
This looks like that: deep learning for interpretable
image recognition

Chaofan Chen1∗

cfchen@cs.duke.edu
Oscar Li1∗

runliang.li@duke.edu
Alina Barnett1

abarnett@cs.duke.edu

Jonathan Su3

su@ll.mit.edu
Cynthia Rudin1,2

cynthia@cs.duke.edu

1Department of Computer Science, Duke University, Durham, NC, USA 27708
2Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA 27708

3MIT Lincoln Laboratory, Lexington, MA 02421-6426†

Abstract

When we are faced with challenging image classification tasks, we often explain
our reasoning by dissecting the image, and pointing out prototypical aspects of one
class or another. The mounting evidence for each of the classes helps us make our
final decision. In this work, we introduce a deep network architecture that reasons
in a similar way: the network dissects the image by finding prototypical parts,
and combines evidence from the prototypes to make a final classification. The
algorithm thus reasons in a way that is qualitatively similar to the way ornithologists,
physicians, geologists, architects, and others would explain to people on how to
solve challenging image classification tasks. The network uses only image-level
labels for training, meaning that there are no labels for parts of images. We
demonstrate the method on the CIFAR-10 dataset and 10 classes from the CUB-
200-2011 dataset.

1 Introduction

How would you describe why the image in Figure 1 looks like a Florida jay? Perhaps the bird’s head
looks like that of a prototypical Florida jay, even though its tail might look like that of either a blue
jay or a Florida jay. When we describe how we classify images, we might focus on parts of the image
and compare them with prototypical parts of images from a given class. For other images, we might
look at them holistically to compare with prototypical objects of similar overall shape. This method
of reasoning is commonly used in difficult identification tasks: radiologists compare suspected tumors
in X-ray scans with prototypical tumor images for diagnosis of cancer; an art historian can identify a
painter by looking at both fine-grained details of painting such as the brush-stroke style, as well as
coarse-grained details like subject matter and color palette. Beyond radiology and art, this type of
image dissection is used in geology (rock/mineral identification), architecture (style identification),
fashion, zoology and entomology. The question is whether we can ask a machine learning algorithm
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to imitate this way of thinking, in order to explain its reasoning process to humans in a way that they
might understand.

Figure 1: Image of a Florida jay and the learned prototypical parts of a Florida jay used to classify
the bird’s species. The smaller images on the right are the prototypical parts of a Florida jay learned
by our algorithm. They correspond to parts of a test image (left) as shown.

The goal of this work is to define a form of interpretability in image processing (this looks like that)
that agrees with the way humans describe their own thinking in classification tasks. In this work,
we introduce a network architecture that accommodates this definition of interpretability, where the
comparison of image parts to learned prototypes is integral to the way our network reasons about
new examples. Given an image of a Florida jay in Figure 1, our learning algorithm is able to identify
several parts of the image where it thought that this identified part of the image looked like that
prototypical part of training images. The algorithm selects a limited number of prototypical parts
for each class that are useful in identifying the class of a new image. It uses an internal notion of
distance from a part of the new image to these learned prototypes for providing a predicted class label.
In this way, the models introduced here are interpretable, rather than simply explainable, meaning
that the reasoning process is actually used by the algorithm, rather than generated afterwards as an
explanation.

Our experiments indicate that the accuracy of our interpretable network is comparable with that of
analogous standard (non-interpretable) deep networks on datasets of natural images such as CIFAR-10
[Krizhevsky and Hinton, 2009]. The interpretability is gained without losing substantial accuracy.

