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Lecture 1: Introduction

Jeff Dean

Many predictions, by 2025 — 2030, 1-2 billion people will lose their jobs to Al



1956: The beginning of Al: The Dartmouth Conference

On May 26, 1956, McCarthy notified Robert Morison of the planned 11 attendees:

For the full period:

1) Dr. Marvin Minsky
2) Dr. Julian Bigelow Von Neumann hired him to build first computer

3) Professor D.M. Mackay
4) Mr. Ray Solomonoff

5) Mr. John Holland

6) Mr. John McCarthy.

For four weeks:

7) Dr. Claude Shannon
8) Mr. Nathanial Rochester Designed IBM 701

9) Mr. Oliver Selfridge. “SupeI’ViSOF of Minsky”

For the first two weeks:

10) Mr. Allen Newell Turing Award, student
11) professor Herbert Simon. Nobel Prize, supervisor

The theme was using computers to mimic human intelligence.



Neurons In nature

Human has ~100 billion neurons/nerve cells (& many more supporting cells)

Each neuron has 3 parts: cell body, dendrites, axon connected up to
~10,000 other neurons. Passing signals to each other via 1000 trillion
synaptic connections, approximately 1 trillion bit per second processor.

Human memory capacity 1~1000 terabytes.
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What Is our natural system good at?

Vision

Hearing (very adaptive)

Speech recognition / speaking
Driving

Playing games

Natural language understanding

“Not good at”: multiply 2 numbers,
memorize a phone number.



Why not other types of learning?

Linear regression?
Why is it linear?
Bayesian?

What is the prior?
These methods do not suit
I?
SVM* well with very complex models.
What are the features?

Decision tree?
What are the nodes/variables?

PAC learning?
What is the function to be learnt?

KNN?

Cluster on what features?



Ups and Downs of Al

In the 1956 Dartmouth meeting, it has already mentioned neuron networks

How did learning go deep. Easy hype target as Al borders science and science fiction.

Perceptron popularized by F. Rosenblatt, 1957 (Principles of Neurodynamics 1961).
Times: .. A revolution ..
New Yorker ...
A science magazine title “Human brains replaced?”
False claims: “After 5 years all of us will have smart robots in our homes ...”

It turns out that Rosenblatt’ s experiments of distinguishing tanks from trucks were
because of lightings.

1969, Minsky and Papert proved Perceptron, being a linear separator, is not very powerful.
For example, can’ t do exclusive-or. But this was misconstrued as NNs being too week.

1980s, multi-layer perceptron

1986 Backpropagation, hard to train > 3 layers.

1989: 1 hidden layer can do all, why deep?

2006 RBM initialization (breakthrough) re-kindled fire.

< 2009: Game industry has pushed the growth of GPU’ s

2011: Speech recognition (Waterloo professor Li Deng invited Hinton to Microsoft)
2012: won ILSVRC image competition (with ImageNet training data)

1980’ s expert system
Japan’ s 5t generation computers (thinking machines)



Perceptron Architecture
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By hand! As long as you pick right features, this can learn almost anything.



This actually gives a powerful machine
learning paradigm:

Pick right features by clustering
Linearly separate the features.

This is essentially what Rosenblatt initially claimed for perceptron.
Chomsky & Papert actually attacked a different target.
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Binary threshold neuron

McCulloch-Pitts (1943)

There are two ways of describing the binary threshold neuron:
1.Threshold =0
2.Threshold # 0

Z = E X W,
I

Vd =b+2x,-w{- o I
G=-b ' 5
b {1ifzaf9 _{1ifzaﬂ ®
] 0 otherwise ) 0 otherwise fhreshold

weighted input —



Avolding learning biases separately

By a trick of adding 1
to Input. i
We now can learn a

bias as If it were a
weight. V IW\V

Hence we get rid of 1 X
the threshold.



A converging perceptron learning alg.

If the output unit is correct, leave its weights
unchanged.

If the output unit incorrectly outputs a zero, add
the input vector to the weight vector.

If the output unit incorrectly outputs a 1, subtract
the input vector from the weight vector.

This Is guaranteed to find a set of weights
that is correct for all training cases If such

“solution” exists.



Weight space

The dimension k is number of the weights
W=(Wy, ..., W,).

A point in the space represents a weight
vector (w,, ..., w,) as Its coordinates .

Each training case Is represented as a
hyper-plane through the origin (assuming
we move the threshold to the bias weight)

The weights must lie on one side of this hyper-
plane to get answer correct.



Remember dot product facts:
a * b = [|all[|bl]|cos(B,p)
= a,b,+ab,+ ... +a b,

cos(x) s

Thus,a*b=z20,if-m/2=<80,,=<1/2
a*b<0,if—mr<0, ,<-m2orm/2<0_, <



Weight space

A point in the space represents a weight vector
Training case is a hyper-plane through the origin,

assuming threshold represented by bias.

