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Background: Artificial Intelligence (AI), intelligent software that can perform tasks that were once 
considered to be in the realm of human abilities, are now impacting all walks of society. The AI field had 
its origins in 1955 when Prof. John McCarthy organized a group to focus on the idea of building thinking 
machines and proposed a summer seminar project. The proposal stated the hypothesis and formal goal 
of AI: “every aspect of learning or any other feature of intelligence can in principle be so precisely 
described that a machine can be made to simulate it. An attempt will be made to find how to make 
machines use language, form abstractions and concepts, solve kinds of problems now reserved for 
humans, and improve themselves.”  Today, terms such as Artificial Narrow Intelligence (ANI), Artificial 
General Intelligence (AGI), and Artificial Super Intelligence (ASI), are used to describe systems with 
different levels of functionality.  ANI for instance is a system designed to perform a narrow function (e.g. 
a conversational assistant for supporting a customer in a narrow domain).  AGI is an attempt to revisit 
Prof. McCarthy’s original goal of AI to design a fundamental substrate that can emulate human 
intelligence.  ASI is a term that is used to describe a system that is able to exceed human level intelligence.  
Today, AI is enabling a wide spectrum of applications such as:  autonomous self-driving cars, medical 
diagnosis, language translation, personal conversational assistants, search, robotics, etc. AI systems are 
beating humans at strategy games such as Go.  

What is an AI system?  Before we delve more into the state of AI development and its relationship to our 
own experience we provide a conceptual view of an AI system.  Conceptually, an AI system, embedded in 
a world, can be seen as one that translates sensed data and answer queries regarding the state of the 
world.  The output can be seen as a compound decision, i.e. a conjunction of simple atomic tests that may 
be applied in sequence, parallel, or in combination.  The AI system is thus a computer program, a complex 
data flow graph translating input data to output states.  The output states may be refined further via 
iteration in conjunction with action to acquire more data to resolve ambiguities.   While doing this, the 
system may or may not have an explicit model of the world or of its own computational process. And, the 
system may or may not be able to provide an explanation for why a given answer is the best for a given 
input data.  The architecture for the program – i.e. computational structure is specified by the designer. 
Complementary computational representations - a decision tree or deep neural net are used in modern 
practice. Decision trees involve a sequence of tests that are viewable by humans. Neural nets are not 
inspectable but it’s end to end behavior can be visualized using tools.  Key questions that AI researchers 
have pondering about include: a) Where do the atomic tests come from? b) How can one order these 
atomic tests to achieve a given task in a given context? c) How can we search over alternative program 
architectures?  d) How can the AI system diagnose itself that it is unable to do a given computation?  e) 
How can we certify that a given AI system will perform within safe bounds in a given world? F) How can 
the AI system self-evolve to improve its competences and reapply its learned representation to new tasks 
in new contexts?  A lot of progress has been made in developing learning systems but key stumbling blocks 
remain with respect questions (d), (e), and (f).  

AI rEvolution is an Evolution: The 'AI rEvolution' is, indeed, an evolution over the last 60 years of AI 
research. This evolution has come in three waves (Source: DARPA 2017) – a first wave wherein human 
expert knowledge in the form of rules were used to enable design of expert systems.  Rules were found 
to be brittle as they don’t enable ease of handling of ambiguity and uncertainty in real-world settings. This 
led to the second wave of AI that used statistical machine learning methods wherein the engineer provides 



a learning algorithm a network architecture, large amounts of training data along with expected output 
labels, and a cost function to optimize. The optimization algorithm produces network parameters that 
minimizes the specified loss. Modern engineering practice uses deep neural networks to perform a variety 
of narrow AI tasks.  The explosion of the second wave over the last decade is enabled by significant 
advances in computing power, training algorithms, ubiquitous computer networks and more importantly 
huge volumes of training data from which to learn from.  The technical limitations of current practices in 
design, implementation and validation of an AI system include: 

 The need for large amounts of labeled training data,  

 Lack of ability of the system to explain why it arrived at its results,  

 Inability to generalize –i.e. transfer learned experience from one setting to another setting, and  

 Systemic bias that is due to the sampling process in the training data.  
 
