents
time-unit delay.

2)

if point 1) is true, then there would also be no
perceptual attention applied to the perceptor by
the controller.

However, neither of these two conditions would ever arise

in practice because of the persistent presence of percep-

tion errors and control errors, no matter how small.

In any event, there are four different probabilistic

scenarios that would have to be considered:

Scenario 1 (Perfect Stability): The two constraints a)
and b) on the perception and control entropic
states are both satisfied, and there is, therefore, no
more to be said.

Scenario 2: Constraint a) pertaining to the perceptor
is violated, that is

a) 0<eg¢ <H£p)

b) 0<HY <e,.

To stabilize the system under this second scenario,
the perceptual attention in the attentional set
comes to the rescue:

“If the second probabilistic scenario occurs,
then the perceptual attention tends to bring
the perception errors downward, from one
global perception—action cycle to the next.”

Accordingly, the original condition a) of scenario 1
is reestablished within a limited number of global
perception—action cycles.
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- Scenario 3: Constraint b) pertaining to the control-
ler is violated, that is

a) 0<H <e¢,
b) O<6C<H,(:).

To stabilize the system under this third scenario,
control attention in the attentional set comes to the
rescue:

“If the third probabilistic scenario occurs,
then the control attention tends to bring the
control errors downward, from one global
perception—action cycle to the next.”

Here again, after a limited number of global
perception—action cycles, the original condition b)
of scenario 1 is reestablished.

- Scenario 4: Both constraints are violated, that is

a) O<ep<H£p)

b) 0<e <H

Under this extreme condition, the attentional set
comes to the rescue:

“If the somewhat less probabilistice sce-
nario 4 occurs, then the attentional set brings
both perception errors and control errors
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downward simultaneously from one global
perception—action cycle to the next.”

Finally, the two original conditions a) and b) of
scenario 1 are reestablished, again after a some-
what larger number of global perception-action
cycles.

The conclusion to be drawn from this deductive logic
under probabilistic reasoning is that the constraints under
(12) and (13) will be maintained, in one form or another. In
other words, the overall system stability as well as its self-
organized behavior are assured on a continuing basis,
except for the odd short periods where one of the three
scenarios 2, 3, or 4 occurs. It is, therefore, on account of
this profound information processing capability, that we
may refer to the probabilistic reasoning machine to be at
the heart of the cognitive dynamic system.

C. Summarizing Remarks

In Section VI, we said that the prefrontal cortex is
characterized by four principal functions: working mem-
ory, attentional set, error monitoring, and decision
making. Indeed, all these four principal functions are
basic to a probabilistic reasoning machine.

1) When we speak of working memory, we typically
think of short-term memory (i.e., temporary reten-
tion of critical information). Indeed, examination of
Fig. 4 reveals the existence of short-term memory,
exemplified by the pair of perception entropic
states in the left-hand side of Fig. 4, namely, the
current perception entropic state and its immedi-
ate past value due to operator z L

2)  Asfor the attentional set, it is brought into play by the
internally composite perception—action cycle that
embodies all the three functional blocks in Fig. 4.
Note also that this figure includes a local perception—
action cycle that results in perceptual attention; this
additional local cycle enhances the attentional
capability of the cognitive perceptor, which, in
reality, is needed to further improve the separation of
relevant information from irrelevant information.

3) Error monitoring is taken care of, first, by the use
of Shannon’s entropy for measurements of
perception and control errors, which are ex-
pressed in terms of entropic states. Second, this
transformation makes it relatively straightforward
for the probabilistic reasoning machine to monitor
the perception and control errors on a continuing-
time basis.

4)  Finally, the application of the IF-THEN rule to the
last three scenarios addressed in Section VII-B is the
essence of decision making, which manifests itself
in overall system stability and self-organization that
are the hallmarks of cognitive dynamic systems.

VIII. RISK CONTROL

In this section, we discuss a challenging problem that is the
most difficult of them all, namely, risk control. The
solution to this problem is inspired by the prefrontal cortex
in the brain. To be more precise, the prefrontal cortex
involves a proactive function, defined simply as follows:

“Prediction is followed by preadaptation.”

Prediction is performed under planning in the motor
control. As for preadaptation, it is rooted in the ability of
the prefrontal cortex to temporally organize a “new”
adaptive information processing mechanism, which is
intended for overseeing goal-directed behavior in the future.
The issue of prediction is relatively straightforward to
understand. On the other hand, the issue of preadaptation is
where the challenge is. With this brief background on the
prefrontal cortex, we are ready to address the following
challenge from an engineering perspective'*:

“How do we construct an adaptive information
processing mechanism within the motor control, in
such a way that it mimics the predict and preadapt
functions in the prefrontal cortex, with decision
making as the final product for action on the
environment.”