1.1 Related work

Our work relates to those that perform posthoc interpretability analysis for trained networks. In
posthoc analysis, one interprets a trained network by fitting explanations to how the network performs
classification. In this case, a separate modeling effort is required to generate such explanations. A
classic approach to understanding networks posthoc is activation maximization (AM), in which the
goal is to find an input pattern that maximizes a particular class score [Erhan et al., 2009]. There
are other works that perform AM using regularized optimization [Hinton, 2012, Lee et al., 2009,
van den Oord et al., 2016, Nguyen et al., 2016, Simonyan et al., 2014, Yosinski et al., 2015], to
improve the interpretability of the images from AM. However, the images from regularized AM
may not faithfully represent input patterns that maximally activate a network unit, because they are
produced by a separate optimization procedure that is not part of training [Montavon et al., 2017].
There is no reason that any network should be inherently interpretable, and so this optimization does
not generally lead to meaningful explanations. Alternatives to AM were provided by input-specific
(image-specific) posthoc visualization methods. These include deconvolution [Zeiler and Fergus,
2014] and gradient-based saliency visualizations [Simonyan et al., 2014, Sundararajan et al., 2017,
Smilkov et al., 2017, Selvaraju et al., 2017]. All of these posthoc visualization methods do not explain
the reasoning process of how a network actually makes its decisions. In contrast, our network has a
built-in case-based reasoning process, and the explanations generated by our network are actually
used during classification and are not created posthoc.

Our work relates closely to works that build interpretability into deep neural networks without using
posthoc analysis. Attention mechanisms that attempt to identify the most relevant parts of an input
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for various tasks have been integrated into neural networks: Pinheiro and Collobert [2015] trained a
classification network that highlights important pixels belonging to an object of interest for weakly
supervised image segmentation. Zhou et al. [2016] introduced class activation maps that highlight
the regions of an image most responsible for classifying the image into a particular class. Both of
these works learn class-specific attention maps, which are jointly trained with proposed networks.
Xiao et al. [2015] proposed object-level and part-level attention models that select image patches of
interest for fine-grained image classification. Lei et al. [2016] proposed a network architecture for
natural language processing that extracts important phrases and uses them as rationales for predictions.
Attention mechanisms have also been used in deep learning for speech recognition [Chorowski et al.,
2015], image captioning [Xu et al., 2015], visual question answering [Chen et al., 2015], and contour
estimation [Xu et al., 2017]. All of these works build interpretability into neural networks by learning
which parts of an input are important for their respective tasks. Our work differs from all these
works in that our model not only identifies parts of images that are important for classification, but
also compare those parts to learned prototypical cases during prediction. Knowing which pixels
are important (saliency, attention) tells us only which pixels are used and not how those pixels are
used for reasoning (consider a correct saliency map with a wrong class label for instance, and how
challenging that would be to troubleshoot).

Recently there have also been attempts to quantify the interpretability of visual representations
learned by a convolutional neural network (CNN). Bau et al. [2017] proposed the network dissection
framework that uses the overlap between the receptive field of top activations and regions correspond-
ing to labeled visual concepts as a measure of the interpretability of the convolutional unit. Zhang
et al. [2017] used this measure of interpretability and proposed modifications to traditional CNNs
to make them interpretable, by introducing template masks into network architecture and adding
regularization terms that encourage filters to be activated by a single class and on a single region.
These are useful, but the notion of interpretability considered in this work is different. We do not
aim to interpret units inside the network, we are looking instead at explanations that are similar to
those made by humans to each other. We do not aim to compare everything identified in the image
to a known, labeled, visual class. Instead we aim to pinpoint parts of the image that are important,
and similar to prototypical parts of images from a class. Our network can automatically identify, for
instance, that a prototypical part of a Florida jay’s head is important for identifying it. It can do this
without having having seen that part labeled on any image of a Florida jay. It is not limited by what
labels have been assigned to parts of training images, and does not need any parts labeled at all.

Our work also relates closely to other prototype classification techniques in machine learning [Bien
and Tibshirani, 2011, Kim et al., 2014, Priebe et al., 2003, Chenyue Wu and Esteban G. Tabak,
2017]. It relates most closely to Li et al. [2018], who proposed a network architecture that builds
case-based reasoning into a neural network. However, their model requires a decoder for visualizing
prototypes, and when trained on datasets of natural images such as CIFAR-10, the decoder fails to
produce realistically looking prototype images. In contrast, our model does not require a decoder
for prototype visualization. It “pushes” the latent representations of prototypes onto the closest
latent representations of training image patches, and uses those training image patches for prototype
visualization. Unlike Li et al. [2018], whose model requires the prototypes to have exactly the
same shape as the latent representations of images, the prototypes in our model can have much
smaller spatial dimensions than the latent representations of images in general, which means that our
prototypes are prototypical parts of images. This allows for more fine-grained comparisons because
different parts of an image can now be compared to different prototypes. It improves over Li et al.
[2018] also through easier training due to the removal of the decoder, leading to better explanations.