Systems Engineering Example in Practice (second wave):  It was the year 1999.   I was a technical manager 

leading the real-time imaging program at Siemens Corporate Research in Princeton, New Jersey. At this 

stage, our small team had Phd students and a few core scientific staff members.  I was juggling my time 

between being a technical contributor, program and project manager and interfacing with customers to 

set research priorities that can help increase their product value for end-users.   One of our major 

customers had a challenging project involving a video-based system that could monitor about 2 kilometers 

of highway shoulder-lanes and alert a control center if there are any pedestrians, stopped and/or slow 

vehicles in the lane.  The system was to perform with:  a) near-perfect (100%) detection of events with 

very low false positives, b) under all weather conditions except for heavy snow and rain and c) provide 

self-diagnosis about the unavailability of the system in the event of extreme input conditions involving 

very poor contrast due to events such as direct sunlight on the camera lens, severe glare, and other 

effects.  The added computational constraint was that the system will perform its functions in near real-

time with up to four camera streams per computer.    The overall objective of such a system was to allow 

the shoulder lane to be opened up for traffic in the event of road congestion.  A system performing such 

a task in the modern days could perhaps be labeled as a ANI system because the complexity of the task is 

at the level of a child performing a task in a narrow domain.  In summary, the: 

 System Context involves: traffic scenarios,  

 Task involves event monitoring in the outdoors, and the system tasks are at the level of what a 

child can achieve (but perhaps not for extended periods as the child may get bored over longer 

time), and 

 Performance requirements requiring a system with low computational complexity while providing 

high reliability and safety (i.e. with ability to self-diagnose that the system is functioning within 

safe boundaries).  

My job as a systems engineer was to take these requirements and translate them to a design that 

addresses these needs.  Fortunately, since the late 80’s and early 90’s, I was influenced by mentors, 

Professor(s) Robert Haralick and Thomas Binford, who were examining how vision systems can be 

designed systematically and analyzed in a principled way.  Michael Greiffenhagen, one of my Phd students 

at that time, and we were exploring how to systematically model the contexts and goals of an intelligent 

vision system, map these requirements to the design of the system architecture (i.e. its components, and 

composition), and analyze its behavior in the application context.  The focus of our work was on how 

systems engineering principles may be applied to a real-world engineering problem that had 

computational constraints (i.e. the system had to be real-time) as well as accuracy requirements. The 



essence of our philosophy was that: “Real-time Vision is possible via steps involving a sequence of 

statistical tests – i.e. indexing functions (a parametrized decision tree) followed by estimation”.  The key 

aspect of our design methodology was that these statistical tests are context-sensitive (i.e. application 

dependent) and they involve explicit use of expectations – regularities, i.e. strong constraints that help in 

reducing the computational complexity, as well as invariance requirements, i.e. the system must be able 

to ignore variations that are not relevant for the goal.  In order to be able to characterize the performance 

of the designed system, we postulated that the chain of statistical tests chosen must allow for model-

based control-theoretic analysis that allows propagation of probability distributions of input to output so 

that one can quantify the overall performance of the system as a function of contextual model parameters 

and system parameters.  These principles for systems engineering and performance modeling had been 

laid out in the early 90’s in a series of dissertations, including my own, under supervision of my mentors.   

Meta-analysis of AI system Performance:  In our work, performance modeling is essentially a meta-level 

analysis wherein a given system behavior is analyzed by propagating input uncertainties through the 

sequence of computations performed by the system to derive the output uncertainties. The philosophical 

viewpoint is that:  

 The interpretation system is a cascade of algorithms. Each algorithm is an “estimator” that 

estimates quantities from its input. The system can be treated as a compound estimator. 

 Characterizing deviations of the estimate from true values is “Performance Characterization”. 

Performance characterization is carried out through either analytical or numerical error 

propagation. 

 Total system performance is a function of the components, their ideal input models and 

perturbation models, their tuning constants, and the architecture of the overall system. 

 An application context essentially is specified through a probability distribution on the input space 

(i.e the restrictions that are placed in scene (including the sensor) properties, environmental 

conditions, object dynamics, etc.) 

