PAMI Seminar SS 19 Focus of Papers/Theme: Explainable Al Prof. Dr. Nils Bertschinger and Prof. Dr. Visvanathan Ramesh #### "Why Should I Trust You?" Explaining the Predictions of Any Classifier Marco Tulio Ribeiro University of Washington Seattle, WA 98105, USA marcotcr@cs.uw.edu Sameer Singh University of Washington Seattle, WA 98105, USA sameer@cs.uw.edu Carlos Guestrin University of Washington Seattle, WA 98105, USA guestrin@cs.uw.edu ## This looks like that: deep learning for interpretable image recognition Chaofan Chen^{1*} cfchen@cs.duke.edu Oscar Li^{1*} runliang.li@duke.edu Alina Barnett¹ abarnett@cs.duke.edu Jonathan Su³ su@ll.mit.edu Cynthia Rudin^{1,2} cynthia@cs.duke.edu ¹Department of Computer Science, Duke University, Durham, NC, USA 27708 ²Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA 27708 ³MIT Lincoln Laboratory, Lexington, MA 02421-6426[†] #### Abstract #### Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions Oscar Li*1, Hao Liu*3, Chaofan Chen1, Cynthia Rudin1,2 ¹Department of Computer Science, Duke University, Durham, NC, USA 27708 ²Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA 27708 ³Kuang Yaming Honors School, Nanjing University, Nanjing, China, 210000 runliang.li@duke.edu, 141242059@smail.nju.edu.cn, {cfchen, cynthia}@cs.duke.edu #### Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning David Mascharka*¹ Philip Tran² Ryan Soklaski¹ Arjun Majumdar*¹ ¹MIT Lincoln Laboratory[†] ²Planck Aerosystems[‡] {first.last}@ll.mit.edu, phil@planckaero.com # Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives* Amit Dhurandhar^{†1}, Pin-Yu Chen^{†1}, Ronny Luss¹, Chun-Chen Tu², Paishun Ting², Karthikeyan Shanmugam¹ and Payel Das¹ February 22, 2018 #### The Mythos of Model Interpretability Zachary C. Lipton 1 #### On the Robustness of Interpretability Methods David Alvarez-Melis ¹ Tommi S. Jaakkola ¹ #### AI in Education needs interpretable machine learning: Lessons from Open Learner Modelling Cristina Conati 1 Kaśka Porayska-Pomsta 2 Manolis Mavrikis 2 #### Building Machines That Learn and Think Like People Brenden M. Lake,¹ Tomer D. Ullman,^{2,4} Joshua B. Tenenbaum,^{2,4} and Samuel J. Gershman^{3,4} ¹Center for Data Science, New York University ²Department of Brain and Cognitive Sciences, MIT ³Department of Psychology and Center for Brain Science, Harvard University ⁴Center for Brains Minds and Machines ### Causality #### Introduction to Judea Pearl's Do-Calculus Robert R. Tucci P.O. Box 226 Bedford, MA 01730 tucci@ar-tiste.com May 24, 2013 ## Snorkel: Rapid Training Data Creation with Weak Supervision Alexander Ratner Stephen H. Bach Henry Ehrenberg Jason Fries Sen Wu Christopher Ré Stanford University Stanford, CA, USA