Weight space

an input
good vector with
weight correct
vector answer=1

right side

the
bad origin
weight
vector

bad

weights an input.
vector with
good correct
weights answer=0

the
origin



The cone of feasible solutions

A negative example
This IS convex  aninput
vector with
correct
answer=0

To get all training cases right, we need
to find a point on the “right side” of all
planes (representing training cases).

bad
| S good weights
The solution region, if exists, is a cone weightSh,
and is convex. t
an input Wrong --
vector with the origin
correct
answer=1

A positive example



A converging perceptron learning alg.

If the output unit is correct, leave its weights
unchanged.

If the output unit incorrectly outputs a zero, add
the input vector to the weight vector.

If the output unit incorrectly outputs a 1, subtract
the input vector from the weight vector.

This Is guaranteed to find a set of weights
that iIs correct for all training cases if such

solution exists.



Proof of convergence by picture

2
d _-2® feasible
But what = At
about this e
point? WYO!
We might
move farther. current

Generously
feasible vector

Proof: If there is a generously
feasible vector, then each
step we move closer to the
feasible region. After finitely
many steps, the weight vector
IS in the feasible region.

Note: this is assuming
generously feasible vector
exists.



The limitations of Perceptrons

If we are allowed to choose features by
hand, then we can do anything. But this Is
not learning.

If we do not hand-pick features, then
Minsky and Papert showed that
perceptrons cannot do much. We will look
at these proofs.



XOR cannot be learnt by a perceptron

We prove that binary threshold output unit
cannot do exclusive-or:

Positive examples: (1,1) - 1; (0,0) =21
Negative examples: (1,0)-0; (0,1) 2> O

The 4 Iinput-output pairs give 4 inequalities,
T being threshold:

wy+tw, 2T, 02T =>w, +w,22T
w,<T, w, <T = w; +w,<2T
Contradiction. QED



Chapter O

Geometric view %t this bool

Data-space view
Each input is point

A weight vector defines
a hyperplane

The weight plane is
perpendicular to the
weight vector and
misses the origin by a Pl B ¥ B N
distance equal to the - = |
threshold

Input2

Blue dots and red dots
are not linearly separable.



But this can be easily solved:

Just pick right features (clusters)
Then linearly separate the features, solves all.

This is essentially what Rosenblatt initially claimed for perceptron.
Chomsky & Papert actually attacked a different target.
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Group Invariance Theorem insky-papert):

Perceptron cannot distinguish following two patterns under translation.

Proof.
Each pixel is activated by 4 different

: Positive Examples:
translations of both Pattern A and B. P

T w1117 pattern A

Hence the total input received by the t A
decision unit over all these patterns is LI ww T m T patlern

four times the sum of all weights for attern A
both patterns A and B. . memsmsas == NS

No threshold can always accept A & Negative Examples:

reject B. QED. (I T w1111 pattern B
In general Perceptrons cannot do Orrmw w1717 patternB
groups. Image translation forms

a group. This was sometimes comm T rmmo pPattern B

mis-interpreted as NN’s are no good.

: . Translation with wrap-around of two patterns
Hidden units can learn such features.

But deeper NN are hard to train.



Basic Neurons



Basic Neurons

To model neurons we have to idealize
them:

|dealization removes complicated detalils that
are not essential for understanding the main
principles.

It allows us to apply mathematics and to make
analogies to other familiar systems

Once we understand the basic principles, its
easy to add complexity to make the model more
faithful.



L Inear neurons

These are the basic building parts for all
other neuron networks.

bias i-th input t
| | y
y=b+2 XWw 0
] [ :
output Weight on b + z X; W;

I-th input



Binary threshold neuron

McCulloch-Pitts (1943)

First compute a weighted sum of inputs

Then send out a fixed size spike of activity if the
weighted sum exceeds a threshold.

McCulloch and Pitts thought that each spike is
like the truth value of a proposition and each
neuron combines truth values to compute the
truth value of another proposition.

This has influenced Von Neumann.




There are two equivalent ways to
describe a binary threshold neuron

z = W, z =b+ » x;w, .
Z 2 I; "—-’1‘*, E Rl | T1
6=-b “ :
1if z=6 1if z=0 3
11 = :lf - thre=hold e
0 otherwise 0 otherwise

weighted input —



Rectified Linear Unit (RelLU)

They compute a linear weighted sum of their inputs.

The output is a non-linear function of the total input.
This is the most popularly used neuron.

z =b+ 2.1‘,}1;
J.

3
—Sofiplus
i 5 Rectifier
£
z ifz =0
-

Y
0 otherwise

||”'_'_'_P._F-f’fr/
) z
Or written as: f(x) = max {0,x}

A smooth approximation of the ReLU is “softplus” function
f(x) = In (1+e%)



Sigmoid neurons

7=b+ Expvi

I

S
|

1+é

Typically they use the
logistic function

They have nice
derivatives which
makes learning easy.

But they cause
vanishing gradients
during
backpropogation.



Stochastic binary neurons

(Bernoulli variables)

* These have a state of 1 L

or 0. T
p(s; =1)

* The probability of

turning on is determined 0 |

by the weighted input 2

from other units (plus a B+ ) sywy —
bias) J

1
L+exp(=b; — ) s,;w;)

pls;=1) =



Softmax function
(Normalized exponential function)

If we take an input of [1,2,3,4,1,2,3], the softmax of that is
[0.024, 0.064, 0.175, 0.475, 0.024, 0.064, 0.175].