Recall that decision making is the last one of the
principal functions in the prefrontal cortex, discussed in
Section VI.

A. Risk Control: Definition

We begin the discussion by identifying two learning
curves for a cognitive dynamic system:

1) the perception learning curve plots the entropic

state of the cognitive perceptor versus time;

2) similarly, the control learning curve plots the
entropic state of the cognitive controller versus
time.

Consider then a cognitive dynamic system that operates in
a nonstationary stochastic environment; the system is then
said to be operating in regular fashion if, and only if, both
learning curves remain above their respective prescribed
thresholds across time; quite likely, these two thresholds
could be different in their respective layers.

Suppose, next, a disturbance occurs in the environment
unexpectedly, strong enough to push one, the other, or
both, learning curves below the prescribed thresholds.
Furthermore, suppose the disturbance lasts long enough to
have a serious impact on the behavior of the cognitive
controller.

BThe differentiation of “pre” in preadaptation and prefrontal should
be carefully noted: in the former, it is temporal; whereas in the latter, it is
spatial. In any event, the work done on preadaptation from an engineering
perspective should be beneficial in the study of preadaptation in
neuroscience.
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Under these conditions, we may now define the
function of risk control to be that of satisfying the following
pair of requirements:

1) the preadaptive control function built into the
motor control comes into play immediately, with
the objective of maintaining the goal-directed
behavior of a target in the next global perception—
action cycle, on a cycle-by-cycle basis;

2) once the disturbance is finished, both learning
curves reestablish their regular trajectories in a
smooth manner.

The challenge here is how to mimic the “predict and
preadapt” function in the prefrontal cortex, so as to control
the risk attributed to the disturbance.**

B. Preadaptive Control Mechanism

A block diagrammatic description of motor control, the
last functional block in the cognitive control, is depicted in
Fig. 5. Under the influence of the input from the bottom of
the cognitive control hierarchy, the policy searches the
exploit—explore library for “possible” actions for use in the
future (i.e., prediction).

The remaining part of the figure is not only new, but
also it is aimed at mimicking the preadaptation function in
the prefrontal cortex. Specifically, the preadaptive control
mechanism culminates with decision making, in accor-
dance with the prefrontal cortex. This mechanism consists
of the following components.

1) The functional block to the right of the figure, the
function of which is to store a sequence of ex-
periences gained in the past; the window is adjust-
able, depending on how far back we go to the past.

2) Tapped-delay line, which consists of N + 1 time-
unit delay elements, each denoted by the symbol
z~'; the first z7! delays the optimal action to be
taken on the environment by one time unit. The
remaining N time units account for storing
experiences gained from past interactions of
motor control with the environment over the
course of N perception-action cycles, including
the current one.

%I a rather simple, yet informative, experiment described in [15],
three radar configurations were tested for the impact of a disturbance on
their respective learning curves. Specifically, a filtered white Gaussian
noise of limited duration was added to the process equation of the state—
space model, over and above the process noise. The disturbance lasted for
about 2 s within 6 s of the experiment, which involved the following. 1)
The simplest radar used the Kalman filter in the receiver; there was no
perception—action cycle. In this part of the experiment, the learning curve
changed the course of its trajectory by moving upward and was unable to
recover. 2) In the second part of the experiment, perception—action cycle
was added to the radar. Here again the learning curve changed its
trajectory, and when the disturbance finished, the learning curve seemed
to move toward its original trajectory, but apparently at a very slow rate.
3) In the third part of the experiment, one layer of memory was added to
the radar configuration used in part 2). In this case, the learning curve
deviated slightly from the course of its regular trajectory, for the entire
duration of the disturbance; however, as soon as the disturbance was
finished, the radar recovered its original trajectory, thanks to the use of
memory for predicting the consequences of actions.
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3) MAP unit, the purpose of which is to select the
best experience gained within the past (anywhere
within the window), by processing the complete
sequence of N past experiences.

4) Nearest neighbor classifier [50], which is driven
from the left by the predicted set of selected actions
put forward by the motor control policy, and driven
from the right by output of the MAP unit. Finally,
the nearest neighbor classifier picks that particular
action in the set selected by the policy, which is the
closest to the output of the MAP unit.”?

5) The closest action picked from the library provides
the action for the next global perception-action
cycle, hence the notion of preadaption.

Important highlights of the preadaptive control mech-

anism are as follows.

1) Experiences gained in the past over a sequence of
global perception-action cycles play a key role in
the decision-making process.

2) The combination of policy, tapped-line store of
experiences gained in the past, MAP unit, and
nearest neighbor classifier, they all constitute a
closed-loop feedback structure for decision mak-
ing; the end result is not just the choice of the next
action, but also control (executive) attention.