2 Methodology

2.1 Network architecture

Our network architecture consists of a regular convolutional neural network fα1,β1
(network filters

and biases denoted by α1 and β1), followed by a prototype layer gp and a fully connected layer hα2

(with weight matrix α2 and no bias). Given an input image x, the convolutional layers of our model
extract useful features fα1,β1

(x) for prediction. Let H ×W ×D be the shape of the convolutional
output fα1,β1

(x). The network learns m prototypes {pj}mj=1, whose shape is H1 ×W1 ×D with
H1 ≤ H and W1 ≤ W . Since the depth of each prototype is the same as that of the convolutional
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Figure 2: The network architecture.

output but the height and the width of each prototype is less than or equal to those of the convolutional
output, each prototype will be used to represent some prototypical activation pattern in a patch of
the convolutional output, which in turn corresponds to some prototypical patch in the image space.
Hence, each prototype pj can be understood as the latent representation of some typical part of an
image. Given a convolutional output z = fα1,β1(x), the j-th prototype unit gpj in the prototype layer
gp computes the squared L2 distances between the j-th prototype pj and all patches of z that have
the same shape as pj , and transforms the distances into similarity scores using the negative logarithm
function. The result is an activation map of similarity scores that preserves the spatial relation of
the convolutional output – the upper-left value in the resulting activation map is the similarity score
between the upper-left patch of z and the prototype. This map of similarity scores is then reduced to
a single value using max pooling for each prototype unit gpj

. Mathematically, the prototype unit gpj

performs the following computation:

gpj
(z) = max

z̃∈patches(z)
− log(‖z̃− pj‖22 + ε).

If the output of the j-th prototype unit gpj
is large, it means that there is a patch in the convolutional

output that is very close to the j-th prototype in the latent space, and this in turn means that there is a
patch in the original input image that has a similar concept to what the j-th prototype represents.

Hence, given the convolutional output z, the prototype layer gp produces m similarity scores between
the m prototypes and the patches of z that are most similar to those prototypes. These scores are
then multiplied by weight matrix α2 in the fully connected layer hα2

to produce the output logits for
classification.

2.2 Cost function

The cost function for training our network takes into account both classification accuracy and learning
interpretable prototypes. Let D = [X,Y] = {(xi, yi)}ni=1 be the training set of images, with labels
yi ∈ {1, ...,K} for i ∈ {1, ..., n}. We use the cross-entropy loss to penalize misclassification on the
training data. The optimization problem we aim to solve is as follows:

min
{pi}mi=1,α1,β1,α2

CrossEnt(hα2
◦ gp ◦ fα1,β1

(X),Y) + λR2({pi}mi=1,X,Y) + γ1‖α1‖22 + γ2‖α2‖1

s.t. min
i∈{1,...,n}

min
z̃∈patches(f(xi))

‖pj − z̃‖22 = 0 ∀j,

where hα2 ◦ gp ◦ fα1,β1(X) represents the network’s (unnormalized) predictions on training set
observations X. The cross entropy compares these predictions to the training labels Y and encourages
accuracy. The term R2 in our objective is modified from Li et al. [2018]. In their work, R2 was used
to encourage the latent representation of each training image to be close to some prototype. The
prototypes in our work are not required to have the same spatial dimensions as latent representations
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of images, unlike Li et al. [2018]. In this work, we define R2 as:

R2({pj}mj=1,X,Y) =
1

n

n∑
i=1

min
j∈{1,...,m}

min
z̃∈patches(f(xi))

‖z̃− pj‖22.

