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Lecture 1: Introduction

Jeff Dean

Many predictions, by 2025 – 2030, 1-2 billion people will lose their jobs to AI



1956: The beginning of AI: The Dartmouth Conference 

The theme was using computers to mimic human intelligence.

“supervisor of Minsky”

Turing Award, student 

Nobel Prize,    supervisor

Designed IBM 701

Von Neumann hired him to build first computer   



Neurons in nature

 Human has ~100 billion neurons/nerve cells (& many more supporting cells)

 Each neuron has 3 parts: cell body, dendrites, axon connected up to 

~10,000 other neurons. Passing signals to each other via 1000 trillion 

synaptic connections, approximately 1 trillion bit per second processor. 

 Human memory capacity 1~1000 terabytes.

Signals from

other neurons

There are

synaptic

weights

&they adapt

Signals to other neurons.

Human: up to 1 meter long



What is our natural system good at?

Vision

Hearing (very adaptive)

Speech recognition / speaking

Driving

Playing games

Natural language understanding

“Not good at”: multiply 2 numbers, 

memorize a phone number.



Why not other types of learning?

 Linear regression?

Why is it linear?

 Bayesian? 

What is the prior?

 SVM?

What are the features?

 Decision tree?

What are the nodes/variables?

 PAC learning?

What is the function to be learnt?

 KNN?

 Cluster on what features?

These methods do not suit

well with very complex models.



Ups and Downs of AI

 In the 1956 Dartmouth meeting, it has already mentioned neuron networks

 How did learning go deep.  Easy hype target as AI borders science and science fiction.

 Perceptron popularized by F. Rosenblatt, 1957 (Principles of Neurodynamics 1961).

 Times: .. A revolution ..

 New Yorker …

 A science magazine title “Human brains replaced?”

 False claims: “After 5 years all of us will have smart robots in our homes …”

 It turns out that Rosenblatt’s experiments of distinguishing tanks from trucks were 

because of lightings.

 1969, Minsky and Papert proved Perceptron, being a linear separator, is not very powerful. 

For example, can’t do exclusive-or. But this was misconstrued as NNs being too week.

 1980s, multi-layer perceptron

 1986 Backpropagation, hard to train > 3 layers.

 1989: 1 hidden layer can do all, why deep?

 2006 RBM initialization (breakthrough) re-kindled fire.

 < 2009: Game industry has pushed the growth of GPU’s

 2011: Speech  recognition (Waterloo professor Li Deng invited Hinton to Microsoft)

 2012: won ILSVRC image competition (with ImageNet training data)

 1980’s expert system

 Japan’s 5th generation computers (thinking machines)



Perceptron Architecture

f1

f2

f3

features

Inputs

x1

x2

x3

By hand!

Learning

As long as you pick right features, this can learn almost anything.

Binary Threshold Neuron 



This actually gives a powerful machine 

learning paradigm:

 Pick right features by clustering

 Linearly separate the features.

 This is essentially what Rosenblatt initially claimed for perceptron. 

Chomsky & Papert actually attacked a different target.
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Binary threshold neuron

McCulloch-Pitts (1943)

There are two ways of describing the binary threshold neuron:  

1.Threshold = 0

2.Threshold ≠ 0



Avoiding learning biases separately

By a trick of adding 1 

to input.

We now can learn a 

bias as if it were a 

weight.

Hence we get rid of 

the threshold.

b

1 x1
x2

w1

w2



A converging perceptron learning alg.

 If the output unit is correct, leave its weights 

unchanged.

 If the output unit incorrectly outputs a zero, add 

the input vector to the weight vector.

 If the output unit incorrectly outputs a 1, subtract 

the input vector from the weight vector.

This is guaranteed to find a set of weights 

that is correct for all training cases if such 

“solution” exists.



Weight space

The dimension k is number of the weights 

w=(w1, … , wk).

A point in the space represents a weight 

vector (w1, … , wk) as its coordinates .

Each training case is represented as a 

hyper-plane through the origin (assuming 

we move the threshold to the bias weight)

The weights must lie on one side of this hyper-

plane to get answer correct.



Remember dot product facts: 

a  b = ||a||||b||cos(θab)

= a1b1+a2b2+ … +anbn

Thus, a  b ≥ 0, if –π/2 ≤ θab ≤ π/2

a  b ≤ 0, if –π ≤ θab ≤ −π/2 or π/2 ≤ θab ≤ π



Weight space

A point in the space represents a weight vector

Training case is a hyper-plane through the origin,

assuming threshold represented by bias.



The cone of feasible solutions

This is convex

To get all training cases right, we need 

to find a point on the “right side” of all

planes (representing training cases).

