PAMI Seminar SS 19

Focus of Papers/Theme: Explainable Al

Prof. Dr. Nils Bertschinger and Prof. Dr. Visvanathan Ramesh

"Why Should I Trust You?" Explaining the Predictions of Any Classifier

Marco Tulio Ribeiro University of Washington Seattle, WA 98105, USA

marcotcr@cs.uw.edu

Sameer Singh

University of Washington Seattle, WA 98105, USA sameer@cs.uw.edu Carlos Guestrin

University of Washington Seattle, WA 98105, USA guestrin@cs.uw.edu

This looks like that: deep learning for interpretable image recognition

Chaofan Chen^{1*}
cfchen@cs.duke.edu

Oscar Li^{1*}
runliang.li@duke.edu

Alina Barnett¹ abarnett@cs.duke.edu

Jonathan Su³ su@ll.mit.edu

Cynthia Rudin^{1,2} cynthia@cs.duke.edu

¹Department of Computer Science, Duke University, Durham, NC, USA 27708
 ²Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA 27708
 ³MIT Lincoln Laboratory, Lexington, MA 02421-6426[†]

Abstract

Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions

Oscar Li*1, Hao Liu*3, Chaofan Chen1, Cynthia Rudin1,2

¹Department of Computer Science, Duke University, Durham, NC, USA 27708
 ²Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA 27708
 ³Kuang Yaming Honors School, Nanjing University, Nanjing, China, 210000
 runliang.li@duke.edu, 141242059@smail.nju.edu.cn, {cfchen, cynthia}@cs.duke.edu

Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning

David Mascharka*¹ Philip Tran² Ryan Soklaski¹ Arjun Majumdar*¹

¹MIT Lincoln Laboratory[†] ²Planck Aerosystems[‡]

{first.last}@ll.mit.edu, phil@planckaero.com

Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives*

Amit Dhurandhar^{†1}, Pin-Yu Chen^{†1}, Ronny Luss¹, Chun-Chen Tu², Paishun Ting², Karthikeyan Shanmugam¹ and Payel Das¹

February 22, 2018

The Mythos of Model Interpretability

Zachary C. Lipton 1

On the Robustness of Interpretability Methods

David Alvarez-Melis ¹ Tommi S. Jaakkola ¹

AI in Education needs interpretable machine learning: Lessons from Open Learner Modelling

Cristina Conati 1 Kaśka Porayska-Pomsta 2 Manolis Mavrikis 2

Building Machines That Learn and Think Like People

Brenden M. Lake,¹ Tomer D. Ullman,^{2,4} Joshua B. Tenenbaum,^{2,4} and Samuel J. Gershman^{3,4}

¹Center for Data Science, New York University

²Department of Brain and Cognitive Sciences, MIT

³Department of Psychology and Center for Brain Science, Harvard University

⁴Center for Brains Minds and Machines

Causality

Introduction to Judea Pearl's Do-Calculus

Robert R. Tucci P.O. Box 226 Bedford, MA 01730 tucci@ar-tiste.com

May 24, 2013

Snorkel: Rapid Training Data Creation with Weak Supervision

Alexander Ratner Stephen H. Bach Henry Ehrenberg
Jason Fries Sen Wu Christopher Ré
Stanford University
Stanford, CA, USA