The minimization ofR2 requires each training image to have some patch whose feature representation
is close to at least one prototype. This ensures that the latent space has a clustering structure where
the most important patches from the training images will be clustered around the prototypes, which
facilitates the L2 distance based classification performed by our network.

In our cost function, we use L2 weight decay on the convolutional filters and L1 regularization on
the weight matrix. The use of the L1 regularization encourages the weight connections between
the prototype layer and the output logits to be sparse, so that each prototype contributes to the
output logits for only a few classes. This makes it easier for humans to identify the most significant
contributions of each prototype to class predictions.

Finally, the constraint in the optimization problem requires each prototype pj to be equal to the
latent representation of some training image patch z̃. In this way, each prototype can represent some
semantic concept of the corresponding patch in that training image.

2.3 Training and prototype visualization

Our optimization technique uses both gradient descent on a relaxed objective (defined shortly) and
projection steps. In order to relax the constraint to a differentiable function, we define:

R1({pj}mj=1,X,Y) =
1

m

m∑
j=1

min
i∈{1,...,n}

min
z̃∈patches(f(xi))

‖pj − z̃‖22,

which is similar to a term of Li et al. [2018], but modified to handle image parts. Adding a multiple of
this term to our objective, and removing the explicit constraint, we have formed our relaxed objective
that we minimize with gradient descent. The minimization of the relaxed objective allows sufficient
exploration of the space as well as ensuring that we do not step too far from the feasible region.

After every few epochs (5 in our experiments) of gradient descent on the relaxed objective, we
compute a projection step by projecting pj’s onto the feasible set while only minimally increasing
the objective function. To do this, we set each pj to its L2-nearest training image patch in the latent
space. Since the last iteration is a projection step, the prototypes in the final model are exactly the
latent representations of some training image patches. The prototypes can then be visualized by
finding the receptive fields of those patches in the pixel space.

3 Experiment 1: CIFAR-10

CIFAR-10 is a dataset of 32× 32× 3 color images in 10 classes, with 50,000 training images and
10,000 test images. We use this dataset to demonstrate that our model can achieve comparable
test accuracy with that of analogous standard convolutional networks, and it can learn meaningful
prototypes that correspond to typical (parts of) objects.

3.1 Accuracy

Our network for CIFAR-10 has 8 convolutional layers before the prototype layer and the fully
connected layer. The 8 convolutional layers have the same architecture as the first 8 layers in the
ALL-CNN-C model described in Springenberg et al. [2014]. We replaced the last convolutional layer
and the global average pooling layer in the ALL-CNN-C model with our prototype layer with 30
prototypes of shape 1 × 1 × 192 and a fully connected layer. During training, we used only three
simple data augmentation techniques – vertical and horizontal shift of pixels by at most 10% of height
and width, respectively, and random horizontal flip, to improve the generalizability of our network.
The highest test accuracy we achieved using our model is 89.58% after the prototypes have been
pushed onto the nearest patches of training images in the latent space. We also performed an ablation
study by training a standard convolutional network that has a similar architecture to our model. In
particular, we replaced the prototype layer with a convolutional layer, which uses 30 convolutional

5



Figure 3: The learned prototypes.

Figure 4: Classifying a new test image (blue car on the left): The class scores for every class (e.g.
automobile, truck, deer) are calculated from the similarity to each prototype. The final prediction is
the argmax of the class scores; for this example it is “automobile.”

filters of shape 1 × 1 × 192. The highest test accuracy achieved by this standard convolutional
network in our experiment is 89.30%, with the same data augmentation techniques.

Thus, our network has 89.58% accuracy, whereas the non-interpretable analogy of our method has
89.30%; we did not lose accuracy to gain interpretability.3

3.2 Visualization and analysis

Figure 3 shows the 30 prototypes visualized in the pixel space. Since the learned prototypes are
precisely the latent representations of some patches from training images, we can visualize the
prototypes by mapping them back to the receptive fields of the corresponding training images.