The solution region, if exists, is a cone

and is convex.

A positive example

A negative example



A converging perceptron learning alg.

 If the output unit is correct, leave its weights 

unchanged.

 If the output unit incorrectly outputs a zero, add 

the input vector to the weight vector.

 If the output unit incorrectly outputs a 1, subtract 

the input vector from the weight vector.

This is guaranteed to find a set of weights 

that is correct for all training cases if such 

solution exists.



Proof of convergence by picture

But what 

about this 

point?

We might 

move farther.

Generously 

feasible vector
Proof: If there is a generously

feasible vector, then each 

step we move closer to the 

feasible region. After finitely

many steps, the weight vector

is in the feasible region.

Note: this is assuming 

generously feasible vector 

exists.



The limitations of Perceptrons

 If we are allowed to choose features by 

hand, then we can do anything. But this is 

not learning.

 If we do not hand-pick features, then 

Minsky and Papert showed that 

perceptrons cannot do much. We will look 

at these proofs.



XOR cannot be learnt by a perceptron

We prove that binary threshold output unit 

cannot do exclusive-or:

Positive examples: (1,1)  1; (0,0) 1

Negative examples: (1,0)0; (0,1)  0

The 4 input-output pairs give 4 inequalities, 

T being threshold:

w1 + w2 ≥ T,  0 ≥ T    w1 + w2 ≥ 2T

w1 < T,          w2 <T   w1 + w2 < 2T

Contradiction.         QED



Geometric view

 Data-space view

Each input is point

A weight vector defines 

a hyperplane

The weight plane is 

perpendicular to the 

weight vector and 

misses the origin by a 

distance equal to the 

threshold
Blue dots and red dots 

are not linearly separable.

Chapter 0

of this book



But this can be easily solved: 

 Just pick right features (clusters)

 Then linearly separate the features, solves all.

 This is essentially what Rosenblatt initially claimed for perceptron. 

Chomsky & Papert actually attacked a different target.
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Group Invariance Theorem (Minsky-Papert): 

Perceptron cannot distinguish following two patterns under translation.

Proof.

Each pixel is activated by 4 different

translations of both Pattern A and B.

Hence the total input received by the 

decision unit over all these patterns is

four times the sum of all weights for

both patterns A and B.

No threshold can always accept A & 

reject B.                                   QED.

In general Perceptrons cannot do 

groups. Image translation forms

a group. This was sometimes 

mis-interpreted as NN’s are no good.

Hidden units can learn such features. 

But deeper NN are hard to train.

Translation with wrap-around of two patterns

Positive Examples:

Negative Examples:



Basic Neurons



Basic Neurons

To model neurons we have to idealize 

them:

Idealization removes complicated details that 

are not essential for understanding the main 

principles.

It allows us to apply mathematics and to make 

analogies to other familiar systems

Once we understand the basic principles, its 

easy to add complexity to make the model more 

faithful.



Linear neurons

These are the basic building parts for all 

other neuron networks.

y = b + Σi xi wi

output

bias i-th input

Weight on

i-th input



Binary threshold neuron

McCulloch-Pitts (1943)

First compute a weighted sum of inputs

Then send out a fixed size spike of activity if the 

weighted sum exceeds a threshold.

McCulloch and Pitts thought that each spike is 

like the truth value of a proposition and each 

neuron combines truth values to compute the 

truth value of another proposition.

This has influenced Von Neumann.



There are two equivalent ways to 

describe a binary threshold neuron

θ



Rectified Linear Unit (ReLU)

 They compute a linear weighted sum of their inputs.

 The output is a non-linear function of the total input.

 This is the most popularly used neuron.

Or written as: f(x) = max {0,x}

A smooth approximation of the ReLU is “softplus” function

f(x) = ln (1+ex)



Sigmoid neurons

Typically they use the 

logistic function

They have nice

derivatives which 

makes learning easy.

But they cause 

vanishing gradients

during

backpropogation.



Stochastic binary neurons



Softmax function 

(Normalized exponential function)

If we take an input of [1,2,3,4,1,2,3], the softmax of that is 

[0.024, 0.064, 0.175, 0.475, 0.024, 0.064, 0.175]. 

The softmax function highlights the largest values and 

suppress other values.

Comparing to “max” function, softmax is differentiable.



Fully Connected NN’s



Fully Connected NN & 

Hello World of Deep Learning

Neural 

Network “1”

MNIST Data maintained by Yann LeCun: http://yann.lecun.com/exdb/mnist/

Keras provides data sets loading function at http://keras.io/datasets

0–9 handwritten digit recognition:

28 x 28

http://yann.lecun.com/exdb/mnist/


Keras & Tensorflow

 Interface of Tensorflow and Theano.