The softmax function highlights the largest values and
suppress other values.

Comparing to “max” function, softmax is differentiable.



Fully Connected NN's



Fully Connected NN &
Hello World of Deep Learning

0-9 handwritten digit recognition:

Neural ‘“ 1 »”
Network

EEEEEEE

28 X 28

MNIST Data maintained by Yann LeCun: http://yann.lecun.com/exdb/mnist/
Keras provides data sets loading function at http://keras.io/datasets



http://yann.lecun.com/exdb/mnist/

Keras & Tensorflow

Interface of Tensorflow and Theano.

Francois Chollet, author of Keras is at Google, Keras will become
Tensorflow API.

Documentation: http://keras.io.
Examples: https://github.com/fchollet/keras/tree/master/examples

Simple course on Tensorflow:
https://docs.google.com/presentation/d/1zkmVGobdPfQgsjlweguUqJds
1B8wvvOuBdT7ZHdaCjZ7Q/edit#slide=id.p



http://keras.io
https://github.com/fchollet/keras/tree/master/examples

Implementing In Keras

500 500

28x28

Input(s)

Input Layer Hidden Layer(s) Output Layer 9
Fully connected NN

model = sequential() # layers are sequentially added

model.add( Dense(input_dim=28*28, output_dim=500))

model.add(Activation( ‘sigmoid’)) #: softplus, softsign,relu,tanh, hard_sigmoid
model.add(Dense( output_dim = 500))

model.add (Activation( ‘sigmoid’))

Model.add(Dense(output_dim=10))

Model.add(Activation(‘softmax’))

model.compile(loss= ‘categorical_crossentropy’, optimizer= ‘adam’, metrics=[ ‘accuracy’ ])
model.fit(x_train, y_train, batch_size=100, nb_epoch=20)



Training

model.fit(x_train, y train, batch_size=100, nb_epoch=20)

[numpy arr;N

-

10

28 x 28
=784 vV

bl

Number of training examples  Number of training examples



First batch

2nd batch

Begtekit(x_train e.do not really minimize total lass!
parallel processing / > Randomly initidlize
network parameters

> Pick the 1st batch

L'=1,+ I+ ...
Update parameters

> Pick the 2" batch

L” = |2+ |16+ .
Update parameters

S| x,— NN —y, e,

)(9_> NN >y, |G

B > Until all batches

have been picked
X1e=—=> NN —>Vicqummb )’ .

one epoch

Repeat the above process




Very large batch size can

Speed yield worse performance

Smaller batch size means more updates in one epoch
E.g. 50000 examples
batch size = 1, 50000 updates in one epoch 166s 1 epoch
batch size = 10, 5000 updates in one epoch 17s 10 epochs

[ I = R - |
[ S o (R o |

50000 training examples

e : 166s Batch size = 1 and 10, update the same

g 140 amount of times in the same period.

“E‘ j Batch size = 10 is more stable, converge
S &0 faster

o &0

E_ 17s GTX 980 on MNIST with
&€

E

1 1n 1nn 1nnn 1ﬁﬁﬁﬁ
L8 LEe N (e g (Eo N R

bhatch size



Background Theory



Importance of being small

Neural networks can approximate any function.
Overfiting is a major concern. In some sense, it is
possible to view the development of deep learning from
an angle of reducing the (Kolmogorov) complexity of
neural networks: CNN, RNN, dropout, regularization, and
esp. depth.

Occam’s Razor: Commonly attributed to William of Ockham (1290--
1349). This was formulated about fifteen hundred years after
Epicurus. In sharp contrast to the principle of multiple explanations,
it states: Entities should not be multiplied beyond necessity.

Commonly explained as: when have choices, choose the simplest
theory.

Bertrand Russell: "It is vain to do with more what can be done with
fewer."'’

Newton (Principia): "Natura enim simplex est, et rerum causis

superfluis non luxuriat".



Example. Inferring a deterministic finite
automaton (DFA)

A DFA accepts: 1, 111, 11111, 1111111; and
rejects: 11, 1111, 111111. What is it?

~©1;0 -O0~0-0~0—0—0

There are actually infinitely many DFAs satisfying these
data.

The first DFA makes a nontrivial inductive inference, the
2nd does not.

The 2" one “over fits” the data, cannot make further
predictions.



Exampe. History of Science

Maxwell's (1831-1879)'s equations say that:
(a) An oscillating magnetic field gives rise to an oscillating electric field;
(b) an oscillating electric field gives rise to an oscillating magnetic field.

Item (a) was known from M. Faraday's experiments. However (b) is a
theoretical inference by Maxwell and his aesthetic appreciation of simplicity.
The existence of such electromagnetic waves was demonstrated by the
experiments of H. Hertz in 1888, 8 years after Maxwell's death, and this
opened the new field of radio communication. Maxwell's theory is even
relativistically invariant. This was long before Einstein’ s special relativity. As
a matter of fact, it is even likely that Maxwell's theory influenced Einstein’ s
1905 paper on relativity which was actually titled "On the electrodynamics of
moving bodies'.