To understand how much each prototype contribute to class predictions, we analyze the weight
connections between the prototype layer and the output logits. Table 2 shows part of the weight
matrix from our trained model on the CIFAR-10 dataset. The full weight matrix can be found in the
supplementary material. The leftmost column in the table displays 6 of the prototypes learned by our
model, and the remaining columns show the contributions of each prototype unit to the prediction
scores of the 10 classes. A positive entry in the weight matrix means that a high similarity to the
corresponding prototype contributes positively to the prediction score of the corresponding class
– given an image, if it has a patch whose latent representation is very close to the prototype, the
corresponding prototype unit will be highly activated, and when the output of this prototype unit is
multiplied by a positive value in the weight connection, the result is a positive contribution to the class
score. On the other hand, a negative entry in the weight matrix means that a high similarity to the
corresponding prototype makes a negative contribution to the prediction score of the corresponding
class. Thus, a dog-face prototype should contribute positively to the prediction score of a dog class,
but it should contribute negatively to the prediction score of a bird class, for example, because the
presence of a dog face should reduce the possibility that the image is that of a bird. This is exactly
the case in our weight matrix – Prototype 2 in Table 2 shows the face of a dog, and it contributes
positively to the prediction score of the dog class, but it contributes negatively to the prediction score
of the bird class. An interesting observation is that this dog-face prototype also contributes somewhat
positively to the prediction scores of a cat – this should not be too surprising because dogs look

3Note that there is some difference between the best test accuracy we achieved for this data for any deep
network we tried (89.58%) and the best previously reported accuracy for this dataset (92.75%), reported on the
ALL-CNN-C model by Springenberg et al. [2014]; however no source code is available, and we were not able to
replicate this level of accuracy.
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Table 1: A subset of the weight matrix showing how similarity to each prototype contributes to class
score. Values are rounded to the nearest thousandth. The full weight matrix can be found in the
supplementary material.

Class label

Prototype air-
plane

auto-
mobile

bird cat deer dog frog horse ship truck

0 0 3.302 0 0 0 0 0 0 0 0

1 0 0 0 2.598 -0.012 0.243 0 0 0 -0.260

2 0 0 -0.383 0.920 0 1.356 0.040 0 0 0

3 0 1.078 0 0 0 0 0 0 0 1.491

4 0 1.212 0 0 -0.321 0 0.886 0 0 1.027

5 0 0 0 0 0 0.001 0 2.562 0 0

more similar to cats than to birds. In our weight matrix, there is a significant number of entries with
values very close to 0, which means that prototype has no contribution to the prediction score of the
corresponding class. This shows the effectiveness of L1 regularization in achieving the sparsity of
the weight matrix.

We now look at how our model reaches a classification decision on a test image of automobile shown
in the left of Figure 4. Given this image, our model computes similarity scores of it towards each
prototype. The most similar prototypes are prototype 0 in Table 2 (car prototype), prototype 4 in
Table 2 (the front of the car), and prototype 3 in Table 2 (the truck prototype), with similarity scores
of 8.05, 7.33, and 6.97. For each prototype, the similarity score is then multiplied with the row
of the weight matrix associated with that prototype to get the class score contributions from that
prototype. Prototype 0 in Table 2 has a weight of 3.302 for automobile and 0 for all other classes. The
contribution to the automobile class score is 26.5 points, as shown in Figure 4. The interpretability of
our model comes from both the distance-based similarity scores towards meaningful prototypes and
an understanding of how these similarity scores contribute to the final class prediction. This model
resembles a classification scoring system used by humans, where each score is produced by a sum of
similarities to semantic concepts, weighted by the importance of those concepts in classification. In
contrast, a standard convolutional neural network can only produce class scores that have no explicit
explanations of where these scores come from.

Figure 5: First column: 5 prototypes learned from the CIFAR-10 dataset. Second to sixth columns:
the 5 closest (L2 distance in the latent space) patches from the training set for each prototype
(excluding the patch itself). Seventh to eleventh columns: the 5 closest patches from the test set for
each prototype. The closest patches for every prototype can be found in the supplementary material.