 Francois Chollet, author of Keras is at Google, Keras will become 

Tensorflow API.

 Documentation: http://keras.io.

 Examples: https://github.com/fchollet/keras/tree/master/examples

 Simple course on Tensorflow: 

https://docs.google.com/presentation/d/1zkmVGobdPfQgsjIw6gUqJs

jB8wvv9uBdT7ZHdaCjZ7Q/edit#slide=id.p

http://keras.io
https://github.com/fchollet/keras/tree/master/examples


Implementing in Keras

…

28x28

500 500

softmax

model = sequential()   # layers are sequentially added

model.add( Dense(input_dim=28*28, output_dim=500))

model.add(Activation(‘sigmoid’))  #: softplus, softsign,relu,tanh, hard_sigmoid

model.add(Dense( output_dim = 500))

model.add (Activation(‘sigmoid’))

Model.add(Dense(output_dim=10))

Model.add(Activation(‘softmax’))
model.compile(loss=‘categorical_crossentropy’, optimizer=‘adam’, metrics=[‘accuracy’])

model.fit(x_train, y_train, batch_size=100, nb_epoch=20)

y
0

y
1

y

9

Fully connected NN



Training

model.fit(x_train, y_train, batch_size=100, nb_epoch=20)

Number of training examples Number of training examples

28 x 28

=784
10

numpy array



Batch: 

parallel processing

NN

……

NN

NN

……

NN

 Pick the 1st batch

 Randomly initialize 

network parameters

 Pick the 2nd batch

F
ir
s
t 

b
a
tc

h
2

n
d

b
a
tc

h

 Until all batches 

have been picked

…

one epoch

Repeat the above process

We do not really minimize total loss!

y’9

y’1
l1

y9

y1x1

x9

l9

x2 y2 y‘2
l2

y’16
x16

l16

L’ = l1 + l9+ …

Update parameters

y16

L” = l2 + l16+ …

Update parameters

model.fit(x_train, y_train, batch_size=100, nb_epoch=20)



Speed 

 Smaller batch size means more updates in one epoch

 E.g. 50000 examples

 batch size = 1, 50000 updates in one epoch

 batch size = 10, 5000 updates in one epoch

GTX 980 on MNIST with 

50000 training examples

166s

166s

17s

17s

1 epoch

10 epochs

Batch size = 1 and 10, update the same 

amount of times in the same period.

Batch size = 10 is more stable, converge 

faster 

Very large batch size can 

yield worse performance



Background Theory



Importance of being small

 Neural networks can approximate any function. 
Overfiting is a major concern. In some sense, it is 
possible to view the development of deep learning from 
an angle of reducing the (Kolmogorov) complexity of 
neural networks: CNN, RNN, dropout, regularization, and 
esp. depth.

 Occam’s Razor: Commonly attributed to William of Ockham (1290--
1349). This was formulated about fifteen hundred years after 
Epicurus. In sharp contrast to the principle of multiple explanations, 
it states: Entities should not be multiplied beyond necessity.

 Commonly explained as: when have choices, choose the simplest 
theory.

 Bertrand Russell: ``It is vain to do with more what can be done with 
fewer.'‘

 Newton (Principia): ``Natura enim simplex est, et rerum causis 
superfluis non luxuriat''.



Example. Inferring a deterministic finite 

automaton (DFA)

A DFA accepts: 1, 111, 11111, 1111111; and 
rejects: 11, 1111, 111111. What is it?

 There are actually infinitely many DFAs satisfying these 
data.

 The first DFA makes a nontrivial inductive inference, the 
2nd does not.

 The 2nd one “over fits” the data, cannot make further 
predictions. 

1

1

1111 1



Exampe. History of Science

 Maxwell's (1831-1879)'s equations say that: 
 (a) An oscillating magnetic field gives rise to an oscillating electric field; 

 (b) an oscillating electric field gives rise to an oscillating magnetic field. 

Item (a) was known from M. Faraday's experiments. However (b) is a 
theoretical inference by Maxwell and his aesthetic appreciation of simplicity. 
The existence of such electromagnetic waves was demonstrated by the 
experiments of H. Hertz in 1888, 8 years after Maxwell's death, and this 
opened the new field of radio communication. Maxwell's theory is even 
relativistically invariant. This was long before Einstein’s special relativity. As 
a matter of fact, it is even likely that Maxwell's theory influenced Einstein’s 
1905 paper on relativity which was actually titled `On the electrodynamics of 
moving bodies'.