J. Kemeny, a former assistant to Einstein, explains the transition from the
special theory to the general theory of relativity: At the time, there were no
new facts that failed to be explained by the special theory of relativity.
Einstein was purely motivated by his conviction that the special theory was
not the simplest theory which can explain all the observed facts. Reducing
the number of variables obviously simplifies a theory. By the requirement of
general covariance Einstein succeeded in replacing the previous
gravitational mass' and ‘inertial mass' by a single concept.

Double helix vs triple helix --- 1953, Watson & Crick



Bayesian Inference

Bayes Formula:
P(H|D) = P(D|H)P(H)/P(D)
By Occam’s razor, P(H)=2KH) (smallest most likely).
Take -log, maximize P(H|D) becomes minimize:
-logP(D|H) + K(H) (modulo logP (D), constant).
where
-log P(D|H) is the coding length of D given H.

K(H) is the smallest description of model H (Kolmogorov
complexity of H).



Note on PAC Learning, other
theorems

Here is an informal statement: given data
(positive and negative examples drawn from
distribution D), if you find a model M that agrees
with the data, and size of M is polynomially
smaller than the data, then with high probability
(according to D) , M is correct with a small
number of errors.



CNN’'s



Smaller Network: CNN

We know it is good to learn a small model.

From this fully connected model, do we really need all
the edges”?

Can some of these be shared?

hidden layer 1 hidden layer 2 hidden layer 3
input layer
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Consider learning an image:

Some patterns are much smaller than
the whole image

}Can represent a small region with fewer parameters ‘

[Tbg;’ detector ]




Same pattern appears in different places:

They can be compressed!
What about training a lot of such “small” detectors

and each detector must “move around”’.

They can be compressed
to the same parameters.

>*+-'ﬂ7

/ . “middle beak” @
o detector




A convolutional layer

A CNN is a neural network with some convolutional layers
(and some other layers). A convolutional layer has a number
of filters that does convolutional operation.

Beak detector

&
s

A filter
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Inputs Outputs




Convolution

O | O | |O|0O|F

Ol O|OC|F|O
OO |k, |O |0
O|I0O|O|—,|O|O
R |Rr|Rr|O|FR|O

|0 0|0 |0 |k

6 X 6 Image

These are the network
parameters to be learned.

11111 Filter 1

11111 Filter 2

Each filter detects a
small pattern (3 x 3).



Convolution

stride=1

O | O | O | O |k

Ok OO | |O
R O O, | OO
O | O | o |O O
R PP O|IFL|O

|0 0|0 |0 |k

6 X 6 Image

1]1-1]-1
111 (-1
-11-11 1

Dot

product

— 3 -1

Filter 1



Filter 1
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Convolution

stride=1

6 X 6 Image

Filter 1



111 (-1
Convolution 1|1 |-1] Filter2
111 -1
stride=1

1]ojofojofu

110 110 ,
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ol110 0 Feature
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0/0]1 0 4 Mab |

6 X 6 Image 1 0 4 3

Two 4 x 4 images
Forming 2 x 4 x 4 matrix



-1 |Filter 2
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Convolution v.s. Fully Connected

Fully-
connected

convolution

O|0O(Rr|O|O|F

O, |O|O | ]|O
R |O|O|FRL,|O|O
O|0O|O0O|Fr,|O|O
PP IFP|O(FL|O
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Filter 1

0lo0 O//O 3)(1)(0)(-3
1100 |13 (3 (o0 (1
0111110} (2 (2 (a
0/0(0|1%vO
1/0{0(1|0
0/1({0|1]0

6 X 6 Image

fewer parameters!

kA WO DN P

co

A\

10:

$4
15

Only connect to
9 Inputs, not
fully connected
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Filter 1

O O O -3 1 0 -3
1|0 1y 3 (3 (o 1 4
O 1 O 3 -2 -2 -1 8
0|0 1l— 9
110 110 10

0|1 10

. 1
6 X 6 Image ,
) $4
Fewer parameters ‘ 15

'Even fewer parameters l 1?

: ? Shared w
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y Connected

} Feedforward network

Flattened

Convolution
\

l

Convolution 1

l

L Max Pooling

L Max Pooling

‘ )

Can
repeat
many
times



Max Pooling

1 -1|-1 -1 -1
-1 |1 |-1| Filter1l -1 -1 | Filter 2
-11-1]1 -1 -1
3 -1 -3 -1 1 1 1 il
-3 1 0 -3 1 1 -2 1
3 3110 1 1 1]l -2 1
3 -21-2 -1 1 o |l-4 3




Why Pooling

Subsampling pixels will not change the object
bird
bird

We can subsample the pixels to make image
w fewer parameters to characterize the image



A CNN compresses a fully connected
network in two ways:

Reducing number of connections
Shared weights on the edges
Max pooling further reduces the complexity



Max Pooling

New image

1/0/0/0|0]|1 but smaller
0O[1/0|0|110 Conv ) )
0O/|0|1]1|101/0 -1 1
1/0/0(0]1]0 "
ol1lolol1]o0 Max » ) .
0|0|1]|0(1|0 Pooling
2 X 2 Image
6 X 6 Image .
J Each filter