To understand the cluster structure of the latent space, we find the 5 closest training and test image
patches to each prototype in the latent space. Figure 5 shows the closest training and test patches
to 5 of the learned prototypes. The closest patches to all of the 30 prototypes can be found in the
supplementary material. As shown in Figure 5, each prototype is surrounded by image patches of the
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(a) (b) (c)

Figure 6: (a) A test image of barn sparrow. (b) Top: four learned prototypes from our network.
Bottom: for each prototype, the corresponding heat map shows where in the test image the prototype
is activated. Yellow shows high activation, black shows low activation. (c) The most activated patches
of the test image for each of the four learned prototypes in (b).

same semantic concept in the latent space. For example, the (side-facing) horse prototype shown in
Figure 5 is surrounded mostly by training and test image patches of side-facing horses in the latent
space. We also observe that the nearest patches for each prototype come from distinct object instances
with somewhat different viewing angles and colors. This shows that our network is able to learn
highly invariant representations that capture the high-level semantic concepts for clustering in the
latent space.

4 Experiment 2: Bird Identification

CUB-200-2011 is a dataset of color images of 200 bird species [Wah et al., 2011]. In our second
experiment, we used the same network architecture as we did on CIFAR-10, and trained our network
on 10 bird species from CUB-200-2011: parakeet auklet, indigo bunting, cardinal, gray catbird,
Florida jay, song sparrow, barn sparrow, cedar waxwing, downy woodpecker, and common yellow-
throat, with 300 training images and 289 test images. Despite the fact that the dataset has a small
number of training images (30 per class) and we trained our network from scratch, we were able
to achieve 76.12% test accuracy. We are using this experiment to demonstrate the potential of our
network in learning prototypical representations of parts of birds that are important for distinguishing
different species, and in comparing these prototypes with the relevant parts of an unseen test image.

In Figure 6, we show how our trained network classifies a test image of a barn sparrow. The top of
Figure 6(b) displays the learned prototypes from the barn sparrow class, and the bottom of the same
figure displays corresponding heat maps that highlight where in the test image the prototypes are
activated. Figure 6(c) shows the patches in the original image that produced the highest activations
(i.e. had the smallest distances in the latent space) for the learned prototypes. For example, the first
prototype shows the crown of the head of a training image, and the crown of the head of the test
image is highlighted in the first heat map. The last prototype centers around the eye and the throat of
the bird, and the corresponding heat map has the highest activation at the throat and eye of the bird.

Even though we did not use any bounding boxes in training our network, neither did we constrain
where the network can select the prototypes, it is striking that our network is able to learn meaningful
prototypical representations of relevant parts of birds, and that it can perform comparisons based on
these relevant parts.

5 Conclusion

There are challenges in designing image classifiers that provide explanations faithful to what the
network computes, and similar to those a human might provide. The supplementary material illustrates
how humans typically analyze images to help each other with challenging classification tasks. The
explanations produced by our network agree with this reasoning style. These networks could be more
useful than previous approaches in high-stakes applications, troubleshooting by human-machine
teams in challenging image classification tasks, and training humans to identify objects images. The
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accuracy provided by our network is comparable with that of analogous but standard (uninterpretable)
deep networks; there was nothing sacrificed to gain interpretability.
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Supplementary material

A Diagrams created by people to explain classifications to other people

Classification of images is often done by hand using prototypical parts. These prototypical parts are
labeled with arrows, and descriptions or figures are provided to compare with prototypical cases.
For instance, the book Gray’s Anatomy [Gray et al., 1995] has diagrams showing which parts of the
image one should consider to diagnose a specific disease, in the case of Figure 7(left) it is a Chiari
I Malformation. Another example, in Figure 7(right) is from the field of architecture, illustrating
prototypical aspects of a Victorian house.

Figure 7: Left: Figure reproduced from Gray et al. [1995], illustrating prototypical parts useful for
demonstrating how a human would classify a Chiari I Malformation. The descriptions of A-F are in
the book. Right: An image where prototypical parts of a Victorian house are labeled for purposes of
genre identification. Image reproduced from Newburyport: Preservation Trust.