3) There are essentially two optimal computations
being performed within the feedback loop: one
aimed at selecting the best past experience, and
the other aimed at selecting the optimal cognitive
action for the next global perception-action cycle,
which is a rarity in engineering applications.

C. Risk Brought Under Control

We are now ready to describe how risk, arising from
the unexpected occurrence of a disturbance in the
environment, is actually brought under control by
proceeding as follows.

1) Once a disturbance occurs in the environment,
there will be a corresponding change not only in
the observables, but also in the perception
entropic state.

2) Change in the perception entropic state induces a
corresponding change of its own in the entire
operation of the cognitive controller, thereby
bringing the preadaptive control mechanisms in
the motor control into play.

3) At this point, the preadaptive control mechanism,
empowered by control (executive) attention,
begins to maintain the goal-directed behavior of
the target of interest from one global perception—
action cycle to the next.

It is noteworthy that the explore—exploit tradeoff used for cognitive
radar in [46] is a special case of the complex preadaptation control
mechanism in Fig. 5.
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Fig. 5. Functional block diagram of motor control, augmented with the preadaptive control mechanism.

4)  Finally, once the disturbance comes to an end, the
perturbed target trajectory joins up with the
regular trajectory in a smooth manner.

In other words, insofar as the trajectory is concerned, the
perturbed target trajectory deviates marginally from its
regular behavior, thanks to the preadaptive control
mechanism. In this context, we may say that in light of
footnote 14, the information processing power of the
preadaptive control mechanism is reinforced by the ability
of the perceptual memory to predict consequences of
action taken by the motor control.

D. Ilustrative Figure Highlighting the Past, the
Present, and the Future

Fig. 6 presents another way in which the preadaptive
control mechanism performs its decision making: On the
left-hand side of the figure, we have a set of possible actions
selected from a large exploit-explore library, under the
influence of motor-control policy. On the right-hand side of
the figure, we have the best experience selected from a set of
past experiences by the nearest neighbor classifier.'®

E. System Stability and Risk Control

These two basic functions of a cognitive dynamic
system distinguish themselves vividly from each other, as
illustrated in Fig. 7.

1) System stability discussed in Section VII on the
probabilistic reasoning machine is governed by the
internally composite perception—action cycle” as
well as local perception-action cycles, none of

!®The diagram in Fig. 6, where one side converges from the past and
the other side diverges to the future, mimics a similar diagram of the brain
in [51], origin of which is attributed to the Philosopher Karl Popper.

In the literature on cognitive neuroscience, this cycle is described as
an internal perception—action cycle, which runs from the motor system to
the sensory system. The most current, theoretical expression of the
internal shunt is due to Clark [52], where it is referred to as an “action-
oriented” predictive processing system.

which involves the environment, as depicted in
the left-hand side of the figure.

2)  On the other hand, risk control is governed by the
global perception-action cycle and the preadap-
tation cycle, both of which do involve the
environment, as depicted in the right-hand side
of the figure.

In effect, Fig. 7 illustrates that the two important functions
of a cognitive dynamic system are entirely different: the
first one is of an internal kind, and the second one is of an
external kind. Furthermore, the pairs of cycles represent
system stability and risk control operating in opposite
directions, hence the separation of system stability and risk
control.

Two other noteworthy points are:

1) risk control could fail, while system stability is
maintained;

Best
experience

Best
action

Past Future
MAP nearest
neighbor

Fig. 6. Display of past experiences on the left and, future actions for
selecting the best action.
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Fig. 7. Graphical display of the four distinctive cycles of a cognitive
dynamic system. (a) System stability. (b) Risk control.

2) if, however, the cognitive dynamic system fails
due to a malfunction within the system and
thereafter becomes unstable, risk control would
fail with it.

IX. CONCLUSION

The cognitive dynamic system represents a new informa-
tion processing model of the environment (world), which
is inspired by the human brain. In the final section of this
paper, we list ten major inferences from using the model,
each of which has two objectives in mind and each one in
its own way:

1) the potential for engineering applications;

2) the corresponding neuroscience inference, on

which the model may be anchored.

The ten major inferences are as follows.

1) Bayesian paradigm: When the issue of interest is
perception of the environment, the Bayesian
paradigm finds the right home in neuroscience as
well as engineering.

2) Sparse coding: Our model predicts sparse coding
with increased perceptual attention. A compara-
ble effect has been observed in neurons of
sensory associative cortex.

3) Perception entropic state: The entropic state,
based on perception errors, enables the control-
ler of a cognitive dynamic system to operate
effectively and efficiently. We infer that a similar
state should exist in the brain.

4) New reinforcement learning algorithm: The new
reinforcement-learning algorithm, a special case
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