IS a channel



A New image | —

Smaller than the original
Image

The number of channels
IS the number of filters

Convolution 1

) 4

\ Max Pooling l

Convolution 1

¥

\ Max Pooling ‘

Can
repeat
many
times



The whole CNN

Convolution {

) 4

\ Max Pooling l

‘ A new image

Convolution

¥

\ Max Pooling ‘

A new image

i Flattened




Flattening

w
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Fully Connected
| Feedforward network




: Only modified the network structure and
CNN In Keras input format (vector -> 3-D tensor)

Input

model2.add( Convolution2D( __,_, _, ‘

dpput_shape=(_— = ")) )

25 3x3

| | Convolution
L= 14 1| -1 |
111 There are ‘
_1 1 _1 ]
-1 | -1

. Max Poolin
o e filters. .
Input_shape = (28, 28, 1) ‘
e 7
28 x 28 pixels 1: black/white, 3: RGB Convolution
model2.add (MaxPooling2D((~,~))) ‘
3 1 3 \ Max Pooling

=)




: Only modified the network structure and
CNN In Keras input format (vector -> 3-D array)

Input

1 X 28 x 28 ‘

model?2.add( Convolution2D ( 4 Convolution l

input shape= (-7, ,
How many parameters for
each filter? n 25 X 26 X 26 ‘
model?2 .add (MaxPooling2D ((”,”))) 4—{ Max Pooling ‘
25 x 13 x 13 ‘

model?2.add (Convolution2D (-0, 7, 7)) R el 6fe]s\V/e][S11{e]}! l
How many parameters | 5op5—

for each filter? 25x9 S0x11x11 ‘
model2 . add (MaxPooling2D ((7,2))) 4_{ Max Pooling ‘
50 x5x5




: Only modified the network structure and
CNN In Keras input format (vector -> 3-D array)

Input
1x28x28
Convolution I
25 X 26 X 26
Fully connected Max Pooling ‘
feedforward network |
U 25x13 x13
.add (Dense (output dim= ))
.add (Activation ( )) Convolution I
.add (Dense (output dim=10))
.add (Activation ( )) 50 x 11 x 11 ‘
- Max Pooling

1250 50x5x5
Flattened 1

model?2 .add (Flatten())




Data Driven Deep Learning

ImageNet experiments 28.2
‘ 152 IayersJ '

\
\
\
‘ 22 layers H 19 Iayers

3 57 I_ L I ‘ 8 layers ‘ ‘ 8 layers

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Deep Residual Nets with 152 layers best on ImageNet Challenge (2015)

Slide credit: Kai-Ming He, Microsoft Research



.......

N | Next move
eurak (19 x 19
Networ positions)

19 x 19 matrix

Black: 1 Fully-connected feedforward
| network can be used

white: -1
none: 0 - But CNN performs much better




AlphaGo’s policy network

The following is quotation from their Nature article:

~ Note: AlphaGo does not use Max Pooling. ‘

Neural network architecture. The input to the policy network isa 19 x 19 x 48
nage stack consisting of 48 feature planes. The first hidden layer zero pads the
mmmMLmagg then convolves k filters of kernel size 5 X 5 with stride

1 with the input image and applies a rectifier nonlinearity. Each of the subsequent

hidden lavers 2 to 12 zero pads the respective previous hidden laver into a 21 x 21
image, then convolves k filters of kernel size 3 x 3 with stride 1, again followed

by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1 x 1
with stride 1, with a different bias for each position, and applies a softmax func-
tion. The match version of AlphaGo used k=192 filters; Fig. 2b and Extended
Data Table 3 additionally show the results of training with k=128, 256 and
384 filters.




CNN In speech recognition

The filters move In the
CNN frequency direction.

Frequency

mage Time
Spectrogram



embedding dimension

CNN In text classification

sentence convolutional pooled softmax
matrix feature map representation
S € Rdxlsl C € RnXIsl-m+1 Cpool € Rlxn
—
T~
?
F & R$<m
J'/
L B
MRS &2 Source of image:
e & http://citeseerx.ist.psu.edu/viewdoc/downlo

ad?doi=10.1.1.703.6858&rep=replé&type=p
df



Lecun’s viewpoints
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Supervised Learning

Y

Supervised Learning !

8 We can train a machine on lots of examples of tables, chairs,
dog, cars, and people

& But will it recognize table, chairs, dogs, cars, and people it has
never seen before? -

— Ll —8

. QO O ﬁbt}

4 D0 000" oo ve
e S loeocolo &Jo oo

800000 [ |

. Qa0 um

o —u Qs Q% ‘7. . ‘

' 2000000
0000 0 b n s
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Deep Learning

f,\v -

i

Deep Learning = The Entire Machine'is Tp‘ainable

& Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor

Feature
Extractor

A 4

Trainable
Classifier

Feature [ | Mid-Level | Trainable
Extractor Features Classifier
# Deep Learning: Representations are hierarchical and trained
Low-Level Mid-Level | | High-Level Trainable
> - _
Features Features Features Classifier

(VR)




Deep CNN’s

f Deep Convolutional Nets for Object Recognition

i@ 1 to 10 billion connections, 10 million to 1 billion parameters, 8 to 20 layers.
Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic Fox (1.0); E L ; -