The types of images produced by the method in this paper are also similar to those produced by
ornithologists. Figure 8 illustrates an image of a bird with prototypes, as well as a labeled image
produced by ornithologists.

B More detailed results

Table 2 shows the weight matrix from our algorithm on the CIFAR-10 dataset. Each entry shows how
similarity to a prototype contributes to class score. If the score is positive, looking like the prototype
increases class score for that class. If the score is negative, looking like that prototype decreases the
class score of that class.

Figure 8: Left: Image of a Florida jay and the learned prototypical parts of a Florida jay used to
classify the bird’s species. The smaller images on the right are the prototypical parts of a Florida
jay learned by our algorithm. They correspond to parts of a test image (left) as shown. Right:
Human-labeled image of a sparrow, reproduced from Mayntz [2016].
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Figure 9: First column: the first 15 prototypes learned from the CIFAR-10 dataset. Second to sixth
columns: the patches from the training set which are closest to the prototype (excluding the prototype
itself). In order of distance where the leftmost image is closest to the prototype (smallest L2 distance
in the latent space). Seventh to eleventh columns: the patches from the test set which are closest to
the prototype. In order of distance where the leftmost image is closest to the prototype.

Figures 9 and 10 show the prototypes learned from the CIFAR-10 dataset in the left-hand column.
For each prototype, the five closest (smallest L2 distance in the latent space) patches from the training
set are shown in the middle and the five closest patches from the test set are shown on the right.
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Table 2: The weight matrix showing how similarity to each prototype corresponds to class score.
Values are rounded to the nearest thousandth.

Class label
Prototype air-

plane
auto-
mobile

bird cat deer dog frog horse ship truck

0 0 0 0 -0.092 0 3.381 0 0 0 0

1 0 -0.036 0 1.282 0 0 0 0 0 2.480

2 1.092 0 0 0 0.188 0 0 0 -0.003 0

3 0 0 0.990 0 0.380 0 0 0 0 0

4 0 3.302 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 1.000 0

6 0 0 2.846 0 0 0 0 0 0 0

7 0 0 0 2.598 -0.012 0.243 0 0 0 -0.260

8 0 0 0 0 0 0.183 0 1.450 0 0

9 0 0 0 0 0 0 2.034 0 0 0

10 1.125 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 1.058 0 0 0

12 0 0 -0.383 0.920 0 1.356 0.040 0 0 0

13 1.541 0 0 0 0 0 0 0 0 0

14 0 0 0 0 2.030 0 0 0 0 0

15 -0.085 0 0 0 1.161 0.359 0 0.150 0 0

16 0 0 0 0 -0.001 0 0 0 0.716 0

17 0 1.078 0 0 0 0 0 0 0 1.491
18 0 0 0 0 0 0 0.764 0 0 0

19 0 0 0 0 0 0.001 -0.013 0.380 0 0

20 0 0 0 0 1.800 0 0 0 0 0

21 0 1.212 0 0 -0.321 0 0.886 0 0 1.027

22 0.399 -0.105 0.015 -0.137 0 -0.205 -0.027 0 0.555 0.147

23 0 0 0 0 -0.055 0 0 0 0.532 0

24 0 0 0 0 0.433 0.004 0 0.707 0 0

25 0 0 0 0.162 0 0 0.933 0 0 0

26 0 0 0 0 0 0 0 0 2.015 0

27 0 0 1.397 0 -0.233 0.126 0 0.081 0 0

28 1.032 0 0 0 0 0 0 0 0 0

29 0 0 0 0 0 0.001 0 2.562 0 0

13



Figure 10: First column: the second 15 prototypes learned from the CIFAR-10 dataset. Second to
sixth columns: the patches from the training set which are closest to the prototype (excluding the
prototype itself). In order of distance where the leftmost image is closest to the prototype (smallest
L2 distance in the latent space). Seventh to eleventh columns: the patches from the test set which are
closest to the prototype. In order of distance where the leftmost image is closest to the prototype.
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