 Application context specific performance evaluation is the derivation of specific online 

performance measures as a function of a given system configuration and parameters. 

Since the 90’s we have systematically analyzed properties of human expert driven model-based designs 

as well as second wave data-driven machine learning algorithms. Our design methodology and 

computational architecture also has relationship to efforts in the late 90’s by Prof. Donald Geman and his 

collaborators to address real-time visual pattern recognition through a sequence of invariance tests (i.e. 

decision tree) in context.  

In highway monitoring system example, articulated above, the regularity in the context was that traffic, 

to a large extent, followed specific rules, the geometry and motion of objects were constrained, and the 

invariance requirement was that the computed indexing functions should be invariant to illumination and 

weather. These properties were exploited in our model-based design.  A critical element of success in this 

project was that the engineer responsible had systematically collected video data for various scenarios 

and had devised a rigorous experimental plan for evaluation.  Even though our model-based design 

methodology addresses learning of system parameters with small amounts of data, having a 

comprehensive sampling of the scenarios allowed us to validate our methodology.  The resulting system 

had a performance of 98% detection of true events, with contrast levels between pedestrian and 

background of only a few gray values, and corresponding false positive rate of 1 per camera per day. 



Furthermore, the principles outlined in this example were the basis for a family of systems and 

implementations involving safety and security of subways, highways, tunnels, airports, robotic assembly, 

visual inspection systems, etc.   Note that this achievement in the year 1999 was based on: 1) a computer 

that is roughly 10000 times worse in performance than current computers, 2) a design methodology that 

uses context-sensitive modeling, is able to be tuned with small amounts of examples, and enabled safety 

by design.  

Safety of intelligent systems require the ability for the system to be able to predict its limitations in a given 

contextual instance.  In the systems engineering methodology for computer vision, that we developed in 

the 1990’s, the performance of a system is modeled and quantified through a “white box” (analytical) or 

a “black box” approach. The white box approach provides a complete error analysis of an algorithm via 

propagation of uncertainty models through various component steps in the algorithm. Using a model of 

complete architecture of the system, each component is treated as an estimator whose deterministic and 

stochastic characteristics are derived as a function of inputs. The system is viewed as a compound 

estimator whose performance characteristics are derived as a function of individual component 

estimators. In black box analysis there is no modeling of the individual components, their error 

characteristics, or their interactions. Rather, the system performance is viewed as a function of its inputs 

and its deviation from a user specified objective. Thus, in order to characterize system behavior one 

specifies criterion functions (performance measures) that are to be measured through a carefully devised 

experimental protocol. Empirical evaluations involve the estimation of how the criterion functions change 

as a function of design choices and tuning parameters (e.g. degree or rate of adaptation) of the system. 

Modern practice using deep neural networks, inspired by the structure of the brain, may be seen as a 

sequence (layered) of computational transformations with homogeneity in structure of computational 

blocks.  Humans gather large amounts of data, annotate them with labels describing desired output, 

hypothesize network structures, provide optimization criterion, and use optimization tools to estimate 

the network parameters that perform best on the data. The core assumption in this framework is that the 

statistics of the data gathered in the future will be the same as the data gathered in the past.  In contrast, 

a fundamental difference between modern practice in second wave AI system design and our 

methodology is that our methodology approaches the design, implementation and validation process 

holistically. The systems engineering methodology we follow separates the user, the modeler, 

implementation and validation viewpoints. Moreover, it separates the formal specification of world 

models and generative processes for data, the tasks and the computational pipeline that performs the 

task. There is an explicit map between contextual models, tasks, performance requirements to algorithmic 

structures that allow for the design to have properties such as transparency of assumptions, explainability 

of design, modularity, compositionality, scalability, adaptivity, extensibility, performance characterization 

etc.   