 J. Kemeny, a former assistant to Einstein, explains the transition from the 
special theory to the general theory of relativity: At the time, there were no 
new facts that failed to be explained by the special theory of relativity. 
Einstein was purely motivated by his conviction that the special theory was 
not the simplest theory which can explain all the observed facts. Reducing 
the number of variables obviously simplifies a theory. By the requirement of 
general covariance Einstein succeeded in replacing the previous 
‘gravitational mass' and `inertial mass' by a single concept.

 Double helix vs triple helix --- 1953, Watson & Crick



Bayesian Inference

 Bayes Formula:

P(H|D) = P(D|H)P(H)/P(D)

 By Occam’s razor, P(H)=2-K(H), (smallest most likely).

 Take -log, maximize P(H|D) becomes minimize:

-logP(D|H) + K(H)     (modulo logP(D), constant).

where

 -log P(D|H) is the coding length of D given H.

 K(H) is the smallest description of model H (Kolmogorov 

complexity of H).



Note on PAC Learning, other 

theorems

 Here is an informal statement: given data 

(positive and negative examples drawn from 

distribution D), if you find a model M that agrees 

with the data, and size of M is polynomially 

smaller than the data, then with high probability 

(according to D) , M is correct with a small 

number of errors.



CNN’s



Smaller Network: CNN

 We know it is good to learn a small model.

 From this fully connected model, do we really need all 

the edges? 

 Can some of these be shared?



Consider learning an image:

Some patterns are much smaller than 

the whole image

“beak” detector

Can represent a small region with fewer parameters



Same pattern appears in different places:

They can be compressed!

What about training a lot of such “small” detectors

and each detector must “move around”.

“upper-left 

beak” detector

“middle beak”

detector

They can be compressed

to the same parameters.



A convolutional layer

A filter

A CNN is a neural network with some convolutional layers 

(and some other layers).  A convolutional layer has a number 

of filters that does convolutional operation. 

Beak detector



Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

……

These are the network 

parameters to be learned.

Each filter detects a 

small pattern (3 x 3). 



Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1

stride=1

Dot 

product



Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -3

If stride=2



Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

stride=1



Convolution

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Repeat this for each filter
stride=1

Two 4 x 4 images

Forming 2 x 4 x 4 matrix

Feature

Map



Color image: RGB 3 channels

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1
Filter 1

-1 1 -1

-1 1 -1

-1 1 -1
Filter 2

1 -1 -1

-1 1 -1

-1 -1 1

1 -1 -1

-1 1 -1

-1 -1 1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1

-1 1 -1
Color image



1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

image
convolution

-1 1 -1

-1 1 -1

-1 1 -1

1 -1 -1

-1 1 -1

-1 -1 1

1x

2x

……

36x

……
1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

Convolution v.s. Fully Connected

Fully-

connected



1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1
1

2

3

…

8

9
…

1

314

15

…

Only connect to 

9 inputs, not 

fully connected

4:

10:

16

1

0

0

0

0

1

0

0

0

0

1

1

3

fewer parameters!



1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1

1:

2:

3:

…

7:

8:

9:
…

1

3:14:

15:

…

4:

10:

16:

1

0

0

0

0

1

0

0

0

0

1

1

3

-1

Shared weights

6 x 6 image

Fewer parameters

Even fewer parameters



The whole CNN

Fully Connected 

Feedforward network

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flattened

Can 

repeat 

many 

times



Max Pooling

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1

-1 1 -1

-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

1 -1 -1

-1 1 -1

-1 -1 1

Filter 1



Why Pooling

 Subsampling pixels will not change the object

Subsampling

bird

bird

We can subsample the pixels to make image 

smaller
fewer parameters to characterize the image



A CNN compresses a fully connected 

network in two ways:

Reducing number of connections

Shared weights on the edges

Max pooling further reduces the complexity



Max Pooling

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

6 x 6 image

3 0

13

-1 1

30

2 x 2 image

Each filter 

is a channel

New image 

but smaller

Conv

Max

Pooling



The whole CNN

Convolution

Max Pooling

Convolution

Max Pooling

Can 

repeat 

many 

times

A new image

The number of channels 

is the number of filters

Smaller than the original 

image

3 0

13

-1 1

30



The whole CNN

Fully Connected 

Feedforward network

cat dog ……
Convolution

Max Pooling

Convolution

Max Pooling

Flattened

A new image

A new image



Flattening

3 0

13

-1 1

30 Flattened

3

0

1

3

-1

1

0

3

Fully Connected 

Feedforward network



Only modified the network structure and 

input format (vector -> 3-D tensor)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

input

1 -1 -1

-1 1 -1

-1 -1 1

-1 1 -1

-1 1 -1

-1 1 -1

There are 

25 3x3

filters.