"""""""""""""""""" P i I g B i b g g i R g
CoOrvolulrorns & Rell
”"’r"'"’ﬂfooooll""”l
| Tax Poolirig

V. / / / / VAT LY CTLEY - - - - T

Corvolulrorns & Rell

LT ---- & L5 T B e

| AMax Poolirzg

" Blue

“Red  Green
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Deep Learning

Deep. Llearning =,Learning Hierarchical Representations

s

# 1t's deep if it has more than one stage of non-linear feature transformation

Low-Level| |Mid-Level| |High-Level Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

(VR)



State of the art in Deep Learning

I;
Very [5eep ConvNet Architectures

|
‘ . Y LeCun
@ Small kernels, not much subsampling (fractional subsampling).

o 333 88T BRT NS T HAT LeLeg X
VGG w Y P 9 A 4 9 N N9 1;n;m 9 ;w9 8338
ol (2l 21 & 23S s A S sl sl g sl sl g RISISIE
E § £ 5 E E s E & 8 E €t 8 8 b€
=1 (8](8l( gl |allcliel el alel allselel elslel RIZIZLS
Q9 (" R ) Q0 O L5 D
GooglLeNet
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Autonomous Driving

DriVinb Cars with Convolutional Nets

# MobilEye

(VR)



Obstacles to Progress in Al
(Lecun's v

-F Obstacles to Progress in Al

@ Machines need to learn/understand how the world works

P Physical world, digital world, people,....
P They need to acquire some level of common sense

@ They need to learn a very large amount of background knowledge

P Through observation and action

@ Machines need to perceive the state of the world

P So as to make accurate predictions and planning

@] Machines need to update and remember estimates of the state of the world

P Paying attention to important events. Remember relevant events

@l Machines neet to

P Predict which sequence of actions will lead to a desired state of the world

@ Intelligence & Common Sense =

Perception + Predictive Model + Memory +

(VR)



Common Sense Knowledge

What is Common Sense?
Y LeCun

# "The trophy doesn’t fit in the suitcase because it's
too large/small”

» (winograd schema)

# "Tom picked up his bag and left the room”

# We have common sense because we know how the
world works

# How do we get machines to learn that?

(VR)



Common Sense

Y

Common Sensevis the ability to fill in the:blanks

# Infer the state of the world from partial information
# Infer the future from the past and present
# Infer past events from the present state

Human retina

# Filling in the visual field at the retinal blind spot
# Filling in occluded images

# Fillling in missing segments in text, missing words in speech.
# Predicting the consequences of our actions

# Predicting the sequence of actions leading to a result

# Predicting any part of the past, present or future percepts from whatever
information is available.

# That's what predictive learning is
# But really, that’s what many people mean by unsupervised learning

(VR)



Unsupervised/Predictive Learning
.

The Necessity ofy\Unsupervised Learning /fredictiv‘e Learning

Y LeCun

# The number of samples required to train a large learning machine (for any
task) depends on the amount of information that we ask it to predict.

» The more you ask of the machine, the larger it can be.

# "The brain has about 10”714 synapses and we only live for about 1079
seconds. So we have a lot more parameters than data. This motivates the
idea that we must do a lot of unsupervised learning since the perceptual
input (including proprioception) is the only place we can get 1075
dimensions of constraint per second.”

» Geoffrey Hinton (in his 2014 AMA on Reddit)
» (but he has been saying that since the late 1970s)

# Predicting human-provided labels is not enough

# Predicting a value function is not enough

(VR)



Predictive Learning

Y ~

How Much Information Does the Machine Need tofPredict?
H \ Y LeCun

# "Pure” Reinforcement Learning (cherry)

» The machine predicts a scalar
reward given once in a while.

> A few bits for some samples

# Supervised Learning (icing)

» The machine predicts a category
or a few numbers for each input

» Predicting human-supplied data
» 10-10,000 bits per sample

# Unsupervised/Predictive Learning (cake)

» The machine predicts any part of
its input for any observed part.

» Predicts future frames in videos
» Millions of bits per sample

# (Yes, I know, this picture is slightly offensive to RL folks. But I'll make it up)

(VR)



Reinforcement Learning

Sutton®s Dyna Architecture: “try things in yogr head before acting”

3l Y LeCun

~

# Dyna: an Integrated Architecture for Learning, Planning and Reacting
» [Rich Sutton, ACM SIGART 1991]

The main idea of Dyna is the old, commonsense idea that
planning is ‘trying things in your head,” using an internal
model of the world (Craik, 1943; Dennett, 1978; Sutton &
Barto, 1981). This suggests the existence of a more primitive
process for trying things not in your head, but through direct
interaction with the world. Reinforcement learning is the
name we use for this more primitive, direct kind of trying,
and Dyna is the extension of reinforcement learning to include

a learned world model.
REPEAT FOREVER:

1. Observe the world’s state and reactively choose an
action based on it;

Observe resultant reward and new state;

Apply reinforcement learning to this experience; Agent

. . . Situation/
Update action model based on this experience; 5
State Reward Action

oo 8k

Repeat K times:

5.1 Choose a hypothetical world state and action; World
5.2 Predict resultant reward and new state using action
model;

5.3 Apply reinforcement learning to this hypothetical
experience.

(VR)



Classical Model-based Optimal

Y LeCun

« Simulate the world (the plant) with an initial control sequence
« Adjust the control sequence to optimize the objective through gradient descent
« Backprop through time was invented by control theorists in the late 1950s

- it's sometimes called the adjoint state method
- [Athans & Falb 1966, Bryson & Ho 1969]

Plant . Plant . Plant N Plant
Simulator Simulator Simulator Simulator
Command Command Comman4 Comman
Objective Objective Objective Objective

v v v v

(VR)



Al system

Y LeCun

f Al System: Learning Agent + Immutable Objective

* The agent gets percepts from the world

« The agent acts on the world World  |=

* The agents tries to minimize the long-term
expected cost.

Percepts / Actions/
Observations Outputs

]

— Environment

PPTN, habenula...

Eﬂic

—»1 Agent

State J

—»1 Objective

v

Cost

dorsal
striatum

[frontal cortex J

|

licy
F:dzameges)

ventra
striatum
Z3
Q
action (motor cortex)

opamine

perception (posterior cortex)

i)

"- \
-~ ventral !
striatum |

striatum

[frontal cortex ]
dorsolateral

17 NN

[

>
|-
o
9
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Predicting + Planning = Reasoning

Y LeCun

f Al System: Predicting + Planning = Reasoning

« The essence of intelligence is the ability to

predict
* To plan ahead, we simulate the world World —
* The action taken minimizes the predicted cost
|_ Agent o . Actions/
—> IWorld - ercepts o utputs
Simulator
Predicted Inferred Action
Percepts ~ yWorld State |Proposals —»> Agent
—  Actor
Agent State
lActor State
. Predicted | Obijecti L Cost
B Critic L Cost jective

(VR)



Model-based Reinforcement
Le C : , ~

What we need’is gl-B; Reinfo']cer_nent’f Learninq{L

eCun

# The essence of intelligence is the ability to predict

# To plan ahead, we must simulate the world, so as to minimizes the
predicted value of some objective function.

Agent
World . World . World | World
Simulator Simulator Simulator Simulator
—p-1| Perception
= Actor > Actor > Actor »  Actor |[—>
-1 (Critic > Critic » Critic > (Critic

(VR)



Example

Y LeCun

& [Lerer, Gross, Fergus arxiv:1603.01312]

» ConvNet produces object masks that predict the trajectories of
falling blocks

» Uses the Unreal game engine.

| i
— SO, e e *ﬂ“
R conv

frnask(X): 5x56x56

64x56x56

1x1
conv

ResNet-34

512x7x7

X: 3x224x224

S12xAx1 4654x1x1

(VR)



Learning Physics

Learning Physics (PhysNet)

& [Lerer, Gross, Fergus arxiv:1603.01312]

» ConvNet produces object masks that predict the trajectories of
falling blocks

» Uses the Unreal game engine.

B
]
¥
A




Learning Physics B

Y LeCun

& [Lerer, Gross, Fergus arxiv:1603. 01 31 2]

» ConvNet produces object masks that predict the trajectories of
falling blocks

» Uses the Unreal game engine.

(VR)



Augmenting Neural Nets with
Memc

-F Augmenting Neural Nets with a Memory Module

# Recurrent networks cannot remember things for very long

» The cortex only remember things for 20 seconds
# We need a “hippocampus” (a separate memory module)
» LSTM [Hochreiter 1997], registers
» Memory networks [Weston et 2014] (FAIR), associative memory
¥ Stacked-Augmented Recurrent Neural Net [Joulin & Mikolov 2014] (FAIR)
» Neural Turing Machine [Graves 2014],
» Differentiable Neural Computer [Graves 2016]

memory

(VR)



Link between CNN’s and Model-
based Network Designs

Bayesian Model Based Vision (Binford)

Systems Analysis of Deep Chains
(Ramesh, various)

Scattering Transform (Mallat, 2011)

Modern perspectives — Patel & Baranuik
(2015), others.



Radford Neal (90’s)

Infinite neural networks

Neural networks (one hidden layer) with random weights converge
to a Gaussian process:

E[f(x)]

E[f (x)f(x)]

H
E[Z w? hi(x) + w]

W(2
]+ZE[ JE[hi(x)] =

=0 =0

E[(ZW hi(x —|-W0 )(ZW2)h —i-WO )]
ZE{ YR (x)hi(x)] + E[(w§?)?]

o Z E[hi(x | + o,

UzlE[h( )h(x")] + o5



Bayesian Networks for
Model-based Vision: Mann, Binford
(1990’s)

Early use of Hierarchical Bayesian
Network representations for model-
based recognition

* lllustration of ‘quasi-invariant based
indexing’ followed by extrapolation
(prediction) and verification

(VR)



Bayesian Networks In Vision
(Mann, 1996)

« Automated and dynamic generation
of Bayesian networks

« Early lllustration of how to derive
meaningful probabilities for
Bayesian Networks