Ongoing Efforts: The present focus of our research in Frankfurt is the integration of our past experience 

towards a trans-disciplinary approach incorporating modern AI, machine learning, applied mathematics 

and statistics, systems engineering, neuroscience, psychology and cognitive science. The core challenge 

we face is one of ‘scaling’ of system complexity to allow the system to perform a wide range of tasks in 

diverse contexts with human-level performance or beyond. For this, we take inspiration from the human 

brain, as it is an evolved system with a flexible learning architecture designed by nature to solve a wide 

range of tasks in a class of environments that enhances the survival and reproduction of humans. Our 

interactions with neuroscientists, psychologists and philosophers in the past decade have shown that, at 



a high-level, our architectural designs inspired from systems engineering principles have close parallels to 

computational models of the visual brain. Our design approach exploiting invariance and regularities for 

hypotheses generation followed by deliberation can be seen as an analogue of dual-system models in 

psychology proposed by Nobel prize winner Prof. Daniel Kahneman.  An analogue can also be made to 

that of dynamic visual architecture of Prof. Christoph von der Malsburg who advocates that the brain 

performs massively parallel and perform feed-forward decomposition of input visual signal into 

constituent modalities (e.g. color, motion, texture, shadow, reflection, contours, etc.) thus allowing for 

efficient indexing into a rich memory structure. Generated hypotheses can then be refined via a dynamic, 

recurrent process to converge to an interpretation. While both engineering and brain science views of the 

architectures agree at this higher level, our view is that ‘scaling’ can be achieved mainly through advances 

in cognitive architectures, AI systems theory, and software platforms that facilitate rapid design and 

validation of these systems. Moreover, there is a need for the design of a homogeneous visual architecture 

with self-learning ability that supports context sensitivity, explainability, thinking and reasoning like 

humans, and can learn from very few examples.  Indeed, the US Department of Defense and Advanced 

Research Agency (DARPA) is investing in the third wave AI research that addresses these key gaps in AI. 

Our research over the last years, as part of the Bernstein Focus in Neuro Technology and EU project 

AEROBI, is to advance our understanding of systems engineering for visual intelligent systems and 

incorporate them in automation tools that enable ease of design, validation and certification of AI 

systems. My Phd student, Subbu Veerasavarappu, addresses the role of computer graphics simulation and 

modeling in the design and analysis of cognitive vision systems. Simulations can play a dominant role in 

evaluating the behavior of alternative implementations and systematic performance evaluation and 

validation. Moreover, they can synthesize data for the data-hungry deep learning methods. In our work 

in ‘simulation for cognitive vision’ we address a range of questions such as: a) What is the impact on 

modern computer graphics engine rendering fidelity on machine learning system performance? b) How 

much can we reduce the amount of real data required for machine learning through use of simulated 

data? c) How can we bridge the gap between the deviation between simulated data statistics and real-

world statistics so as to facilitate better transfer learning?.  In our applied systems work, addressed by 

Phd students Rudra Hota, Tobias Weis, and Martin Mundt, we have combined model-based and data-

driven machine-learning principles to demonstrate our cognitive architecture designs wherein 

expectation models in context are used for estimating world state, monitor behaviors and identify 

anomalies. These application examples include: video surveillance/security, brake-light on/off detection 

in automotive, fine crack/defect classification in bridge infrastructure, and behavior monitoring in 

scientific applications.   

Future Perspectives:  The main challenge in building a holistic theory of design of intelligent systems is 

that it involves harmonizing the model-based engineering and modern machine learning perspectives via 

the joint development of a body of knowledge leading to a comprehensive encyclopedia involving the 

space of contextual models, tasks and performance criterions with maps to the appropriate 

computational structures.  Open source platforms and open data initiatives along with integrated research 

and development networks are accelerating the development of AI.  Indeed, countries, companies, are 

setting up AI eco-systems to address transdisciplinary scientific research, engineering platforms 

development, and successful integration and transition to industry and society. Key technical gaps are in: 

a) platforms that can enable creation of safe and explainable AI systems, b) training, mentoring of systems 

thinkers and c) establishment of integrated eco-systems for rapid AI innovations.  AI is ultimately a 



discipline that will be shaped by creativity, collaboration, communication, and critical thinking and 

problem solving abilities that are uniquely part of humans. The same four C’s along with ‘systems thinking’ 

are the core elements that we as educators must teach the next generation in order to be able to find 

their roles in the pervasive AI world of the future!  
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