…

…

Input_shape = ( 28 , 28 , 1)

1: black/white, 3: RGB28 x 28 pixels

3 -1

-3 1

3



Only modified the network structure and 

input format (vector -> 3-D array)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

Input

1 x 28 x 28

25 x 26 x 26

25 x 13 x 13

50 x 11 x 11

50 x 5 x 5

How many parameters for 

each filter?

How many parameters

for each filter?

9

225=

25x9



Only modified the network structure and 

input format (vector -> 3-D array)CNN in Keras

Convolution

Max Pooling

Convolution

Max Pooling

Input

1 x 28 x 28

25 x 26 x 26

25 x 13 x 13

50 x 11 x 11

50 x 5 x 5
Flattened

1250

Fully connected 

feedforward network

Output



Data Driven Deep Learning

Slide credit: Kai-Ming He, Microsoft Research

Deep Residual Nets with 152 layers best on ImageNet Challenge (2015) 



AlphaGo

Neural

Network
(19 x 19 

positions)

Next move

19 x 19 matrix

Black: 1

white: -1

none: 0

Fully-connected feedforward 

network can be used

But CNN performs much better



AlphaGo’s policy network

Note: AlphaGo does not use Max Pooling.

The following is quotation from their Nature article:



CNN in speech recognition

Time

F
re

q
u
e
n
c
y

Spectrogram

CNN

Image

The filters move in the 

frequency direction.



CNN in text classification

Source of image: 

http://citeseerx.ist.psu.edu/viewdoc/downlo

ad?doi=10.1.1.703.6858&rep=rep1&type=p

df

?



Lecun’s viewpoints

(VR)



Supervised Learning

(VR)



Deep Learning

(VR)



Deep CNN’s

(VR)



Deep Learning

(VR)



State of the art in Deep Learning

(VR)



Autonomous Driving

(VR)



Obstacles to Progress in AI

(Lecun’s view)

(VR)



Common Sense Knowledge

(VR)



Common Sense

(VR)



Unsupervised/Predictive Learning

(VR)



Predictive Learning

(VR)



Reinforcement Learning

(VR)



Classical Model-based Optimal

Control

(VR)



AI system

(VR)



Predicting + Planning = Reasoning

(VR)



Model-based Reinforcement

Learning

(VR)



Example 

(VR)



Learning Physics

(VR)



Learning Physics

(VR)



Augmenting Neural Nets with

Memory

(VR)



Link between CNN’s and Model-

based Network Designs

 Bayesian Model Based Vision (Binford)

 Systems Analysis of Deep Chains 

(Ramesh, various) 

 Scattering Transform (Mallat, 2011)

 Modern perspectives – Patel & Baranuik 

(2015), others.



Radford Neal (90’s)



Bayesian Networks for 

Model-based Vision: Mann, Binford 

(1990’s)

(VR)

• Early use of Hierarchical Bayesian 

Network representations for model-

based recognition

• Illustration of ‘quasi-invariant based 

indexing’ followed by extrapolation 

(prediction) and verification



Bayesian Networks in Vision 

(Mann, 1996)

7/18/2019

(VR)

• Automated and dynamic generation 

of Bayesian networks 

• Early Illustration of how to derive 

meaningful probabilities for 

Bayesian Networks

• Addressed problem of  Articulated 

Model recognition in a given image 

using Bayesian networks

*Source: W. Mann (1996), Stanford U., Phd. Dissertation



Interpretation Cycle: (Mann, 1996)

*Source: W. Mann 

(1996), Stanford 

U., Phd. 

Dissertation



Linear Feature 

Extraction 

Framework example

(Bascle et al 2002)



 Priors on position and 

orientation

 Wide line features

 Covariance propagation

 Automatic thresholding 

 Fusion of line hypotheses or Variable 

Bandwidth Mean-Shift

ρ

θ

Published in SMVP’04

Lane Detection via Hough Transform



Customization for automotive application

Systems Analysis:



Deep Rendering Model (Patel et al, 

2015)



Probabilistic Theory of 

Deep Learning (Patel et al, 2015)



Illustration of DRM



Scattering Transform (Mallat, 2011)

 Invariance and deformation stability

– Fourier failure

– Wavelet stability to deformations

– Scattering invariants and deep 

convolution networks

– Mathematical properties of deep 

scattering networks

– Classification of images



Conv Net using Scattering Transform



Textures with same spectrum