 Addressed problem of Articulated I
Model recognition in a given image
using Bayesian networks

*Source: W. Mann (1996), Stanford U., Phd. Dissertation

(VR)
7/18/2019



Interpretation Cycle: (Mann, 1996)

/" Observed Object Indexing Model N
Hypothesis P Hypothesis
Prediction
ﬁmm @
Strong Collection Weaker
Evidence Ewvidence
Figure 2-3: Fundamentsal Cycle of Interpretation
\_ This ts the basic cycle of the algorithm in this work. J
Indexing N
Hon nde rediction
( sDPrmitives ) m)[ Volume Subparts )
+‘*99"E5"m“ *‘redicnm
(2-D Aggregated Features ) Idexing 3> (2D Composite Features )
ation , rediction
+ﬂg§m Model *’mdlcﬂan
*Source: W. Mann ( imegepata ) \ DB (' Predicted Observables )
(1996)’ Stanford \_ Figure 2-4: Interpretation in Successor j

U., Phd.
Dissertation




World priors (known or learnt)

3D scene apricris
(arrangements of objects)

Oibject(s)
3D model( s
(size, etc..)

ingat image Ik, w i —————~

Linear Feature
Extraction
Framework example

gensot model

(Bascle et al 2002)

v

sersot nodse model
(110l 56

features

Task priors

h 4

Grouped features




Lane Detection via Hough Transform

0 Priors on position and
orientation

0o Wide line features

o Covariance propagation

0 Automatic thresholding

0 Fusion of line hypotheses or Variable p‘
Bandwidth Mean-Shift > (

Published in SMVP’04



Systems Analysis:

v

!

priot ofn geom etry between camera and a scene plane

(here ground plane)

Canoric
otientati one probability of false alarm
anetie of interest
ir1 the image i
- ¢ Cuwmnidated )
gensor | —pe| inpupimage i, w8 | — | peak, pit detector | — g peak detection output — mnmaxilma — | thresholding
: i o . supprt ession
‘\ K / oth cationde oriettations
SEfIS01 f101 58 peak width \
ol fu0i 5€) a priotis
W) salietit peaks,
their positions, orientations and strengths
lane markings lane depatrbare %y, B, 3
model detection with uncertainties
" 5 (x), o (3) and o(d)
* ] and probability of miss and false alarm
world price task prios

!

meamwe of desaation of velicle wrt lane
&p with confidence measure oiAp)

A

¢ ¢

priot ot lane markings positi ons
if wehicle stays in lane

lane markings position and oriertation
initmage after invverse perspective mapping (TPLD

rf"

¥

Thresholding

4

fI0f-traK it a
Suppt & 55100

‘_“‘k—q___

probability of miss
and fal se alarm

> planar inver se perspective mapping f homographsy

salient peaks, their oriertati ons (with uncertainty) and strengths
2y, B, o), o'( 3, o'(8) and

hough
acounul ator
s

Hip.5)

probabidistic Hough Transform (HT)

Customization for automotive application



Deep Rendering Model (Patel et al,
2015)

A B C

Neural Network

Probabilistic Model : Factor Graph (Deep Convolutional
Deep Rendering Model) /nference (Inference via Max-Sum Dizenminative
( P g ) ( ) Gounferpart Network)
II—[ I.!— 1
ey’ 2= M ar — Sum < —
oA - FEL. Outpud
A+l ] = ' Messag: o+l I -JJ Feature Map
3 "
I o max {}l | MazPool + RELU
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(W i+I|_} PV
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. Mar — Sum . Imput
M ezzage P enfuTe
Feature Map
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Probabillistic Theory of
Deep Learning (Patel et al, 2015)

A B C

Maive Bayes Mixture Rendering Deep Rendering
Classifier Model Model Model

1

Figure 1. Graphical depiction of the Naive Bayes Classifier (A, left), Gaussian Mixture Model (A, right),
the shallow Rendering Model (B) and the Deep Rendering Model (C). All dependence on pixel location
a has been suppressed for clarity.



lHhistration of DRM

Figure 3. This sculpture by Henri Matisse illustrates the Deep Rendering Model (DRM). The sculpture
in the leftmost panel is analogous to a fully rendered image at the lowest abstraction level £ = (0. Moving
from left to right, the sculptures become progressively more abstract, until the in the rightmost panel we
reach the highest abstraction level £ = 3. The finer-scale details in the first three panels that are lost
in the fourth are the nuisance parameters g, whereas the coarser-scale details in the last panel that are
preserved are the target c.



Scattering Transform (Mallat, 2011)

Invariance and deformation stability
— Fourier failure

— Wavelet stablility to deformations
— Scattering invariants and deep
convolution networks

— Mathematical properties of deep
scattering networks

— Classification of images



Conv Net using Scattering Transform

o [teration on Ux = {x * ¢, |z %) z|}, , contracting.

e Output at all layers: {S|p|z},ep .
MFESC and SIFT are 1st layer outputs: S[\|z




Textures with same spectrum

X: stationary process
Fourier Wavelet Scattering
’X*wkl‘*gb ‘|X*’¢/\1‘*¢/\2‘*¢

Textures

Power Spectrum

window size = image size



